首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Increases in the deposition of anthropogenic nitrogen (N) have been linked to several terrestrial ecological changes, including soil biogeochemistry, plant stress susceptibility, and community diversity. Recognizing the need to identify sensitive indicators of biotic response to N deposition, we empirically estimated the N critical load for changes in alpine plant community composition and compared this with the estimated critical load for soil indicators of ecological change. We also measured the degree to which alpine vegetation may serve as a sink for anthropogenic N and how much plant sequestration is related to changes in species composition. We addressed these research goals by adding 20, 40, or 60 kg N x ha(-1) x yr(-1), along with an ambient control (6 kg N x ha(-1) x yr(-1) total deposition), to a species-rich alpine dry meadow for an eight-year period. Change in plant species composition associated with the treatments occurred within three years of the initiation of the experiment and were significant at all levels of N addition. Using individual species abundance changes and ordination scores, we estimated the N critical loads (total deposition) for (1) change in individual species to be 4 kg N x ha(-1) yr(-1) and (2) for overall community change to be 10 kg N x ha(-1) x yr(-1). In contrast, increases in NO3- leaching, soil solution inorganic NO3-, and net N nitrification occurred at levels above 20 kg N x ha(-1) x yr(-1). Increases in total aboveground biomass were modest and transient, occurring in only one of the three years measured. Vegetative uptake of N increased significantly, primarily as a result of increasing tissue N concentrations and biomass increases in subdominant species. Aboveground vegetative uptake of N accounted for <40% of the N added. The results of this experiment indicate that changes in vegetation composition will precede detectable changes in more traditionally used soil indicators of ecosystem responses to N deposition and that changes in species composition are probably ongoing in alpine dry meadows of the Front Range of the Colorado Rocky Mountains. Feedbacks to soil N cycling associated with changes in litter quality and species composition may result in only short-term increases in vegetation N pools.  相似文献   

2.
Among the many factors that potentially influence the rate at which nitrogen (N) becomes available to plants in terrestrial ecosystems are the identity and diversity of species composition, frequency of disturbance or stand turnover, and time. Replicated suites of investigator-designed communities afforded an opportunity to examine the effects of those factors on net N mineralization over a 12-year period. The communities consisted of large-stature perennial plants, comprising three tree species (Hyeronima alchorneoides, Cedrela odorata, and Cordia alliodora), a palm (Euterpe oleracea), and a large, perennial herb (Heliconia imbricata). Trees were grown in monoculture and in combination with the other two life-forms; tree monocultures were subjected to rotations of one or four years, or like the three-life-form systems, left uncut. The work was conducted on fertile soil in the humid lowlands of Costa Rica, a site with few abiotic constraints to plant growth. Rates of net N mineralization and nitrification were high, typically in the range of 0.2-0.8 microg x g(1) x d(-1), with net nitrification slightly higher than net mineralization, indicating preferential uptake of ammonium (NH4+) by plants and microbes. Net rates of N mineralization were about 30% lower in stands of one of the three tree species, Hyeronima, than in stands of the other two. Contrary to expectations, short-rotation management (one or four years) resulted in higher net rates of N mineralization than in uncut stands, whether the latter were composed of a single tree species or a combination of life-forms. Neither additional species richness nor replenishment of leached N augmented mineralization rates. The net rate at which N was supplied tended to be lowest in stands where demand for N was highest. Careful choice of species, coupled with low frequency of disturbance, can lead to maintenance of N within biomass and steady rates of within-system circulation, whereas pulses, whether caused by cutting and replanting or by the phenological traits of the species selected or combined, subject N supplies to leaching loss.  相似文献   

