首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
/ Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream). Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources.KEY WORDS: Dams; Aquatic habitat; Sediment transport; Erosion; Sedimentation; Gravel mining  相似文献   

2.
ABSTRACT: An optimal control methodology and computational model are developed to evaluate multi‐reservoir release schedules that minimize sediment scour and deposition in rivers and reservoirs. The sedimentation problem is formulated within a discrete‐time optimal control framework in which reservoir releases represent control variables and reservoir bed elevations, storage levels, and river bed elevations represent state variables. Constraints imposed on reservoir storage levels and releases are accommodated using a penalty function method. The optimal control model consists of two interfaced components: a one‐dimensional finite‐difference simulation module used to evaluate flow hydraulics and sediment transport dynamics, and a successive approximation linear quadratic regulator (SALQR) optimization algorithm used to update reservoir release policies and solve the augmented control problem. Hypothetical two‐reservoir and five‐reservoir networks are used to demonstrate the methodology and its capabilities, which is a vital phase towards the development of a more robust optimal control model and application to an existing multiple‐reservoir river network.  相似文献   

3.
River engineers use sediment transport formulas to design regulated channels in which the river's ability to transport bedload would remain in equilibrium with the delivery of materials from upstream. In gravel-bed rivers, a number of factors distort the simple relationship between particle size and hydraulic parameters at the threshold of sediment motion, inherent in the formulas. This may lead to significant errors in predicting the bedload transport rates in such streams and hence to instability of their regulated channels. The failure to recognize a nonstationary river regime may also result in unsuccessful channelization. Rapid channel incision has followed channelization of the main rivers of the Polish Carpathians in the 20th century. A case study of the Raba River shows that incision has resulted from the increase in stream power caused by channelization and the simultaneous reduction in sediment supply due to variations in basin management and a change in flood hydrographs. Calculations of bedload transport in the river by the Meyer-Peter and Müller formula are shown to have resulted in unrealistic estimates, perhaps because the different degree of bed armoring in particular cross-sections was neglected. It would have been possible to avoid improper channelization if the decreasing trend in sediment load of the Carpathian rivers had been recognized on the basis of geomorphological and sedimentological studies. Allowing the rivers to increase their sinuosity, wherever possible without an erosional threat to property and infrastructure, and preventing further in-stream gravel mining are postulated in order to arrest channel incision and reestablish the conditions for water and sediment storage on the floodplains.  相似文献   

4.
We evaluated the importance of floodplains for nutrient retention in two distributaries of the river Rhine (Waal and IJssel) by monitoring N and P retention in a body of water during downstream transport. We hypothesized that (i) retention of P is much larger than retention of N and (ii) nutrient retention increases with an increasing amount of the discharge flowing through floodplains (QF). The second hypothesis was tested by comparing retention between the rivers Waal (low QF) and IJssel (high QF), as well as at different discharges. Total nitrogen (TN) did not decrease significantly during downstream transport in both rivers, whereas 20 to 45% of total phosphorus (TP) disappeared during transport in the river IJssel. This difference between N and P retention-supporting the first hypothesis-was probably caused by differences in sedimentation through a much lower proportion of N adsorbed to particles than of P (2-3% of N vs. 50-70% of P). Phosphorus retention was only observed in the IJssel and not in the Waal, and absolute P retention (g P s(-1) km(-1)) in the IJssel increased with increasing QF. The second hypothesis was, nevertheless, not fully supported, because the percentage P retention (% of P load) decreased (instead of increased) with increasing QF. The percentage P retention increased with decreasing river depth and flow velocity; it seemed related to the efficiency of sediment trapping.  相似文献   

