首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 625 毫秒
1.
甲烷是重要的温室气体,同时也是广泛的可再生能源.深刻认识甲烷代谢过程中的微观机理可为人类实现甲烷的减排及其作为能源的合理利用打下坚实的理论基础.古菌介导的直接电子传递(DET)作为甲烷代谢的重要途径,已成为近年来环境微生物领域的研究热点.本文对互营氧化产甲烷、电能无机自养产甲烷以及厌氧甲烷氧化3个过程中参与DET的微生物进行综述,并着重阐述它们各自的发生机理. DET既存在于甲烷合成代谢,又涉及厌氧甲烷氧化.前者根据电子来源的不同,可分为微生物种间DET产甲烷和电能无机自养产甲烷两种类型.后者则是甲烷氧化古菌将甲烷氧化产生的电子传递至胞外电子受体.在甲烷合成代谢过程中,产甲烷古菌主要通过互营细菌外膜细胞色素蛋白、菌毛或导电性固体3种方式进行电子的直接吸收.相反,甲烷氧化古菌可通过外膜细胞色素蛋白将电子传递至胞外固体或微生物.今后对于古菌介导的DET研究将集中在甲烷代谢电子传递链的各个组成部分及其与细菌之间的相互作用,以便将DET机制用于实际问题的解决.  相似文献   

2.
产氢细菌是厌氧发酵过程中重要的功能微生物.将分离自纤维素降解产甲烷复合菌系FSC的产氢细菌FSC-15回补至复合菌系,通过监测氢气产量、甲烷产量、脂肪酸浓度及秸秆降解效率,探究产氢细菌对水稻秸秆水解产甲烷代谢及微生物群落结构的影响.结果显示:添加菌株FSC-15使FSC中纤维素、半纤维素和木质素降解率分别提高了17.33%、28.61%和47.21%,对复合菌系FSC中秸秆降解效率有一定促进作用.培养第3天,氢气产量相比复合菌系FSC提高了41.18%,为产甲烷菌提供更充足的底物,使甲烷产量提高1倍.高通量测序结果显示,Ruminococcaceae和Methanobacteriaceae分别是水稻秸秆厌氧发酵产甲烷体系中水解纤维素和产甲烷的主要类群,Methanobacteriaceae是厌氧发酵体系挥发酸含量较高时产甲烷的主要物种,补加产氢细菌FSC-15对厌氧降解纤维素产甲烷菌系中的细菌群落结构无明显影响,但可以改变古菌的物种多样性及丰度.本研究证明向水稻秸秆厌氧发酵体系补加功能微生物能有效提高体系甲烷产量,可为调控水稻秸秆厌氧消化技术提供理论支撑.  相似文献   

3.
厌氧消化是实现有机废弃物资源化最有效的技术之一,实现形式是产生生物沼气.作为一种清洁能源,生物沼气可以有效减少化石燃料的使用,进而减少温室气体的排放.产甲烷古菌位于厌氧发酵链末端,是生物沼气主要成分甲烷的直接生产者.在厌氧消化系统中,产甲烷古菌与发酵链前端微生物以及各种天然和人工电子传递体存在着活跃的电子互营过程,对于维持厌氧消化系统的稳定性和改善生物沼气的生成效率具有重要作用.本文综述近年来报道的在强化厌氧消化过程中常用的铁基与碳基电子传递体与产甲烷古菌的相互作用机制,着重介绍两类电子传递体通过自身氧化还原反应或物理性质与产甲烷古菌细胞膜上的氢酶和细胞色素c进行电子互营的微观作用机理,分析两类电子传递体通过参与胞外电子传递过程与产甲烷古菌能量代谢可能存在的耦合机制,其中乙酸型产甲烷古菌基于电子歧化传递在进行胞外三价铁呼吸过程中存储能量,从而增强产甲烷代谢,改变了目前对甲烷生成的生化和生态学理解,极大推进了产甲烷古菌与胞外电子传递体相互作用的研究.产甲烷古菌胞外电子传递路径的不清晰和其细胞膜上蛋白功能的不确定是制约产甲烷古菌与电子传递体相互作用机制研究的重要因素.因此提出利用快速发展的...  相似文献   

