首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT: Operation of a storage‐based reservoir modifies the downstream flow usually to a value higher than that of natural flow in dry season. This could be important for irrigation, water supply, or power production as it is like an additional downstream benefit without any additional investment. This study addresses the operation of two proposed reservoirs and the downstream flow augmentation at an irrigation project located at the outlet of the Gandaki River basin in Nepal. The optimal operating policies of the reservoirs were determined using a Stochastic Dynamic Programming (SDP) model considering the maximization of power production. The modified flows downstream of the reservoirs were simulated by a simulation model using the optimal operating policy (for power maximization) and a synthetic long‐term inflow series. Comparing the existing flow (flow in river without reservoir operation) and the modified flow (flow after reservoir operation) at the irrigation project, the additional amount of flow was calculated. The reliability analysis indicated that the supply of irrigation could be increased by 25 to 100 percent of the existing supply over the dry season (January to April) with a reliability of more than 80 percent.  相似文献   

2.
ABSTRACT: Development of optimal operational policies for large-scale reservoir systems is often complicated by a multiplicity of conflicting project uses and purposes. A wide range of multiobjective optimization methods are available for appraising tradeoffs between conificting objectives. The purpose of this study is to provide guidance as to those methods which are best suited to dealing with the challenging large-scale, nonlinear, dynamic, and stochastic characteristics of multireservoir system operations. As a case study, the selected methodologies are applied to the Han River Reservoir System in Korea for four principal project objectives: water supply and low flow augmentation; annual hydropower production, reliable energy generation, and minimization of risk of violating firm water supply requirements. Additional objectives such as flood control are also considered, but are imposed as fixed constraints.  相似文献   

3.
ABSTRACT: Mathematical optimization techniques are used to study the operation and design of a single, multi-purpose reservoir system. Optimal monthly release policies are derived for Hoover Reservoir, located in Central Ohio, using chance-constrained linear programming and dynamic programming-regression methodologies. Important characteristics of the former approach are derived, discussed, and graphically illustrated using Hoover Reservoir as a case example. Simulation procedures are used to examine and compare the overall performance of the optimal monthly reservoir release policies derived under the two approaches. Results indicate that, for the mean detention time and the corresponding safe yield target water supply release under existing design of Hoover Reservoir, the dynamic programming policies produce lower average annual losses (as defined by a two-sided quadratic loss function) while achieving at least as high reliability levels when compared to policies derived under the chance-constrained linear programming method. In making this comparison, the reservoir release policies, although not identical, are assumed to be linear. This restricted form of the release policy is necessary to make the chance-constrained programming method mathematically tractable.  相似文献   

4.
ABSTRACT: This paper describes two methods that are introduced to improve the computational effort of stochastic dynamic programming (SDP) as applicable to the operation of multiple urban water supply reservoir systems. The stochastic nature of streamflow is incorporated explicitly by considering it in the form of a multivariate probability distribution. The computationally efficient Gaussian Legendre quadrature method is employed to compute the conditional probabilities of streamflow, which accounts for the serial correlation of streamflow into each storage and the cross correlation between the streamflow into various storages. A realistic assumption of cross correlation of streamflow is introduced to eliminate the need to consider the streamflow combinations which are unlikely to occur in the SDP formulation. A “corridor” approach is devised to eliminate the need to consider the infeasible and/or inferior storage volume combinations in the preceding stage in computing the objective function in the recursive relation. These methods are verified in terms of computational efficiency and accuracy by using a hypothetical example of three interconnected urban water supply reservoirs. Therefore, it can be concluded that these methods allow SDP to be more attractive for deriving optimal operating rules for multiple urban water supply reservoir systems.  相似文献   

5.
ABSTRACT: A decision support system to determine reservoir releases in an uncertain environment during the dry season was developed. A key characteristic of the decision support system is its recursive procedure that processes observations to obtain the most feasible estimate. The system consists of three components: (1) a hydrologic model; (2) an optimization model, and (3) a fuzzy decision model. This methodology was applied to the operation of the Techi reservoir in central Taiwan. Three criteria (public water supply, irrigation, and hydropower) were taken into account within the operation process. Simulation results show that the decision support system can successfully assist government officials in determining operating policy for the Techi reservoir during the dry season. Also, the system is simple enough to lead to a rapid transfer of theoretical knowledge into practice.  相似文献   

