首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Detailed studies of long-term management impacts on rangeland streams are few because of the cost of obtaining detailed data replicated in time. This study uses government agency aquatic habitat, stream morphologic, and ocular stability data to assess land management impacts over four years on three stream reaches of an important rangeland watershed in northwestern Nevada. Aquatic habitat improved as riparian vegetation reestablished itself with decreased and better controlled livestock grazing. However, sediment from livestock disturbances and road crossings and very low stream flows limited the rate of change. Stream type limited the change of pool variables and width/depth ratio, which are linked to gradient and entrenchment. Coarse woody debris removal due to previous management limited pool recovery. Various critical-element ocular stability estimates represented changes with time and differences among reaches very well. Ocular stability variables tracked the quantitative habitat and morphologic variables well enough to recommend that ocular surveys be used to monitor changes with time between more intensive aquatic surveys.  相似文献   

2.
ABSTRACT: The precision of width and pool area measurements has rarely been considered in relation to downstream or at section hydraulic geometry, fisheries studies, long-term or along a continuum research studies, or agency monitoring techniques. We assessed this precision and related it to other stream morphologic characteristics. Confidence limits (95 percent) around mean estimates with four transects (cross-sections perpendicular to the channel center-line) ranged from ± 0.4 to 1.8 m on streams with a width of only 2.2 m. To avoid autocorrelation, transects should be spaced about three channel widths apart. To avoid stochastic inhomogeneity, reach length should be about 30 channel widths or ten transects to optimize sampling efficiency. Precision of width measurements decreased with decreased depth and increased with stream size. Both observations reflect variability caused by features such as boulders or coarse woody debris. Pool area precision increased with pool area reflecting increased precision for flat, wide streams with regular pool-rime sequences. The least precision occurred on small, steep streams with random, boulder or coarse woody debris formed pools.  相似文献   

3.
The effect of stream geomorphology, maturity, and management of riparian forests on abundance, role, and mobility of wood was evaluated in 20 contrasting reaches in the Agüera stream catchment (northern Iberian Peninsula). During 1 year the volume of woody debris exceeding 1 cm in diameter was measured in all reaches. All large woody debris (φ > 5 cm) pieces were tagged, their positions mapped, and their subsequent changes noted. Volume of woody debris was in general low and ranged from 40 to 22,000 cm3 m−2; the abundance of debris dams ranged from 0 to 5.5 per 100 m of channel. Wood was especially rare and unstable in downstream reaches, or under harvested forests (both natural or plantations). Results stress that woody debris in north Iberian streams has been severely reduced by forestry and log removal. Because of the important influence of woody debris on structure and function of stream systems, this reduction has likely impacted stream communities. Therefore, efforts to restore north Iberian streams should include in-channel and riparian management practices that promote greater abundance and stability of large woody debris whenever possible.  相似文献   

4.
The effects of livestock grazing on selected riparian and stream attributes, water chemistry, and algal biomass were investigated over a two-year period using livestock enclosures and by completing stream surveys in the Cypress Hills grassland plateau, Alberta, Canada. Livestock enclosure experiments, partially replicated in three streams, comprised four treatments: (1) early season livestock grazing (June–August), (2) late season livestock grazing (August–September), (3) all season grazing (June–September), and (4) livestock absent controls. Livestock grazing significantly decreased streambank stability, biomass of riparian vegetation, and the extent to which aquatic vegetation covered the stream channels compared with livestock-absent controls. Water quality comparisons indicated significant differences among the four livestock grazing treatments in Battle and Graburn creeks but not in Nine Mile Creek. In Graburn Creek, the concentration of total phosphorus in the all-season livestock grazing treatment was significantly higher than that in the livestock-absent control, and the early season and late season grazing treatments. Concentrations of soluble reactive phosphorus in the all-season livestock grazing treatment also exceeded that in livestock-absent control. In contrast, differences in water quality variables in the remaining 22 comparisons (i.e., 22 of the total 24 comparisons) were minor even when differences were statistically significant. Effects of livestock grazing on algal biomass were variable, and there was no consistent pattern among creeks. At the watershed scale, spatial variation in algal biomass was related (P < 0.05) with concentrations of NO2 ? + NO3 ? and soluble reactive phosphorus in two of the four study creeks. Nutrient diffusing substrata experiments showed that algal communities were either nitrogen-limited or not limited by nutrients, depending on stream and season.  相似文献   