5.
Summary The paper discusses the tin mining industry in Malaysia and legislations promulgated to prevent environmental degradation due to mining activities. Soil erosion and sediment contribution from mining areas were studied by examining inflow and outflow sediment loads and stormflow sediment transport characteristics at two sediment sampling stations in the Kelang River Basin. It was observed that despite the cessation of mining activities, rivers draining mining areas still carry high sediment loads. It was found that sediment yield increases by three to six times after the river passes through mining land. Low-flow sediment transport is more significant in the mining area compared to non-mining areas. Clockwise hytheretical loops observed at the two sampling stations indicate that sediment sources are located near the river and within the channel system itself.Mr G. Balamurugan was until recently a member of staff at the Institute for Advanced Studies at the University of Malaya. He is now a practising water resources engineer, and may be contacted at HSS Integrated, 20–24, Jalan SS 21/62, Damansara Utama, 47400 Petaling Jaya, Selangor, Malaysia.  相似文献   

6.
7.
ABSTRACT: Accurate prediction of hydrodynamics is of great importance to modeling contaminant transport and water quality in a river. Flow conditions are needed in estimating potential exposure contamination levels and the recovery time for a no-action alternative in contaminated sediments remediation. Considering highly meandering characteristics of the Buffalo River, New York, a three-dimensional hydrodynamic model was selected to route upstream flows through the 8-km river section with limited existing information based on the model's fully predictive capability and process-oriented feature. The model was employed to simulate changes in water depth and flow velocity with space and time in response to variation in flow rate and/or water surface elevation at boundaries for given bottom morphometry and initial conditions. Flow conditions of the river reach where historical flow data are not available were computed. A rating-curve approach was developed to meet continuous and event contaminant modeling needs. Rating curves (depth-discharge and velocity-discharge relationships) were constructed at selected stations from the 3-D hydrodynamic simulations of individual flow events. The curves were obtained as steady solutions to an unsteady problem. The rating-curve approach serves to link flow information provided by the hydrodynamic model to a contaminant transport model. With the approach, the linking problem resulting from incompatible model dimensions and grid sizes can be solved. The curves will be used to simulate sediment movement and to predict contaminant fate and transport in the river.  相似文献   

8.
气象水文要素对流域产沙量和输沙量影响研究   总被引:1,自引:0,他引:1  
选取年降雨量和流量等气象水文要素作因子,应用B-P神经网格,建立渠江流域毛坝、车林两站的年均含沙量和输沙量的预测模型。其模型拟合合格率达90%以上,预留预测检验合格率达80%以上。  相似文献   

9.
ABSTRACT: The RIVMOD hydrodynamic model was used to route upstream flows through a 115 km section of the Carson River and Lahontan Reservoir, Nevada. RIVMOD results will later be used to predict sediment movement and ultimately to determine mercury transport within the river/reservoir system. Significant modifications to the model computer code were necessary to represent the narrow, steeply sloping rectangular channel and relatively shallow sloping floodplain of the Carson River and its confluence with the Lahontan Reservoir. These changes include expansion of the continuity and momentum equations to account for rapidly changing channel widths along with the characterization of a complex cross-sectional shape. This modified version of the RIVMOD model can handle shallower side slopes and much more severe flood flow simulations than the original version. A 0.25 km spatial increment was required in the zone of confluence between the river and reservoir. Model predictions show excellent agreement with observed downstream flow and reservoir stage for the entire 1986 water year, which includes one of the most severe flood events of recent record. (KEY TERMS: hydraulics; modeling; simulation; surface water hydrology.)  相似文献   

10.
In this paper, a two-dimensional numerical calculation algorithm for water-quality modeling is presented. The algorithm is designed specifically for river systems with complicated geometric conditions. When velocity field data of the river are not available, the numerical calculation algorithm for the water-quality modeling can be used to project river-water quality by using a topographic map of the river course and a finite element method. The calculation results of the water-quality model can show the concentration fields of various pollutants. The water-quality model was applied to a case-study in the Hengyang City section of Xiangjiang River in Hunan Province, China. The river under consideration is winding and has an isle between two branches. In 1995, Chinese government secured a World Bank loan to conduct a Waterways Project in the study region. It was expected that construction works in the river section might affect water quality. Given that the project would change the hydrological regime of the river system and discharges, and so would affect water quality, there would be a need for model results that would predict the water-quality impacts of the Waterways Project. In particular, the study intended to apply the model to identify changes in river-water quality associated with the construction of Dayuandu navigation key project. It is hoped that the numerical calculation algorithm for the water-quality modeling presented in this paper can also be applied to other shallow rivers with similar topographical conditions.  相似文献   