3.
Seasonal variations in plant species effects on soil N and P dynamics   总被引:6,自引:0,他引:6  
Eviner VT  Chapin FS  Vaughn CE 《Ecology》2006,87(4):974-986
It is well established that plant species influence ecosystem processes, but we have little ability to predict which vegetation changes will alter ecosystems, or how the effects of a given species might vary seasonally. We established monocultures of eight plant species in a California grassland in order to determine the plant traits that account for species impacts on nitrogen and phosphorus cycling. Plant species differed in their effects on net N mineralization and nitrification rates, and the patterns of species differences varied seasonally. Soil PO4- and microbial P were more strongly affected by slope position than by species. Although most studies focus on litter chemistry as the main determinant of plant species effects on nutrient cycling, this study showed that plant species affected biogeochemical cycling through many traits, including direct traits (litter chemistry and biomass, live-tissue chemistry and biomass) and indirect traits (plant modification of soil bioavailable C and soil microclimate). In fact, species significantly altered N and P cycling even without litter inputs. It became particularly critical to consider the effects of these multiple traits in order to account for seasonal changes in plant species effects on ecosystems. For example, species effects on potential rates of net N mineralization were most strongly influenced by soil bioavailable C in the fall and by litter chemistry in the winter and spring. Under field conditions, species effects on soil microclimate influenced rates of mineralization and nitrification, with species effects on soil temperature being critical in the fall and species effects on soil moisture being important in the dry spring. Overall, this study clearly demonstrated that in order to gain a mechanistic, predictive understanding of plant species effects on ecosystems, it is critical to look beyond plant litter chemistry and to incorporate the effects of multiple plant traits on ecosystems.  相似文献   

4.
The factors controlling spatial and temporal patterns in soil solution and streamwater chemistry are highly uncertain in northern hardwood forest ecosystems in the northeastern United States, where concentrations of reactive nitrogen (Nr) in streams have surprisingly declined over recent decades in the face of persistent high rates of atmospheric Nr deposition and aging forests. Reactive nitrogen includes inorganic species (e.g., ammonium [NH4+], nitrate [NO3-]) and some organic forms (e.g., amino acids) available to support the growth of plants and microbes. The objective of this study was to examine controls on the spatial and temporal patterns in the concentrations and fluxes of nitrogen (N) species and dissolved organic carbon (DOC) in a 12-year record of soil solutions and streamwater along an elevational gradient (540-800 m) of a forested watershed at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains of New Hampshire, USA. Dissolved organic N and DOC concentrations were elevated in the high-elevation spruce-fir-white birch (SFB) zone of the watershed, while NO3- was the dominant N species in the lower elevation hardwood portion of the watershed. Within the soil profile, N retention was centered in the mineral horizon, and significant amounts of N were retained between the lower mineral soil and the stream, supporting the idea that near- and in-stream processes are significant sinks for N at the HBEF. Temporal analysis suggested that hydrologic flow paths can override both abiotic and biotic retention mechanisms (i.e., during the non-growing season when most hydrologic export occurs, or during years with high rainfall), there appears to be direct flushing of N from the organic horizons into the stream via horizontal flow. Significant correlations between soil NO3- concentrations, nitrification rates and streamwater NO3- exports show the importance of biological production as a regulator of inorganic N export. The lack of internal production response (e.g., mineralization, nitrification) to a severe ice storm in 1998 reinforces the idea that plant uptake is the dominant regulator of export response to disturbance.  相似文献   

5.
Nitrogen saturation in stream ecosystems   总被引:2,自引:0,他引:2  
Earl SR  Valett HM  Webster JR 《Ecology》2006,87(12):3140-3151
The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.  相似文献   

6.
We investigated N cycling and denitrification rates following five years of N and dolomite amendments to whole-tree harvested forest plots at the long-term soil productivity experiment in the Fernow Experimental Forest in West Virginia, USA. We hypothesized that changes in soil chemistry and nutrient cycling induced by N fertilization would increase denitrification rates and the N2O:N2 ratio. Soils from the fertilized plots had a lower pH (2.96) than control plots (3.22) and plots that received fertilizer and dolomite (3.41). There were no significant differences in soil %C or %N between treatments. Chloroform-labile microbial biomass carbon was lower in fertilized plots compared to control plots, though this trend was not significant. Extractable soil NO3- was elevated in fertilized plots on each sample date. Soil-extractable NH4+, NO3-, pH, microbial biomass carbon, and %C varied significantly by sample date suggesting important seasonal patterns in soil chemistry and N cycling. In particular, the steep decline in extractable NH4+ during the growing season is consistent with the high N demands of a regenerating forest. Net N mineralization and nitrification also varied by date but were not affected by the fertilization and dolomite treatments. In a laboratory experiment, denitrification was stimulated by NO3- additions in soils collected from all field plots, but this effect was stronger in soils from the unfertilized control plots, suggesting that chronic N fertilization has partially alleviated a NO3- limitation on denitrification rates. Dextrose stimulated denitrification only in the whole-tree-harvest soils. Denitrification enzyme activity varied by sample date and was elevated in fertilized plots for soil collected in July 2000 and June 2001. There were no detectable treatment effects on N2O or N2 flux from soils under anaerobic conditions, though there was strong temporal variation. These results suggest that whole-tree harvesting has altered the N status of these soils so they are less prone to N saturation than more mature forests. It is likely that N losses associated with the initial harvest and high N demand by aggrading vegetation is minimizing, at least temporarily, the amount of inorganic N available for nitrification and denitrification, even in the fertilized plots in this experiment.  相似文献   