5.
In this paper, we describe a model designed to simulate seasonal dynamics of warm and cool season grasses and forbs, as well as the dynamics of woody plant succession through five seral stages, in each of nine different plant communities on the Rob and Bessie Welder Wildlife Refuge. The Welder Wildlife Refuge (WWR) is located in the Gulf Coastal Prairies and Marshes ecoregion of Texas. The model utilizes and integrates data from a wide array of research projects that have occurred in south Texas and WWR. It is designed to investigate the effects of alternative livestock grazing programs and brush control practices, with particular emphasis on prescribed burning, the preferred treatment for brush on the WWR. We evaluated the model by simulating changes in the plant communities under historical (1974-2000) temperature, rainfall, livestock grazing rotation, and brush control regimes, and comparing simulation results to field data on herbaceous biomass and brush canopy cover collected on the WWR over the same period. We then used the model to simulate the effects of 13 alternative management schemes, under each of four weather regimes, over the next 25 years. We found that over the simulation period, years 1974-2000, the model does well in simulating the magnitude and seasonality of herbaceous biomass production and changes in percent brush canopy cover on the WWR. It also does well in simulating the effects of variations in cattle stocking rates, grazing rotation programs, and brush control regimes on plant communities, thus providing insight into the combined effects of temperature, precipitation, cattle stocking rates, grazing rotation programs, and brush control on the overall productivity and state of woody plant succession on the WWR. Simulation of alternative management schemes suggests that brush canopy removal differs little between summer and winter prescribed burn treatments when precipitation remains near the long-term average, but during periods of low precipitation canopy removal is greater under winter prescribed burning. The model provides a useful tool to assist refuge personnel with developing long-term brush management and livestock grazing strategies.  相似文献   

6.
The effects of livestock grazing on selected riparian and stream attributes, water chemistry, and algal biomass were investigated over a two-year period using livestock enclosures and by completing stream surveys in the Cypress Hills grassland plateau, Alberta, Canada. Livestock enclosure experiments, partially replicated in three streams, comprised four treatments: (1) early season livestock grazing (June–August), (2) late season livestock grazing (August–September), (3) all season grazing (June–September), and (4) livestock absent controls. Livestock grazing significantly decreased streambank stability, biomass of riparian vegetation, and the extent to which aquatic vegetation covered the stream channels compared with livestock-absent controls. Water quality comparisons indicated significant differences among the four livestock grazing treatments in Battle and Graburn creeks but not in Nine Mile Creek. In Graburn Creek, the concentration of total phosphorus in the all-season livestock grazing treatment was significantly higher than that in the livestock-absent control, and the early season and late season grazing treatments. Concentrations of soluble reactive phosphorus in the all-season livestock grazing treatment also exceeded that in livestock-absent control. In contrast, differences in water quality variables in the remaining 22 comparisons (i.e., 22 of the total 24 comparisons) were minor even when differences were statistically significant. Effects of livestock grazing on algal biomass were variable, and there was no consistent pattern among creeks. At the watershed scale, spatial variation in algal biomass was related (P < 0.05) with concentrations of NO2 + NO3 and soluble reactive phosphorus in two of the four study creeks. Nutrient diffusing substrata experiments showed that algal communities were either nitrogen-limited or not limited by nutrients, depending on stream and season.  相似文献   