4.
餐厨垃圾厌氧消化是一种可回收再生能源的生物处理技术,目前运行中主要存在系统稳定性差和效率低等问题,添加碳基材料能够提高餐厨垃圾厌氧消化效率并对系统运行产生积极影响.从甲烷产生和微生物群落变化两方面,综述碳基材料(生物炭、活性炭、碳布等)作为添加剂对餐厨垃圾厌氧消化系统的影响.其主要影响机理为(1)厌氧消化系统稳定性;(2)种间直接电子传递(DIET);(3)微生物群落.已有研究表明,碳基材料可促进餐厨垃圾厌氧消化产甲烷效率,提升甲烷产量1.1%-1 685%,缩短产甲烷迟滞期27.5%-95.7%.此外,碳基材料添加会引起厌氧消化系统中细菌和古菌群落结构变化,碳基材料通过选择性地富集功能微生物,促进微生物间互营代谢,进而影响系统稳定性和产甲烷效率.提出未来在餐厨垃圾厌氧消化的研究中,应着重关注碳基材料在连续运行系统中的分离与回收方法,优化不同厌氧消化条件下碳基材料的添加策略,通过代谢组学分析探究碳基材料对厌氧消化体系中微生物的作用机制.(图2表2参92)  相似文献   

5.
以蔬菜废弃物为原料的厌氧消化过程产甲烷能力下降时,通过添加微量元素可使其恢复稳定状态,因此研究微量元素对厌氧消化系统微生物结构的影响对优化系统性能具有重要意义.采用70 L厌氧发酵罐,有效体积59.5 L,在中温35℃条件下进行蔬菜废弃物厌氧消化的连续冲击负荷试验,根据CH_4含量变化规律,及时添加微量元素(Fe、Co、Ni)促进厌氧消化过程.样品采用16SrRNA基因扩增和MiSeq测序技术分析微生物群落的结构.结果表明,微量元素对细菌群落的影响主要作用于拟杆菌门、厚壁菌门及螺旋菌门.在属水平上,第一次微量元素的添加诱导了拟杆菌门中的VadinBC27 wastewater-sludge的增加,相对丰度从54.1%升至68%,降低了厚壁菌门中Erysipelotrichaceae UGG-004以及螺旋菌门中Sphaerochaeta.第二次微量元素的添加,主要降低了螺旋菌门中的Sphaerochaeta,相对丰度从11.4%到4.4%,以及诱导拟杆菌门中Bacteroides的产生,提高了原料利用率,降低了酸化的抑制作用.微量元素对蔬菜废弃物厌氧消化过程中产甲烷菌群落的影响主要在甲基营养型Candidatus Methanoplasma、甲烷鬃菌属为主导的乙酸营养型.当挥发性脂肪酸含量较高时,Candidatus Methanoplasma占主导地位,微量元素添加后则会诱导甲烷鬃菌为主导的乙酸营养型甲烷菌的产生,相对丰度从2.3%增至80%促进挥发性脂肪酸的消耗转化.本研究表明,微量元素的添加对于微生物群落结构的改变显著,促进厌氧消化过程水解酸化与甲烷化的平衡,从而稳定运行.  相似文献   

6.
油藏厌氧微生物研究进展   总被引:6,自引:0,他引:6  
地下深层油藏是独特的缺氧环境,目前还没有直接的微生物学证据表明油藏中存在真正意义上的“本源微生物”,但经注水开发后的油藏中确实蕴藏着复杂的微生物区系.油藏性质决定了油藏厌氧微生物特殊的群落结构,而油藏微生物的作用也可以改变油藏的理化及地质学特性.油藏中厌氧微生物按生理类群主要可分为发酵细菌、硝酸盐还原菌、铁还原菌、硫酸盐还原菌和产甲烷古菌.本文综述了国内外近年来油藏微生物学的研究进展,简述了微生物分子生态学在油藏微生物学研究中的应用,并对当前的研究提出了一些思考.图1参37  相似文献   