7.
DeLuca TH  Sala A 《Ecology》2006,87(10):2511-2522
Recurrent, low-severity fire in ponderosa pine (Pinus ponderosa)/interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests is thought to have directly influenced nitrogen (N) cycling and availability. However, no studies to date have investigated the influence of natural fire intervals on soil processes in undisturbed forests, thereby limiting our ability to understand ecological processes and successional dynamics in this important ecosystem of the Rocky Mountain West. Here, we tested the standing hypothesis that recurrent fire in ponderosa pine/Douglas-fir forests of the Inland Northwest decreases total soil N, but increases N turnover and nutrient availability. We compared soils in stands unburned over the past 69-130 years vs. stands exposed to two or more fires over the last 130 years at seven distinct locations in two wilderness areas. Mineral soil samples were collected from each of the seven sites in June and July of 2003 and analyzed for pH, total C and N, potentially mineralizable N (PMN), and extractable NH4+, NO3-, PO4(-3), Ca+2, Mg+2, and K+. Nitrogen transformations were assessed at five sites by installing ionic resin capsules in the mineral soil in August of 2003 and by conducting laboratory assays of nitrification potential and net nitrification in aerobic incubations. Total N and PMN decreased in stands subjected to multiple fires. This loss of total N and labile N was not reflected in concentrations of extractable NH4+ and NO3-. Rather, multiple fires caused an increase in NO3 sorbed on ionic resins, nitrification potential, and net nitrification in spite of the burned stands not having been exposed to fire for at least 12-17 years. Charcoal collected from a recent fire site and added to unburned soils increased nitrification potential, suggesting that the decrease of charcoal in the absence of fire may play an important role in N transformations in fire-dependent ecosystems in the long term. Interestingly, we found no consistent effect of fire frequency on extractable P or alkaline metal concentrations. Our results corroborate the largely untested hypothesis that frequent fire in ponderosa pine forests increases inorganic N availability in the long term and emphasize the need to study natural, unmanaged sites in far greater detail.  相似文献   

8.
Evergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (N(min)). We evaluated this hypothesis by compiling published data on net N(min) rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net N(min) rates; net N(min) beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net N(min) rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net N(min) at some sites and lower net N(min) at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net N(min) rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net N(min) are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net N(min) probably depend on site-specific factors such as stand age and soil type.  相似文献   

9.
Baer SG  Blair JM 《Ecology》2008,89(7):1859-1871
The traditional logic of carbon (C) and nitrogen (N) interactions in ecosystems predicts further increases or decreases in productivity (positive feedback) in response to high and low fertility in the soil, respectively; but the potential for development of feedback in ecosystems recovering from disturbance is less well understood. Furthermore, this logic has been challenged in grassland ecosystems where frequent fires or grazing may reduce the contribution of aboveground litter inputs to soil organic matter pools and nutrient supply for plant growth, relative to forest ecosystems. Further, if increases in plant productivity increase soil C content more than soil N content, negative feedback may result from increased microbial demand for N making less available for plant growth. We used a field experiment to test for feedback in an establishing grassland by comparing aboveground net primary productivity (ANPP) and belowground pools and fluxes of C and N in soil with enriched, ambient, and reduced N availability. For eight years annual N enrichment increased ANPP, root N, and root tissue quality, but root C:N ratios remained well above the threshold for net mineralization of N. There was no evidence that N enrichment increased root biomass, soil C or N accrual rates, or storage of C in total, microbial, or mineralizable pools within this time frame. However, the net nitrogen mineralization potential (NMP) rate was greater following eight years of N enrichment, and we attributed this to N saturation of the microbial biomass. Grassland developing under experimentally imposed N limitation through C addition to the soil exhibited ANPP, root biomass and quality, and net NMP rate similar to the ambient soil. Similarity in productivity and roots in the reduced and ambient N treatments was attributed to the potentially high nitrogen-use efficiency (NUE) of the dominant C4 grasses, and increasing cover of legumes over time in the C-amended soil. Thus, in a developing ecosystem, positive feedback between soil N supply and plant productivity may promote enhanced long-term N availability and override progressive N limitation as C accrues in plant and soil pools. However, experimentally imposed reduction in N availability did not feed back to reduce ANPP, possibly due to shifts in NUE and functional group composition.  相似文献   