7.
The potential impacts of land use on large woody debris (LWD) were examined in Sourdough Creek Watershed, a rapidly growing area encompassing Bozeman, Montana, USA. We identified six land classes within a 250 m buffer extending on either side of Sourdough Creek and assessed aquatic habitat and geomorphologic variables within each class. All LWD pieces were counted, and we examined 14 other variables, including undercut bank, sinuosity, and substrate composition. LWD numbers were generally low and ranged from 0 to 8.2 pieces per 50 m of stream. Linear regression showed that LWD increased with distance from headwaters, riparian forest width, and sinuosity in four of the six land classes. Statistically significant differences between land classes for many aquatic habitat and geomorphologic variables indicated the impacts of different land uses on stream structure. We also found that practices such as active wood removal played a key role in LWD abundance. This finding suggests that managers should prioritize public education and outreach concerning the importance of in-stream wood, especially in mixed-use watersheds where wood is removed for either aesthetic reasons or to prevent stream flooding.  相似文献   

8.
Abstract: Unpaved road‐stream crossings increase sediment yields in streams and alter channel morphology and stability. Before restoration and sedimentation reduction strategies can be implemented, a priority listing of unpaved road‐stream crossings must be created. The objectives of this study were to develop a sedimentation risk index (SRI) for unpaved road‐stream crossings and to prioritize 125 sites in the Choctawhatchee watershed (southeastern Alabama) using this model. Field surveys involved qualitative and quantitative observations of 73 metrics related to waterway conditions, crossing structures, road approaches, and roadside soil erosion. The road‐stream crossing risk analyses involved elimination of candidate metrics based on redundancy, skewness, lack of data, professional judgment, lack of nonzero values, unbalanced box plots, and limited ranges of values. A final selection of 12 metrics formed the SRI and weighed factors involving soil erodibility, road sedimentation abatement features, and stream morphology alteration. The SRI was organized into narrative categories (excellent, good, fair, poor, and very poor) based on the distribution of scores. No excellent sites (scores ≥55) were found in this study, 17 (20.7%) were good (low sedimentation risk), 37 (45.1%) were fair (moderate sedimentation risk), 26 (31.7%) were poor (high sedimentation risk), and two (2.5%) were very poor (high sedimentation risk). There was no significant difference in SRI scores among crossing structure type (round culverts, box culverts, and bridges) (H = 4.31, df = 2, p = 0.058). A future study of the Choctawhatchee watershed involving the same study sites could assess the success of restoration plans and activities based on site score improvement or decline.  相似文献   

9.
Anecdotal information suggests that woody debris have had an important channel-forming role in Swedish streams and rivers, but there are few data to support this view. We identified 10 streams within near-natural and 10 streams within managed forest landscapes in central Sweden, and quantified their channel characteristics and content of woody debris. All pieces of woody debris greater than 0.5 m in length and greater than 0.05 m in base diameter were included. The near-natural forests were situated in reserves protected from forest cutting, whereas the managed forests had previously faced intensive logging in the area adjacent to the stream. The two sets of streams did not differ in general abiotic characteristics such as width, slope, or boulder cover, but the number of wood pieces was twice as high and the wood volume almost four times as high in the near-natural streams. This difference resulted in a higher frequency of debris dams in the near-natural streams. Although the total pool area did not differ between the two sets of streams, the wood-formed pools were larger and deeper, and potentially ecologically more important than other pools. In contrast to what has been believed so far, woody debris can be a channel-forming agent also in steeper streams with boulder beds. In a stepwise multiple regression analysis, pool area was positively and most strongly related to the quantity of woody debris, whereas channel gradient and wood volume were negatively related. The frequency of debris dams increased with the number of pieces of woody debris, but was not affected by other variables. The management implications of this study are that the wood quantity in streams in managed forests would need to be increased if management of streams will target more pristine conditions.  相似文献   

