首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
ABSTRACT: In a simulation experiment, stormwater flows are partially diverted, at various levels, to a detention basin in order to compare the recombined (i.e., undiverted flows and basin discharges) hydrograph to the response of the traditional, in-line design. The use of off-line detention basins is shown to be an effective technique for reducing peak flows from developed watersheds to pre-development levels with lower storage requirements. In addition, the discharge hydrographs produced by off-line detention are significantly different from those produced by the traditional design and may be more suited to certain stormwater management situations.  相似文献   

2.
ABSTRACT: To manage the first flush of storm runoff in urbanized areas, a diversion box and detention basin system has been proposed for a new storm sewer system or for retrofitting an existing system. A software package for a personal computer has been developed to facilitate the analysis and design of the system. Hydrographs and pollutographs are generated at the inlet and outlet of the diversion box and the detention basin. The peak outflow and peak pollutant concentrations are compared with the allowable outflow and pollutant concentration for urban stormwater quantity and quality management. The model is developed for both analysis and design purposes.  相似文献   

3.
While storm water detention basins are widely used for controlling increases in peak discharges that result from urbanization, recent research has indicated that under certain circumstances detention storage can actually cause increases in peak discharge rates. Because of the potential for detrimental downstream effects, storm water management policies often require downstream effects to be evaluated. Such evaluation requires the design engineer to collect additional topographic and land use data and make costly hydrologic analyses. Thus, a method, which is easy to apply and which would indicate whether or not a detailed hydrologic analysis of downstream impacts is necessary, should decrease the average cost of storm water management designs. A planning method that does not require either a large data base or a computer is presented. The time co-ordinates of runoff hydrographs are estimated using the time-of-concentration and the SCS runoff curve number; the discharge coordinates are estimated using a simple peak discharge equation. While the planning method does not require a detailed design of the detention basin, it does provide a reasonably accurate procedure for evaluating whether or not the installation of a detention basin will cause adverse downstream flooding.  相似文献   

4.
ABSTRACT: A runoff routing model, originally developed for rural, areas and later adapted for application in urban areas, is shown to be, very suitable for use in design detention basin systems. The model, computes design inflow hydrographs for basins and routes flow through, basins to the next downstream point of interest. Some general conclusions are drawn on the effects of different basin configurations.  相似文献   

5.
ABSTRACT: Storm water detention is an effective and popular method for controlling the effects of increased urbanization and development. Detention basins are used to control both increases in flow rates and sedimentation. While numerous storm water management policies have been proposed, they most often fail to give adequate consideration to maintenance of the basin. Sediment accumulation with time and the growth of grass and weeds in the emergency spillway are two maintenance problems. A model that was calibrated with data from a storm water detention basin in Montgomery County, Maryland, is used to evaluate the effect of maintenance on the efficiency of the detention basin. Sediment accumulation in the basin caused the peak reduction factor to decrease while it increased as vegetation growth in the emergency spillway increased. Thus, the detention basin will not function as intended in the design when the basin is not properly maintained. Thus, maintenance of detention basins should be one component of a comprehensive storm water management policy.  相似文献   

6.
ABSTRACT: Historically, storm water management programs and criteria have focused on quantity issues related to flooding and drainage system design. Traditional designs were based on large rainfall‐runoff events such as those having two‐year to 100‐year return periods. While these are key criteria for management and control of peak flows, detention basin designs based on these criteria may not provide optimal quality treatment of storm runoff. As evidenced by studies performed by numerous public and private organizations, the water quality impacts of storm water runoff are primarily a function of more frequent rainfall‐runoff events rather than the less frequent events that cause peak flooding. Prior to this study there had been no detailed investigations to characterize the variability of the more frequent rainfall events on Guam. Also, there was a need to develop some criteria that could be applied by designers, developers, and agency officials in order to reduce the impact of storm water runoff on the receiving bodies. The objectives of this paper were three‐fold: (1) characterize the hourly rainfall events with respect to volume, frequency, duration, and the time between storm events; (2) evaluate the rainfall‐runoff characteristics with respect to capture volume for water quality treatment; and (3) prepare criteria for sizing and designing of storm water quality management facilities. The rainfall characterization studies have provided insight into the characteristics of rainstorms that are likely to produce non‐point source pollution in storm water runoff. By far the most significant fmdings are the development of a series of design curves that can be used in the actual sizing of storm water detention and treatment facilities. If applied correctly, these design curves could lead to a reduction of non‐point source pollution to Guam's streams, estuaries, and coastal environments.  相似文献   