11.
To reduce endosulfan (C9H6O3Cl6S; 6,7,8,9,10,10-hexachloro-1,5, 5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide) contamination in rivers and waterways, it is important to know the relative significances of airborne transport pathways (including spray drift, vapor transport, and dust transport) and waterborne transport pathways (including overland and stream runoff). This work uses an integrated modeling approach to assess the absolute and relative contributions of these pathways to riverine endosulfan concentrations. The modeling framework involves two parts: a set of simple models for each transport pathway, and a model for the physical and chemical processes acting on endosulfan in river water. An averaging process is used to calculate the effects of transport pathways at the regional scale. The results show that spray drift, vapor transport, and runoff are all significant pathways. Dust transport is found to be insignificant. Spray drift and vapor transport both contribute low-level but nearly continuous inputs to the riverine endosulfan load during spraying season in a large cotton (Gossypium hirsutum L.)-growing area, whereas runoff provides occasional but higher inputs. These findings are supported by broad agreement between model predictions and observed typical riverine endosulfan concentrations in two rivers.  相似文献   

12.
Hummel, Ryan, Jennifer G. Duan, and Shiyan Zhang, 2012. Comparison of Unsteady and Quasi‐Unsteady Flow Models in Simulating Sediment Transport in an Ephemeral Arizona Stream. Journal of the American Water Resources Association (JAWRA) 48(5): 987‐998. DOI: 10.1111/j.1752‐1688.2012.00663.x Abstract: Hydrodynamic and sediment transport models are useful engineering tools for predicting unsteady flood flow and sediment transport. Many models such as HEC‐RAS, HEC‐6, and IALLUVIAL apply quasi‐unsteady flow model, whereas others apply the unsteady flow model. It remains unknown if a quasi‐unsteady flow model is sufficiently accurate for simulating sediment transport in rapidly varied unsteady flood events, especially in ephemeral rivers in arid and semiarid regions. This study compared the quasi‐unsteady HEC‐RAS 4.1 model with one‐dimensional (1D) Finite Volume Method (FVM) based model in simulating flood flow and sediment transport in the Pantano Wash, a dryland river in the state of Arizona. The objective is to determine which sediment transport method is appropriate in predicting bed elevation changes in an ephemeral stream, Pantano Wash, and if an unsteady model is more accurate than a quasi‐unsteady flow model in predicting sediment transport. Results showed that the quasi‐unsteady HEC‐RAS model and the 1D FVM yielded similar results of bed degradation and aggradation for this dryland stream, although the FVM model predicted better flood hydrographs. Among the seven sediment transport formulas embedded in HEC‐RAS, Yang’s and Engelund‐Hansen’s equations gave the best matches with the field measurements for this particular case study.  相似文献   

13.
Artificial Neural Network (ANN) is a flexible and popular tool for predicting the non-linear behavior in the environmental system. Here, the feed-forward ANN model was used to investigate the relationship among the land use, fertilizer, and hydrometerological conditions in 59 river basins over Japan and then applied to estimate the monthly river total nitrogen concentration (TNC). It was shown by the sensitivity analysis, that precipitation, temperature, river discharge, forest area and urban area have high relationships with TNC. The ANN structure having eight inputs and one hidden layer with seven nodes gives the best estimate of TNC. The 1:1 scatter plots of predicted versus measured TNC were closely aligned and provided coefficients of errors of 0.98 and 0.93 for ANNs calibration and validation, respectively. From the results obtained, the ANN model gave satisfactory predictions of stream TNC and appears to be a useful tool for prediction of TNC in Japanese streams. It indicates that the ANN model was able to provide accurate estimates of nitrogen concentration in streams. Its application to such environmental data will encourage further studies on prediction of stream TNC in ungauged rivers and provide a useful tool for water resource and environment managers to obtain a quick preliminary assessment of TNC variations.  相似文献   