10.
Forestry best management practices (BMPs) reduce sedimentation by minimizing soil erosion and trapping sediment. These practices are particularly important in relation to road construction and use due to the heightened potential for sediment delivery at stream crossings. This study quantifies the implementation and effectiveness of BMPs at 75 randomly selected forest road stream crossings on recent timber harvests in the Mountains, Piedmont, and Coastal Plain regions of Virginia. Road characteristics at stream crossings were used to estimate erosion using the Universal Soil Loss Equation for Forests and the Water Erosion Prediction Project for Roads. Stream crossings were evaluated based on the Virginia Department of Forestry (VDOF) BMP manual guidelines and categorized as BMP?, BMP‐standard, or BMP+ based on the quality of road template, drainage, ground cover, and stream crossing structure. BMP implementation scores were calculated for each stream crossing using VDOF audit questions. Potential erosion effects due to upgrading crossings were estimated by adjusting ground cover percentage and approach length parameters in the erosion models. Results indicate that erosion rates decrease as BMP implementation scores increase (p < 0.05). BMP‐standard and BMP+ ratings made up 83% of crossings sampled, with an average erosion rate of 6.8 Mg/ha/yr. Hypothetical improvements beyond standard BMP recommendations provided minimal additional erosion prevention.  相似文献   

11.
ABSTRACT: Streams integrate biogeochemical processes operating at broad to local spatial scales and long term to short term time scales. Humans have extensively altered those processes in North America, with serious consequences for aquatic ecosystems. We collected data on Upper Tennessee River tributaries in North Carolina to: (1) compare landuse and landscape geomorphology with respect to their ability to explain variation in water quality, sedimentation measures, and large woody debris; (2) determine if landscape change over time contributed significantly to explaining present stream conditions; and (3) assess the importance of spatial scale in examining landuse influences on streams. Stream variables were related to both landuse and landscape geomorphology. Forest cover accounted for the most variation in nearly all models, supporting predictions of nutrient enrichment, thermal pollution, and sedimentation caused by landscape disturbance. Legacy effects from past catchment disturbance were apparent in sedimentation measures. Nitrogen and phosphorus concentrations, as well as stream temperature, were lower where riparian buffers had reforested. Models of stream physicochemistry fit better when predictors were catchment wide rather than more localized (i.e., within 2 km of a site). Cumulative impacts to streams due to changes in landuse must be managed from a watershed perspective with quantitative models that integrate across scales.  相似文献   

12.
The North Fork of Cottonwood Creek, in the White Mountains, Inyo National Forest, California, is a critically important refuge for the Paiute cutthroat trout (Oncorhynchus clarki seleniris), a federally listed threatened species. Habitat for these fish appears to be limited by excessive levels of fine sediment in the channel, and livestock grazing of riparian meadows has been implicated in delivery of sediment to the channel. However, the relationships between land use and sediment yield have not been conclusively determined, in large part because there are no historically ungrazed sites to serve as long-term controls. Accordingly, land-use decisions must be made under scientific uncertainty. To reduce erosion and sedimentation in the stream, the Forest Service spent approximately US$260,000 from 1981 to 1991 to repair watershed damage from livestock grazing, prevent livestock from traversing steep banks, and limit livestock access to the channel. Throughout this period, livestock grazing has continued on these lands, yielding less than $12,000 in grazing fees. In revising its Allotment Management Plan for the basin, the Forest Service rejected the “no-grazing” alternative because it was inconsistent with its Land and Resource Management Plan, which specifies there is to be no net reduction of grazing. Joint appointment with the University of California White Mountain Research Station, East Line Street, Bishop, California 93518, USA.  相似文献   