6.
This paper presents a real-time simulation-optimization operation procedure for determining the reservoir releases at each time step during a flood. The proposed procedure involves two models, i.e., a hydrological forecasting model and a reservoir operation model. In the reservoir operation model, this paper compares two flood-control operation strategies for a multipurpose multireservoir system. While Strategy 1 is the real-time joint reservoir operations without using the balanced water level index (BWLI) method, Strategy 2 involves real-time joint reservoir operations using the BWLI method. The two strategies presented are formulated as mixed-integer linear programming (MILP) problems. The idea of using the BWLI method is derived from the HEC-5 program developed by the US Army Corps of Engineers. The proposed procedure has been applied to the Tanshui River Basin system in Taiwan using the 6h ahead forecast data of six typhoons. A comparison of the results obtained from the two strategies reveals that Strategy 2 performs much better than Strategy 1 in determining the reservoir real-time releases throughout the system during flood emergencies in order to minimize flooding, while maintaining all reservoirs in the system in balance if possible. Consequently, the proposed model using the BWLI method demonstrates its effectiveness in estimating real-time releases.  相似文献   

7.
ABSTRACT. For a multipurpose single reservoir a deterministic optimal operating policy can be readily devised by the dynamic programming method. However, this method can only be applied to sets of deterministic stream flows as might be used repetitively in a Monte Carlo study or possibly in a historical study. This paper reports a study in which an optimal operating policy for a multipurpose reservoir was determined, where the optimal operating policy is stated in terms of the state of the reservoir indicated by the storage volume and the river flow in the preceding month and uses a stochastic dynamic programming approach. Such a policy could be implemented in real time operation on a monthly basis or it could be used in a design study. As contrasted with deterministic dynamic programming, this method avoids the artificiality of using a single set of stream flows. The data for this study are the conditional probabilities of the stream flow in successive months, the physical features of the reservoir in question, and the return functions and constraints under which the system operates.  相似文献   

8.
ABSTRACT: Six applications of multiobjective decision making techniques for finding optimal or satisfying operating rules for reservoir systems are presented. The examples include situations with hydropower vs. water supply (for irrigation), flood control vs. low flow augmentation, selection of an operating rule, low-flow vs. reliability, and low flow and recreation vs. water quality. The techniques applied include the constraint method, compromise programming, goal programming, Tchebycheff approach (max-mm), Consensus, and ELECTRE I and II.  相似文献   

9.
ABSTRACT: A decision support tool is developed for the management of water resources, focusing on multipurpose reservoir systems. This software tool has been designed in such a way that it can be suitable to hydrosystems with multiple water uses and operating goals, calculating complex multi‐reservoir systems as a whole. The mathematical framework is based on the parameterization‐simulation‐optimization scheme. The main idea consists of a parametric formulation of the operating rules for reservoirs and other projects (i.e., hydropower plants). This methodology enables the radical decrease of the number of decision variables, making feasible the location of the optimal management policy, which maximizes the system yield and the overall operational benefit and minimizes the risk for the management decisions. The program was developed using advanced software engineering techniques. It is adaptable in a wide range of water resources systems, and its purpose is to support water and power supply companies and related authorities. It already has been applied to two of the most complicated hydrosystems of Greece, the first time as a planning tool and the second time as a management tool.  相似文献   