10.
The rapid increase in residential land area in the United States has raised concern about water pollution associated with nitrogen fertilizers. Nitrate (NO3-) is the form of reactive N that is most susceptible to leaching and runoff; thus, a more thorough understanding of nitrification and NO3(-) availability is needed if we are to accurately predict the consequences of residential expansion for water quality. In particular, there have been few assessments of how the land use history, housing density, and age of residential soils influence NO3(-) pools and fluxes, especially at depth. In this study, we used 1 m deep soil cores to evaluate potential net nitrification and mineralization, microbial respiration and biomass, and soil NO3(-) and NH4+ pools in 32 residential home lawns that differed by previous land use and age, but had similar soil types. These were compared to eight forested reference sites with similar soils. Our results suggest that a change to residential land use has increased pools and production of reactive N, which has clear implications for water quality in the region. However, the results contradict the common assumption that NO3(-) production and availability is dramatically higher in residential soils than in forests in general. While net nitrification (128.6 +/- 15.5 mg m(-2) d(-1) vs. 4.7 +/- 2.3 mg m(-2) d(-1); mean +/- SE) and exchangeable NO3(-) (3.8 +/- 0.5 g/m2 vs. 0.7 +/- 0.3 g/m2) were significantly higher in residential soils than in forest soils in this study, these measures of NO3(-) production and availability were still notably low, comparable to deciduous forest stands in other studies. A second unexpected result was that current homeowner management practices were not predictive of NO3(-) availability or production. This may reflect the transient availability of inorganic N after fertilizer application. Higher housing density and a history of agricultural land use were predictors of greater NO3(-) availability in residential soils. If these factors are good predictors across a wider range of sites, they may be useful indicators of NO3(-) availability and leaching and runoff potential at the landscape scale.  相似文献   

11.
The experience with restoring high water levels (i.e., rewetting) within restoration ecology is limited, and information on changes in soil nutrient supply is scarce. A reduction in nutrient supply is needed to restore the desired oligotrophic vegetation. We determined the effects of restoration of high water levels on decomposition and net carbon (C), nitrogen (N), and phosphorus (P) mineralization rates in wet dune slacks and its consequences for the relative abundance of eutrophic vs. oligotrophic species in the vegetation. This was done by analyzing these variables for valleys that experienced a large groundwater rise vs. valleys that had a small groundwater rise but the same current water level. In addition, the influences of underlying factors (waterlogging, vegetation dieback, and soil dynamics prior to groundwater rise) were separated in a transplantation experiment. Short-term effects of large groundwater rise were a massive dieback of vegetation, increased thickness of the fermentation layer, increased microbial decomposition activity, increased C mineralization, and decreased net N mineralization. Net P mineralization was not affected. The relative abundance of oligotrophic vs. eutrophic species was greater at large groundwater rise. Changes in decomposition and mineralization by large groundwater rise were, however, not caused by the vegetation dieback, but due to previous soil conditions. Soils experiencing waterlogged conditions for 3-4 years or more prior to large groundwater rise had lower C and higher net N mineralization rates at waterlogged conditions than soils that had experienced aerobic conditions, presumably due to differences in labile soil C contents. Contrary to expectations induced by previously determined nutrient pulses and measured vegetation dieback, large groundwater rise resulted in lower soil nutrient supply rates and more oligotrophic vegetation. If these trends continue on the longer term, restoration of high water levels may be effective in restoration ecology to establish oligotrophic, wet vegetation in dune slacks.  相似文献   