13.
ABSTRACT: In recent years, logs and other structures have been added to streams for the purposes of altering channel morphology to improve fish habitat. This flume study was conducted to evaluate the effects of coarse woody debris on local channel morphology. Wooden dowels were used to simulate the effects of individual logs in a stream, and scour depth and surface area were determined at the end of each test run. The maximum scour depth was significantly correlated (90 percent confidence level) with both the vertical orientation of the dowels and the channel opening ratio; the scour surface area was significantly correlated (90 percent confidence level) with both the flow depth and the vertical orientation. Upstream-oriented dowels caused relatively large streambed scour and also deflected flows toward the streambank. Downstream-oriented dowels generally caused less bed scour and appeared to provide better bank protection because flow was generally deflected from the bank. In conjunction with data from field studies, these results provide information on the effects of orientation, hydraulic function, and relative stability of coarse woody debris in streams.  相似文献   

14.
Trail-based recreation has increased over recent decades, raising the environmental management issue of soil erosion that originates from unsurfaced, recreational trail systems. Trail-based soil erosion that occurs near stream crossings represents a non-point source of pollution to streams. We modeled soil erosion rates along multiple-use (hiking, mountain biking, and horseback riding) recreational trails that approach culvert and ford stream crossings as potential sources of sediment input and evaluated whether recreational stream crossings were impacting water quality based on downstream changes in macroinvertebrate-based indices within the Poverty Creek Trail System of the George Washington and Jefferson National Forest in southwestern Virginia, USA. We found modeled soil erosion rates for non-motorized recreational approaches that were lower than published estimates for an off-road vehicle approach, bare horse trails, and bare forest operational skid trail and road approaches, but were 13 times greater than estimated rates for undisturbed forests and 2.4 times greater than a 2-year old clearcut in this region. Estimated soil erosion rates were similar to rates for skid trails and horse trails where best management practices (BMPs) had been implemented. Downstream changes in macroinvertebrate-based indices indicated water quality was lower downstream from crossings than in upstream reference reaches. Our modeled soil erosion rates illustrate recreational stream crossing approaches have the potential to deliver sediment into adjacent streams, particularly where BMPs are not being implemented or where approaches are not properly managed, and as a result can negatively impact water quality below stream crossings.  相似文献   

15.
Objective assessment of habitat compensation is a central yet challenging issue for restoration ecologists. In 1997, a 3.4-km stream channel, designed to divert water around an open pit diamond mine, was excavated in the Barrenlands region of the Canadian Arctic to create productive stream habitat. We evaluated the initial success of this compensation program by comparing multiple biological attributes of the constructed stream during its first three years to those of natural reference streams in the area. The riparian zone of the constructed stream was largely devoid of vegetation throughout the period, in contrast to the densely vegetated zones of reference streams. The constructed stream also contained lower amounts of woody debris, coarse particulate organic matter (CPOM), and epilithon; had lower coverage by macrophytes and bryophytes; and processed leaf litter at a lower rate than reference streams. Species richness and densities of macroinvertebrates were consistently lower in the constructed stream compared to natural streams. This contributed to differences in macroinvertebrate assemblage structure throughout the period, although assemblages showed some convergence by year 3. The effectiveness of the constructed stream to emulate natural streams varied somewhat depending on the biological attribute being evaluated. Assessments based on individual attributes showed that minimal to moderate levels of similarity between the constructed stream and natural streams were achieved. A collective assessment of all biological and ecosystem attributes suggested that the constructed stream was not a good surrogate for natural streams during these first years. Additional time would be required before many characteristics of the constructed stream would resemble those of reference streams. Because initial efforts to improve fish habitat in the constructed stream focused on physical structures (e.g., weirs, vanes, rock, groins), ecological factors limiting fish growth were not considered and likely constrained success. We suggest that a greater focus on organic characteristics and vegetation within the stream and its riparian zone could have accelerated compensation. The addition of woody debris and CPOM, combined with planting of shrubs and herbs along the stream, should provide a source of allochthonous matter for the biotic community while large cobble and boulders should improve the physical stability of stream system, protecting its organic components.  相似文献   