10.
ABSTRACT: The determination of optimum reservoir operating rules for reservoirs with multiple conflicting objectives is still a difficult task - despite many publications in this field. In this paper a three-step Multi Objective Decision Making (MODM) method is presented, the emphasis of which is placed on the necessity to make the work easy for the decision maker, which many MODM techniques fail to achieve. The method is applied to the development of a compromise optimum operating rule for a multi-purpose reservoir. In the first step of the method stochastic DP is chosen which is combined with the “weighting method” allowing combination of various objectives into one objective function. By systematically varying the weights for the objectives a large number of pareto optimum reservoir operating rules is generated. In the second step of the method the performance of all these operating rules is tested with the aid of a model simulating reservoir operation. The results are statistically analyzed and the reliabilities for attaining the various objectives are computed. The third step of the model applies another MODM technique which allows the decision maker - in a computer dialog - to select his optimum reservoir operating rule from the large number of pareto optimum solutions generated in step 1. Here he can specify his preferences for the various objectives. For this purpose two alternative MODM techniques are offered: Compromise Programming and the SEMOPS method. Their performance is shown along with the generation and selection of operating rules for the multi-objective Wupper reservoir system in Germany.  相似文献   

11.
ABSTRACT: The Nonlinear Risk-Benefit (NRB) Algorithm includes risk as one of the objectives in a multiple-objective optimization problem. The NRB Algorithm is derived by extending the Surrogate Worth Trade-Off method to quadratic programming. This category of problem is common in water resources planning and design, especially multipurpose reservoir systems. Consequently, an example is given using the algorithm for optimally operating a multipurpose reservoir.  相似文献   

12.
ABSTRACT: The main objective of this paper is to present a stockastic dynamic programming model useful in determining the optimal operating policy of a single multipurpose surface reservoir. It is the unreliability of forecasting the amount of future streamflow which makes the problem of a reservoir operation a stochastic process. In this paper the stochastic nature of the streamflow is taken into account by considering the correlation between the streamflows of each pair of consecutive time intervals. This interdependence is used to calculate the probability of transition from a given state and stage to its succeeding ones. A dynamic programming model with a physical equation and a stochastic recursive equation is developed to find the optimum operational policy. For illustrative purposes, the model is applied to a real surface water reservoir system.  相似文献   

13.
ABSTRACT: An heuristic iterative technique based upon stochastic dynamic programming is presented for the analysis of the operation of a three reservoir ‘Y’ shaped hydroelectric system. The technique is initiated using historical inflow data for the downstream reservoir. At each iteration the optimal policies for the downstream hydroelectric generating unit are used to provide relative weightings or targets for operation of upstream reservoirs. New input inflows to the downstream reservoir are then obtained by running the historical streamflow record through the optimal policies for the upstream reservoirs. These flows are then used to develop a new operating policy for the downstream reservoir and hence new targets for the upstream reservoirs. The process is continued until the operating policies for each reservoir provide the same overall system benefit for two successive iterations. Results obtained from the procedure are compared to the results obtained by historical operation of the system. The procedure is shown to develop operating policies which give benefits which are as close to the historical benefits as can be expected given the choice of the number of storage state variables.  相似文献   

14.
ABSTRACT .Desalting plants can provide a means of firming up erratic natural supplies when properly operated in conjunction with existing water supply reservoir systems. Since the natural inflow is variable, the choice of when to run the desalting plant is difficult. If the plant is turned on too late, a shortage may result; or if the plant runs too long, costly water may be wasted. A computer program is described that can help water planners find an optimal operating rule, i.e., a policy that tells when to turn the plant on and off to meet a given demand. Criteria for defining the firm water yield of the system (with and without desalting) are first defined. The logic of the program is then described. The program, written in FORTRAN IV, successively simulates operation of the given size reservoir-desalting plant system under control of various operating rules and selects the optimal rule as the one which produces the required firm water yield at the least unit cost. The optimal plant size and the staging of construction can also be studied by making a series of computations. Applications of the Operating Rule Program to water systems in California, Utah and New York are described. The studies show that, compared with base load operation, substantial savings are possible if optimum intermittent conjunctive operation of the desalting plant is followed.  相似文献   

15.
ABSTRACT: Releases from a reservoir may be allocated to a number of uses, each of which may require a given volume of water at a different reliability. The paper provides a method that can be used to estimate the volume of water associated with a given reliability for each use of water when the proportion of releases allocated to each use is known. These results can be used to evaluate the meeting of specified objectives under a published release policy derived by stationary stochastic dynamic programming. The results can also be used to solve water allocation problems when the probability distribution of available water is known (or can be estimated) and water has multiple uses, each of which has different volume and reliability requirements.  相似文献   