12.
不同耕作方式下土壤氮素矿化和硝化特征研究   总被引:5,自引:0,他引:5  
余泺  高明  慈恩  王子芳  魏朝富  徐畅 《生态环境》2010,19(3):733-738
为探讨长期定位试验田不同耕作方式下土壤氮素矿化和硝化特征,采用室内恒温通气培养法,保持土壤田间持水量在65%条件下,测定不同耕作方式下表层土壤(0~20cm)在不同温度下的NH4^+和NO3^-含量,并计算氮素矿化量和硝化率。结果表明,随着温度的升高,土壤氮素矿化和硝化作用均增强,几种耕作方式下土壤氮素矿化和硝化作用均表现为35℃〉30℃〉25℃。保护性耕作与水旱轮作和常规平作之间的矿化量存在显著的差异,垄作免耕〉厢作免耕〉水旱轮作〉常规平作。土壤氮素最终硝化率达到了60%~80%,表现为常规平作最高,水旱轮作次之,厢作免耕最低。矿化率与土壤有机质、碱解氮和速效磷对数均成显著正相关,相关系数分别为r^2=0.99,r^2=0.97,r^2=0.96,pH是影响硝化作用的重要因素,硝化率与土壤pH成显著正相关,r^2=0.991。  相似文献   

13.
氮沉降影响土壤氮循环,而凋落物是土壤有机氮的主要来源,因此,为了探讨氮沉降和凋落物是否去除作用下,亚热带森林土壤潜在的氮素矿化与硝化作用,选择已进行8年模拟氮沉降试验的亚热带罗浮栲(Castanopsis fabri)常绿阔叶林土壤为研究对象,野外样地氮添加设置3个水平:对照(CK,0 kg·hm?2·a?1)、低氮(LN,75 kg·hm?2·a?1)、高氮(HN,150 kg·hm?2·a?1),两种凋落物管理方式(保留凋落物,L和去除凋落物,R),土壤采样后,通过室内间歇淋洗好气培养法,研究土壤氮素矿化潜势差异,以及不同底物条件下(铵态氮水平:N 0,100、150、200 mg·kg?1)土壤硝化潜势的差异。结果表明:土壤氮素快速矿化主要在培养前7 d,矿化累积量(Nt)为102.81—153.71 mg·kg?1,矿化潜势(N0)范围为193.84—289.80 mg·kg?1,N0依次为:保留凋落物低氮(LN-L)>保留凋落物对照(CK-L)>去除凋落物低氮(LN-R)>去除凋落物对照(CK-R)>去除凋落物高氮(HN-R)>保留凋落物高氮(HN-L);两种凋落物处理方式下,LN水平土壤的Nt与N0均高于CK、HN。保留凋落物情况下,有较高的土壤硝化潜势;在无添加硝化底物(铵态氮水平为N 0 mg·kg?1)的条件下,野外氮添加水平高的土壤硝化潜势也高;而在添加不同硝化底物(铵态氮)的条件下,土壤硝化潜势并未随硝化底物水平的增加而增加,且硝化底物水平为N 100 mg·kg?1时硝化潜势最大。研究表明,虽然保留凋落物可以增加土壤氮矿化潜势,而氮沉降则影响氮矿化潜势。当研究土壤硝化潜势时,应当根据土壤类型等因素选择合适的硝化底物(铵态氮)添加量。  相似文献   

14.
Nitrogen (N) based secondary metabolite production is thought to be costly to plants because N is required for growth, as well as, the synthesis of these compounds. Therefore, variation in N availability may result in variation in N-based secondary metabolite production. Here, we determine the effect of N fertilization on caffeine (N-based alkaloid) production in coffee (Coffea arabica) seedlings. A growth chamber experiment was performed with three N treatments applied to seedlings. N fertilization increased plant growth, leaf biomass, and plant N. Caffeine concentration in phloem exudates was greater in high-N fertilized plants relative to intermediate- and low-N plants. However, leaf, stem, root, and total overall caffeine concentration and content did not differ across N treatments. These results suggest caffeine in coffee is strongly regulated by genetic factors, and environment is likely less important to caffeine phenotype. This is among the first studies to investigate the effect of N fertilization on caffeine within the phloem, which has important implications for herbivores that are sensitive to caffeine and plant N and feed from the phloem of coffee.  相似文献   