16.
ABSTRACT: Forestation of riparian areas has long been promoted to restore stream ecosystems degraded by agriculture in central North America. Although trees and shrubs in the riparian zone can provide many benefits to streams, grassy or herbaceous riparian vegetation can also provide benefits and may be more appropriate in some situations. Here we review some of the positive and negative implications of grassy versus wooded riparian zones and discuss potential management outcomes. Compared to wooded areas, grassy riparian areas result in stream reaches with different patterns of bank stability, erosion, channel morphology, cover for fish, terrestrial runoff, hydrology, water temperature, organic matter inputs, primary production, aquatic macroinvertebrates, and fish. Of particular relevance in agricultural regions, grassy riparian areas may be more effective in reducing bank erosion and trapping suspended sediments than wooded areas. Maintenance of grassy riparian vegetation usually requires active management (e.g., mowing, burning, herbicide treatments, and grazing), as successional processes will tend ultimately to favor woody vegetation. Riparian agricultural practices that promote a dense, healthy, grassy turf, such as certain types of intensively managed livestock grazing, have potential to restore degraded stream ecosystems.  相似文献   

17.
ABSTRACT: Urban development has compromised the quality of physical elements offish habitat in low‐order spawning and rearing streams. In order to identify where priorities should lie in stream rehabilitation, field surveys of a number of streams were conducted near Vancouver, British Columbia. All of the streams were located in watersheds which were urbanized approximately 20 years earlier. The study watersheds ranged from 5 to 77 percent total impervious area (percent TIA). The urban streambeds were found to have less fine material and slightly higher values of intragravel dissolved oxygen than in rural streams. This improved gravel quality is attributed to the higher peak flows generated by impervious areas, and the reduced recruitment of fine material in the urban watersheds. Summer base flow was uniformly low when imperviousness was above 40 percent, evidenced by a decrease in velocity rather than water depth. Large woody debris (LWD) was scarce in all streams with > 20 percent TIA. A healthy buffer zone and abundant LWD were found to stabilize stream banks. The introduction of LWD is considered the most important strategy for stream rehabilitation. Stormwater detention ponds, in contrast, are concluded to have few hydrological benefits if constructed after a stream has reached its urban equilibrium.  相似文献   

18.
ABSTRACT: Geographic Information Systems (GIS) were used to assess the relationships between land use patterns and the physical habitat and macroinvertebrate fauna of streams within similar sized watersheds. Eleven second or third order watersheds ranging from highly urbanized to heavily forested were selected along Lake Superior's North Shore. Land use patterns within the watersheds were quantified using readily available digital land use/land cover information, with a minimum mapping resolution of 16 ha. Physical habitat features, describing substrate characteristics and stream morphology, were characterized at sample points within each stream. Principle component and correlation analyses were used to identify relationships between macroinvertebrates and stream physical habitat, and between habitat and land use patterns. Substrate characteristics and presence of coarse woody debris were found to have the strongest correlations with macreinvertebrate assemblage richness and composition. Agricultural and urban land use was correlated with substrate characteristics. Algal abundance, associated with macroinvertebrate compositional differences, was correlated with housing density and non-forest land covers. The use of readily available spatial data, even at this relatively coarse scale, provides a means to detect the primary relationships between land use and stream habitat quality; finer-resolution GIS databases are needed to assess more subtle influences, such as those due to riparian conditions.  相似文献   

19.
20.
ABSTRACT: A flood-control dam was completed during 1979 on Bear Creek, a small tributary stream to the South Platte River in the Denver, Colorado, area. Before and after dam closure, repetitive surveys between 1977 and 1992 at five cross sections downstream of the dam documented changes in channel morphology. During this 15-year period, channel width increased slightly, but channel depth increased by more than 40 percent. Within the study reach, stream gradient decreased and median bed material sizes coarsened from sand in the pools and fine gravel on the rime to a median coarse gravel throughout the reach. The most striking visual change was from a sparse growth of streamside grasses to a dense growth of riparian woody vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号