16.
Future climate change is a source of growing concerns for the supply of energy and resources, and it may have significant impacts on industry and the economy. Major effects are likely to arise from changes to the freshwater resources system, due to the connection of energy generation to these water systems. Using future climate data downscaled by a stochastic weather generator, this study investigates the potential impacts of climate change on long‐term reservoir operations at the Chungju multipurpose dam in South Korea, specifically considering the reliability of the supply of water and hydropower. A reservoir model, Hydrologic Engineering Center‐Reservoir System Simulation (HEC‐ResSim), was used to simulate the ability of the dam to supply water and hydropower under different conditions. The hydrologic model Soil and Water Assessment Tool was used to determine the HEC‐ResSim boundary conditions, including daily dam inflow from the 6,642 km2 watershed into the 2.75 Gm3 capacity reservoir. Projections of the future climate indicate that temperature and precipitation during 2070‐2099 (2080s) show an increase of +4.1°C and 19.4%, respectively, based on the baseline (1990‐2009). The results from the models suggest that, in the 2080s, the average annual water supply and hydropower production would change by +19.8 to +56.5% and by +33.9 to 92.3%, respectively. Model simulations suggest that under the new climatic conditions, the reliability of water and hydropower supply would be generally improved, as a consequence of increased dam inflow.  相似文献   

17.
ABSTRACT: This paper reports on new methods of linking climate change scenarios with hydrologic, agricultural an water planning models to study future water availability for agriculture, an essential element of sustainability. The study is based on the integration of models of water supply and demand, and of crop growth and irrigation management. Consistent modeling assumptions, available databases, and scenario simulations are used to capture a range of possible future conditions. The linked models include WATBAL for water supply; CERES, SOYGRO, and CROPWAT for crop and irrigation modeling; and WEAP for water demand forecasting, planning and evaluation. These models are applied to the U.S. Cornbelt using forecasts of climate change, agricultural production, population and GDP growth. Results suggest that, at least in the near term, the relative abundance of water for agriculture can be maintained under climate change conditions. However, increased water demands from urban growth, increases in reservoir evaporation and increases in crop consumptive use must be accommodated by timely improvements in crop, irrigation and drainage technology, water management, and institutions. These improvements are likely to require substantial resources and expertise. In the highly irrigated basins of the region, irrigation demand greatly exceeds industrial and municipal demands. When improvements in irrigation efficiency are tested, these basins respond by reducing demand and lessening environmental stress with an improvement in system reliability, effects particularly evident under a high technology scenario. Rain-fed lands in the Cornbelt are not forced to invest in irrigation, but there is some concern about increased water-logging during the spring and consequent required increased investment in agricultural drainage. One major water region in the Cornbelt also provides a useful caveat: change will not necessarily be continuous and monotonic. Under one GCM scenario for the 2010s, the region shows a significant decrease in system reliability, while the scenario for the 2020s shows an increase.  相似文献   

18.
Lee, Se‐Yeun, Alan F. Hamlet, Carolyn J. Fitzgerald, and Stephen J. Burges, 2011. Methodology for Developing Flood Rule Curves Conditioned on El Niño‐Southern Oscillation Classification. Journal of the American Water Resources Association (JAWRA) 47(1):81‐92. DOI: 10.1111/j.1752‐1688.2010.00490.x Abstract: Regional climate varies on interannual and decadal time scales that in turn affect annual streamflows, flood risks, and reservoir storage deficits in mid‐summer. However, these variable elements of the climate system are generally not included in water resources operating policies that attempt to preserve a balance between flood risk and other water resources system objectives. A methodology for incorporating El Niño‐Southern Oscillation (ENSO) information in designing flood control curves is investigated. An optimization‐simulation procedure is used to develop a set of ENSO‐conditioned flood control rule curves that relate streamflow forecasts to flood control evacuation requirements. ENSO‐conditioned simulated flood risk and storage deficits under current operating policy are used to calibrate a unique objective function for each ENSO classification. Using a case study for the Columbia River Basin, we demonstrate that ENSO‐conditioned flood control curves constructed using the optimization‐simulation procedure consistently reduce storage deficits at a number of interrelated projects without increasing flood risk. For the Columbia Basin, the overall improvements in reservoir operations are relatively modest, and (in isolation) might not motivate a restructuring of flood control operations. However, the technique is widely applicable to a wide range of water resources systems and/or different climate indices.  相似文献   