7.
近年来研究发现互营氧化产甲烷过程中存在种间直接电子传递(direct interspecies electron transfer,DIET),这种电子传递方式比传统的种间氢转移或种间甲酸转移更为高效。导电生物炭作为导电介质,可以有效促进DIET介导的互营产甲烷进程。乙酸作为有机物厌氧降解的重要中间产物,其降解过程是否存在DIET途径尚不清楚,导电生物炭对乙酸互营降解产甲烷过程的影响机制也未有研究报道。以具有DIET功能的Geobacter sulfurreducens和Methanosarcina barkeri菌株为研究对象,构建共培养体系,以乙酸为电子供体,比较添加不同导电性生物炭共培养体系的甲烷产生和微生物生长情况。结果表明:(1)导电性生物炭处理的产甲烷速率为0.015~0.017 mmol?d~(-1),显著高于对照处理的0.012 mmol?d~(-1);而不导电生物炭处理的产甲烷速率低于对照处理。说明导电性生物炭促进共培养体系中的产甲烷过程,而不具导电性的生物炭没有促进效应;(2)导电性生物炭存在时,共培养体系的甲烷产生速率(0.008 mmol?d~(-1))和产量(0.14 mmol)明显高于Methanosarcina barkeri单菌体系的产甲烷速率(0.006 mmol?d~(-1))和产甲烷量(0.09 mmol),而添加不导电生物炭的共培养体系和单菌体系的甲烷产生速率和产量无明显差异。以上结果表明,导电性生物炭能介导Geobacter sulfurreducens和Methanosarcina barkeri之间的直接电子传递,即Geobacter sulfurreducens氧化乙酸产生的电子,以导电生物炭为导电通道直接传递至Methanosarcina barkeri还原CO2产生甲烷,从而促进乙酸互营氧化产甲烷过程。本研究结果有助于我们理解种间直接电子传递对互营产甲烷过程的贡献及影响效应,为研究甲烷产生的微生物机制提供新的研究思路。  相似文献   

8.
水稻土甲烷氧化菌对镉胁迫的响应   总被引:2,自引:0,他引:2  
郑勇  郑袁明  贺纪正 《生态环境》2012,21(4):737-743
重金属污染影响土壤微生物群落结构与活性,间接影响土壤碳(如CO2、CH4)的生物地球化学循环和全球气候变化。甲烷氧化菌氧化消耗CH4,降低大气中CH4含量,在缓解由温室气体导致的全球温暖化方面起着重要作用。本研究通过短期土壤培养实验,比较研究了不同强度重金属镉(Cd)胁迫下,水稻土中甲烷氧化菌的多度、群落组成及其氧化CH4潜势的差异。结果表明,添加Cd含量越大,水稻土氧化CH4潜势越弱,甲烷氧化菌pmoA基因拷贝数显著减少;甲烷氧化菌多度与水稻土氧化CH4潜势之间存在显著正相关关系(P〈0.001)。群落组成分析发现,在相对低含量Cd(1 mg.kg-1)条件下,有新的甲烷氧化菌菌属出现,而添加较高含量Cd(10 mg.kg-1)时甲烷氧化菌种类减少。总之,Cd胁迫降低水稻土中甲烷氧化菌多样性及其氧化CH4潜势,可能导致原位CH4消耗减少,从而增加稻田CH4排放。  相似文献   

9.
采用改进的亨盖特(Hungate)厌氧技术,从西藏林芝厌氧消化系统中分离到一株产甲烷菌菌株LZ-6.该菌株为革兰氏阴性,不运动,球形,直径约0.3~0.6μm.该菌株利用H2/CO2,微利用甲酸生长,不利用乙酸、甲醇、甲醇/H2、三甲胺、甲胺,最适生长pH为6.8~7.2,最适生长温度25℃,最适Na+浓度0.2mol/L.菌株LZ-6的16SrRNA基因序列与小甲烷粒菌(Methanocorpusculum parvum)相似性为99%.生理、形态结构特征等生物学特性研究表明此株产甲烷古菌为兼性嗜冷产甲烷古菌.  相似文献   

10.
一株生长pH较宽的产甲烷菌分离与系统发育分析   总被引:3,自引:0,他引:3  
采用Hungate厌氧操作技术.从造纸厂阴沟污泥中分离到一株生长pH范围为5.5~9.5的产甲烷菌株SH4.该菌对酸碱具有良好的适应性,培养3 d后,在初始pH值6.0~8.0的培养基中甲烷产量相差不大,且基本达到最大产量.SH4革兰氏染色阳性,短杆状,多数单生,不运动;菌落近圆形,微黄;利用H2+CO2或甲酸盐作为唯一碳源生长,不利用乙酸盐,对氯霉素非常敏感.该菌最适生长pH为7.0,最适生长温度为35 oC,最适NaCl浓度为0~1.5%.实验表明,与仅添加厌氧污泥作为接种物相比,添加SH4菌液可使产甲烷启动时间缩短1/3,甲烷总产量亦有大幅提高.形态、生理生化特征以及16S rDNA序列分析表明,该菌为嗜树木甲烷短杆菌(Methanobrevibacter arboriphilus).图8参16  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号