15.
The recovery of ecosystem C and N dynamics after disturbance can be a slow process. Chronosequence approaches offer unique opportunities to use space-for-time substitution to quantify the recovery of ecosystem C and N stocks and estimate the potential of restoration practices for C sequestration. We studied the distribution of C and N stocks in two chronosequences that included long-term cultivated lands, 3- to 26-year-old prairie restorations, and remnant prairie on two related soil series. Results from the two chronosequences did not vary significantly and were combined. Based on modeling predictions, the recovery rates of different ecosystem components varied greatly. Overall, C stocks recovered faster than N stocks, but both C and N stocks recovered more rapidly for aboveground vegetation than for any other ecosystem component. Aboveground C and N reached 95% of remnant levels in only 13 years and 21 years, respectively, after planting to native vegetation. Belowground plant C and N recovered several decades later, while microbial biomass C, soil organic C (SOC), and total soil N recovered on a century timescale. In the cultivated fields, SOC concentrations were depleted within the surface 25 cm, coinciding with the depth of plowing, but cultivation apparently led to redistribution of soil C, increasing SOC stocks deeper in the soil profile. The restoration of prairie vegetation was effective at rebuilding soil organic matter (SOM) in the surface soil. Accrual rates were maintained at 43 g C x m(-2) x yr(-1) and 3 g N x m(-2) x yr(-1) in the surface 0.16 Mg/m2 soil mass during the first 26 years of restoration and were predicted to reach 50% of their storage potential (3500 g C/m2) in the first 100 years. We conclude that restoration of tallgrass prairie vegetation can restore SOM lost through cultivation and has the potential to sequester relatively large amounts of SOC over a sustained period of time. Whether restored prairies can retain the C apparently transferred to the subsoil by cultivation practices remains to be seen.  相似文献   

16.
冻融作用下寒温带针叶林土壤碳氮矿化过程研究   总被引:4,自引:0,他引:4  
以大兴安岭落叶松林土壤为研究对象,设置8℃恒温和-5-8℃冻融循环(1个冻融循环为在-5℃培养24 h,后在8℃培养24 h)2个处理,进行30 d的室内培养实验,探讨了寒温带针叶林土壤在冻融交替时期的碳氮矿化过程及其相互关系。结果表明,培养温度和培养时间对土壤碳矿化速率和碳矿化累积量均有显著影响。第1次和第5次冻融循环后,冻融处理土壤的碳矿化速率显著高于恒温培养下土壤的碳矿化速率;第7次和第15次冻融循环后,冻融土壤碳矿化累积量显著低于恒温土壤的碳矿化累积量。土壤氮矿化速率没有受到培养温度、培养时间以及二者交互作用的影响,但培养时间和培养温度对土壤净氮矿化累积量有显著的影响。第5、7、15次冻融循环后,冻融处理的土壤无机氮净矿化累积量低于恒温培养的土壤无机氮净矿化累积量。经过30 d的培养,恒温处理下的土壤碳、氮矿化累积量(碳累积量:92.82μg·g-1,氮累积量73.76 mg·kg-1)是冻融处理下(碳累积量:65.51μg·g-1,氮累积量33.45 mg·kg-1)的1.42倍和2.21倍。土壤碳矿化累积量与土壤净氮矿化累积量均为正相关关系,但在相同的碳释放量下冻融循环处理土壤累积的无机氮较少。以上结果表明,冻融循环减少了大兴安岭寒温带落叶松林土壤碳排放和无机氮的累积,有利于土壤碳的固持和减少养分的流失。  相似文献   