19.
The Las Vegas, Nevada area like most semi-arid basins, was developed through exploitation of available ground-water resources. Area growth in this large valley has occurred in a scattered and sporadic manner with development both in incorporated areas and within the County. As a result, today there exist five major water suppliers which are: a water district, three municipalities, and a large corporation, in addition to numerous small water companies and thousands of domestic wells. In the past 20 years the area has grown from a population of less than 50,000 to over 300,000 today. The bulk of the water demand for this growth has been met from the ground-water resource and as a result the basin is being severely mined. Current extractions are over three times the estimated annual replenishment. Rapidly declining water levels are increasing the costs of water and are creating water shortages during periods of peak demand. To meet both the current and anticipated water demands, the Southern Nevada Water Supply Project is being constructed to import additional water from nearby Lake Mead. Agriculture in the area is very limited, and primarily uses reclaimed waste water for irrigation. The chief water demands in the area are thus municipal and industrial, with the former predominating. This study was designed to determine how best the Las Vegas Valley Water District, supplier of 80 percent of the domestic water, might integrate the use of the existing ground water and anticipated imported surface water. Additionally the consequences of application of certain provisions in the Nevada Water Law were examined to determine their effects on the ground-water system and costs of water. To achieve these objectives, a dynamic programming technique was utilized. The problem as formulated consists of a single decision variable, single state variable dynamic programming algorithm evaluated over a fifty-year planning horizon at monthly intervals. Three alternative solutions, with different ground-water law constraints are evaluated. In all solutions certain basic operating rules regarding ground-water pumping distribution and use of surface-water systems are kept constant. The problem is considered as deterministic in all respects. Recharge to ground water is assumed to equal the estimated average annual replenishment evenly distributed over the year and additionally is not considered to be a function of average basin ground water potential. The only surface supply, Lake Mead, is considered to operate at near constant elevation and not be subject to shortage conditions. In light of the size of Lake Mead, the Colorado River flow and the size of Nevada's allotment, 300,000 ac ft, the latter assumption is reasonable. Demand for water is considered as a known function of time. Optimization of conjunctive use for the Water District is based on the objective function of minimizing water production costs. Costs of distributing water are considered to be constant regardless of source, and so are not included. Also, fixed costs of amortizing the pipeline project and well fields are not considered. Results of the study are presented as a series of policy traces under each of the three alternatives considered. These traces describe the ground-water basin response under optimal operating conditions, given an estimate as to the present worth of ground-water pumping rights, and prescribe monthly water-procurement schedules for the operation of the Water District.  相似文献   

20.
ABSTRACT: A study was undertaken to see if benefits from water supply could be increased by utilizing price-usage information in reservoir design studies. Three pricing policies were examined. The first policy assumed no price-use relationship, and quantity demanded was based on existing community usage with a low water rate. The price of water was set to recover system costs. A price-use relationship was assumed in the second policy and the water rate was constant. The price of water was determined from the associated system which provided maximum expected net benefits. The third policy assumed the price-use relationship and the price charged for water during each billing period was a non-linear function of storage which increased as the amount of water in storage at the beginning of the period decreased. It was found that the use of the conservation pricing policies substantially reduced storage requirements while providing demonstrable net benefits to the community and a large average supply. The conservation pricing policies substantially lowered the average price paid for water. The effect of uncertainty in consumer response to changes in price was studied by using a probabilistic price-use relationship. This uncertainty did not significantly reduce the effectiveness of the conservation policy. It was concluded that demand management by the use of a proper pricing policy could significantly increase net water supply benefits to a community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号