14.
Restoration of unobstructed, free-flowing sections of river can provide considerable environmental and ecological benefits. It removes impediments to aquatic species dispersal and improves flow, sediment and nutrient transport. This, in turn, can serve to improve environmental quality and abundance of native species, not only within the river channel itself, but also within adjacent riparian, floodplain and coastal areas. In support of this effort, a generic optimization model is presented in this paper for prioritizing the removal of problematic structures, which adversely affect aquatic species dispersal and river hydrology. Its purpose is to maximize, subject to a budget, the size of the single largest section of connected river unimpeded by artificial flow and dispersal barriers. The model is designed to improve, in a holistic way, the connectivity and environmental status of a river network. Furthermore, unlike most previous prioritization methods, it is particularly well suited to meet the needs of potamodromous fish species and other resident aquatic organisms, which regularly disperse among different parts of a river network. After presenting an initial mixed integer linear programming formulation of the model, more scalable reformulation and solution techniques are investigated for solving large, realistic-sized instances. Results from a case-study of the Pike River Watershed, located in northeast Wisconsin, USA, demonstrate the computational efficiency of the proposed model as well as highlight some general insights about systematic barrier removal planning.  相似文献   

15.
Biological Effects of Fine Sediment in the Lotic Environment   总被引:27,自引:0,他引:27  
/ Although sedimentation is a naturally occurring phenomenon inrivers, land-use changes have resulted in an increase in anthropogenicallyinduced fine sediment deposition. Poorly managed agricultural practices,mineral extraction, and construction can result in an increase in suspendedsolids and sedimentation in rivers and streams, leading to a decline inhabitat quality. The nature and origins of fine sediments in the loticenvironment are reviewed in relation to channel and nonchannel sources andthe impact of human activity. Fine sediment transport and deposition areoutlined in relation to variations in streamflow and particle sizecharacteristics. A holistic approach to the problems associated with finesediment is outlined to aid in the identification of sediment sources,transport, and deposition processes in the river catchment. The multiplecauses and deleterious impacts associated with fine sediments on riverinehabitats, primary producers, macroinvertebrates, and fisheries are identifiedand reviewed to provide river managers with a guide to source material. Therestoration of rivers with fine sediment problems are discussed in relationto a holistic management framework to aid in the planning and undertaking ofmitigation measures within both the river channel and surrounding catchmentarea.KEY WORDS: Sedimentation; Fine sediment; Holistic approach; Ecologicalimpact; River restoration  相似文献   

16.
Studies were conducted in a closed system recirculating research flume to evaluate the relative effects of high intensity rainfall on von Karman's universal constant and the sediment transport capacity of shallow flow. The tests in this study were conducted at flow depths of 0.3 ft and less with discharges less than 0.5 cfs. The point velocities in the flow were determined with a Pace CD-25 pressure transducer and an inclined manometer connected in parallel to a Pitot-static tube of the standard Prandtl design. Regression analyses were performed on the velocity data to determine the best fit dimensionless velocity curve on semilogarithmic paper. Von Karman's universal constant was then evaluated from the slope of the regression line. Point sediment samples were siphoned from the flow with a stainless steel-pipette sediment sampler. Sediment concentrations were found with a filtering technique. Sediment samples were taken with and without rainfall to evaluate the relative effect of the rainfall on the transport capacity of shallow flow.  相似文献   

17.
ABSTRACT: To comprehend the distributions of salinity, temperature, and suspended sediment in the Danshuei River estuary in Taiwan, monthly field surveys were conducted in 2003. These included several high and low slackwater surveys and intensive surveys. The results show that the Danshuei River estuary is predominately a partially mixed estuary. The highest concentration of suspended sediment is typically observed at the Chung‐Hsin Bridge, the most upstream sampling station. The suspended sediment concentration exhibits a general decreasing trend in the downstream direction. It may be concluded that the sediments mostly come from the upstream reach. A locally high concentration of suspended sediment is found at the Kuan‐Du station because of the local deep channel bathymetry and two‐layered estuarine circulation. A vertical two‐dimensional hydrodynamic and sediment transport model is applied to investigate the tidally averaged salinity distribution, residual circulation, and suspended sediment concentration. The modeling results reveal that, under the Q75 flow condition (i.e., low flow), a turbidity maximum occurs at the Kuan‐Du station due to the strong estuarine circulation. The model simulation with a much higher river flow condition results in a weaker residual circulation and weaker turbidity maximum.  相似文献   