17.
Interrelations exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake. Annual net nitrogen mineralization in soils of different plant communities in the high altitude zone of Spil mountain located in the Mediterranean phytogeographical region of Turkey was investigated throughout one year by field incubation method. Seasonal fluctuations resulting from field incubation were markedly higher in autumn and spring than summer. These are mainly associated with the changes in soil moisture being at minimum in the Mediterranean summer. A significant correlation was developed between the net Nitrate (kg NO3(-)-N ha week(-1)) production and soil water content (p<0.05; r = 0.316 in soil of 0-5 cm; r = 0.312 in soil of 5-15 cm). The results showed that the annual productivity of nitrogen mineralization shows different values depending on communities. Annual net ammonium (NH4(+)-N) production in the soils of each community was negatively estimated. However annual net nitrate (NO3(-)-N) production (0-15 cm) was higher in grassland (27.8 kg ha y(-1)) and shrub (25.0 kg ha y(-1)) than forest (12.4 kg ha y(-1)) community. While annual net N(min) values were close to each other in grassland (14.5 kg ha y(-1)) and shrub (14.1 kg ha y(-1)), but negative in forest community (-3.6 kg ha y(-1)). The reasons for these differences are discussed.  相似文献   

18.
Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (< 1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3-18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C:N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N x ha(-1) x yr(-1) above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.  相似文献   

19.
In recent years, China has conducted considerable research focusing on the emission and effects of sulphur (S) on human health and ecosystems. By contrast, there has been little emphasis on anthropogenic nitrogen (N) so far, even though studies conducted abroad indicate that long-range atmospheric transport of N and ecological effects (e.g. acidification of soil and water) may be significant. The Sino-Norwegian project IMPACTS, launched in 1999, has established monitoring sites at five forest ecosystems in the southern part of PR China to collect comprehensive data on air quality, acidification status and ecological effects. Here we present initial results about N dynamics at two of the IMPACTS sites located near Chongqing and Changsha, including estimation of atmospheric deposition fluxes of NOx and NHx and soil N transformations. Nitrogen deposition is high at both sites when compared with values from Europe and North America (25-38 kg ha(-1) yr(-1)). About 70% of the deposited N comes as NH4, probably derived from agriculture. Leaching of N from soils is high and nearly all as NO3-. Transformation of N to NO3- in soils results in acidification rates that are high compared to rates found elsewhere. Despite considerable leaching of NO3- from the root zone of the soils, little NO3- appears in streamwater. This indicates that N retention or denitrification, both causing acid neutralization, may be important and probably occur in the groundwater and groundwater discharge zones. The soil flux density of mineral N, which is the sum of N deposition and N mineralization, and which is dominated by the N mineralization flux, may be a good indicator for leaching of NO3- in soils. However, this indicator seems site specific probably due to differences in land-use history and current N requirement.  相似文献   

20.
Flow regulation has reduced the exchange of water, energy, and materials between rivers and floodplains, caused declines in native plant populations, and advanced the spread of nonnative plants. Naturalized flow regimes are regarded as a means to restore degraded riparian areas. We examined the effects of flood regime (short [SIFI] vs. long [LIFI] inter-flood interval) on plant community and soil inorganic nitrogen (N) dynamics in riparian forests dominated by native Populus deltoides var. wislizenii Eckenwalder (Rio Grande cottonwood) and nonnative Tamarix chinensis Lour. (salt cedar) along the regulated middle Rio Grande of New Mexico. The frequency of inundation (every 2-3 years) at SIFI sites better reflected inundation patterns prior to the closure of an upstream dam relative to the frequency of inundation at LIFI sites (> or =10 years). Riparian inundation at SIFI sites varied from 7 to 45 days during the study period (April 2001-July 2004). SIFI vs. LIFI sites had higher soil moisture but greater groundwater table elevation fluctuation in response to flooding and drought. Rates of net N mineralization were consistently higher at LIFI vs. SIFI sites, and soil inorganic N concentrations were greatest at sites with elevated leaf-litter production. Sites with stable depth to ground water (approximately 1.5 m) supported the greatest leaf-litter production. Reduced leaf production at P. deltoides SIFI sites was attributed to drought-induced recession of ground water and prolonged inundation. We recommend that natural resource managers and restoration practitioners (1) utilize naturalized flows that help maintain riparian groundwater elevations between 1 and 3 m in reaches with mature P. deltoides or where P. deltoides revegetation is desired, (2) identify areas that naturally undergo long periods of inundation and consider restoring these areas to seasonal wetlands, and (3) use native xeric-adapted riparian plants to revegetate LIFI and SIFI sites where groundwater elevations commonly drop below 3 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号