18.
Scientists often use mathematical models to assess river water quality. However, the application of the models in environmental management and risk assessment is quite limited because of the difficulty of preparing input data and interpreting model output. This paper presents a study that links ArcIMS, a Web-based Geographic Information System (GIS) software to ROUT, a national and regional scale river model which evolved from the US Environmental Protection Agency's Water Use Improvement and Impairment Model, to create a WWW-GIS-based river simulation model called GIS-ROUT. GIS-ROUT is used to predict chemical concentrations in perennially flowing rivers throughout the continental United States that receive discharges from more than 10,000 publicly owned wastewater treatment plants (WWTPs). The WWTP chemical loadings are calculated from per capita per day disposal of product ingredients and the population served by each plant. Each WWTP, containing data on treatment type and influent and effluent flows, is spatially associated with a specific receiving river segment. Based on user defined treatment-type removal rates for a particular chemical, an effluent concentration for each WWTP is calculated and used as input to the river model. Over 360,000 km of rivers are modeled, incorporating dilution and first order loss of the chemical in each river segment. The integration of spatial data, GIS, the WWW, and modeling in GIS-ROUT makes it possible to organize and analyze data spatially, and view results on interactive maps as well as tables and distribution charts. The integration allows scientists and managers in different locations to coordinate and share their estimations for environmental exposure and risk assessments.  相似文献   

19.
ABSTRACT: The south Florida ecosystem and Lake Okeechobee are important water resource areas that have degraded due to changes in hydroperiod, water supply, and water quality. Approximately 56 percent of the total phosphorus in water discharged from the Everglades Agricultural Area (EAA) is in particulate form. Currently, farm-level best management practices are being implemented in the effort to reduce total phosphorus and sediment in off-farm discharges. The objective of this work was to develop and calibrate a model describing water movement in primary EAA canals as a first step to development of a water quality (i.e., nutrient, sediment) model. The Netherlands-developed mechanistic flow and water quality model (DUFLOW) was adapted for the EAA. Flow, stage, geometry, canal network, and meteorological data, October 13, 1993, to February 13, 1994, were used to adapt and calibrate the DUFLOW model for EAA water level and flow in primary canals. Direct runoff discharge into the primary canals from farm-pump stations was used as runoff input for the model. The model results are comparable to an independently-calculated water balance for the EAA. The calibrated flow model will be the basis for the calibration of sediment and chemical transport in the future.  相似文献   

20.
The Watershed Flow and Allocation model (WaterFALL®) provides segment‐specific, daily streamflow at both gaged and ungaged locations to generate the hydrologic foundation for a variety of water resources management applications. The model is designed to apply across the spatially explicit and enhanced National Hydrography Dataset (NHDPlus) stream and catchment network. To facilitate modeling at the NHDPlus catchment scale, we use an intermediate‐level rainfall‐runoff model rather than a complex process‐based model. The hydrologic model within WaterFALL simulates rainfall‐runoff processes for each catchment within a watershed and routes streamflow between catchments, while accounting for withdrawals, discharges, and onstream reservoirs within the network. The model is therefore distributed among each NHDPlus catchment within the larger selected watershed. Input parameters including climate, land use, soils, and water withdrawals and discharges are georeferenced to each catchment. The WaterFALL system includes a centralized database and server‐based environment for storing all model code, input parameters, and results in a single instance for all simulations allowing for rapid comparison between multiple scenarios. We demonstrate and validate WaterFALL within North Carolina at a variety of scales using observed streamflows to inform quantitative and qualitative measures, including hydrologic flow metrics relevant to the study of ecological flow management decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号