7.
Storm water management contributes to flood hazard mitigation; but new approaches now being developed consider also the reduction in particulate pollution and stream erosion. Such approaches involve retardation of storm runoff, or detention programs of some kind, and detention basins are usually required if large storms are to be controlled. The usual concept is that future storms occurring after development should have no more adverse effect than similar storms would have had before development; but a number of different criteria are being used. If control of storms of different sizes is required, only a small amount of additional capacity is required to obtain retention of particulate pollution in the same basin. In at least three different parts of the country, such dual purpose detention basins are being required of developers. In such programs the developers bear the cost, the governmental contributions are not involved.  相似文献   

8.
In this paper, stormwater runoff from an urban watershed with combined sewer systems located in Daejeon metropolitan city, Korea, was characterized to measure the stormwater runoff discharge rates and pollutant concentrations. The observed averaged event mean concentrations (EMCs) of combined sewer overflows (CSO) were 536.1mg TSS/L, 467.7 mg TCODcr/L, 142.7 mg TBOD/L, 16.5mg TN/L, and 13.5mg TP/L. A detention basin was proposed to reduce CSO, and its essential design elements were discussed. The first flush significantly affected contaminant constituents in the descending order of suspended solid>organics>nutrients. Storage volumes for containing the first flush to improve water quality of the receiving stream can be estimated based on the total suspended solid loading. In this study, detention of the first flush equivalent to 5mm of precipitation could reduce CSO-induced diffuse pollution loading to a receiving water body by up to 80% of the total suspended solid loading.  相似文献   

9.
ABSTRACT: As watersheds are urbanized, their surfaces are made less pervious and more channelized, which reduces infiltration and speeds up the removal of excess runoff. Traditional storm water management seeks to remove runoff as quickly as possible, gathering excess runoff in detention basins for peak reduction where necessary. In contrast, more recently developed “low impact” alternatives manage rainfall where it falls, through a combination of enhancing infiltration properties of pervious areas and rerouting impervious runoff across pervious areas to allow an opportunity for infiltration. In this paper, we investigate the potential for reducing the hydrologic impacts of urbanization by using infiltration based, low impact storm water management. We describe a group of preliminary experiments using relatively simple engineering tools to compare three basic scenarios of development: an undeveloped landscape; a fully developed landscape using traditional, high impact storm water management; and a fully developed landscape using infiltration based, low impact design. Based on these experiments, it appears that by manipulating the layout of urbanized landscapes, it is possible to reduce impacts on hydrology relative to traditional, fully connected storm water systems. However, the amount of reduction in impact is sensitive to both rainfall event size and soil texture, with greatest reductions being possible for small, relatively frequent rainfall events and more pervious soil textures. Thus, low impact techniques appear to provide a valuable tool for reducing runoff for the events that see the greatest relative increases from urbanization: those generated by the small, relatively frequent rainfall events that are small enough to produce little or no runoff from pervious surfaces, but produce runoff from impervious areas. However, it is clear that there still needs to be measures in place for flood management for larger, more intense, and relatively rarer storm events, which are capable of producing significant runoff even for undeveloped basins.  相似文献   

10.
ABSTRACT: The detention reservoir is an effective measure for the management of storm water runoff, but random or unplanned placement may aggravate potential flood hazards. An approximate method for the sizing and placement of detention reservoirs is presented. The procedure is based upon the application of a storage estimation equation. The results show that the procedure closely approximates the results produced by the U.S. Army Corps of Engineers HEC-1 Flood Hydrograph Package in computing reservoir capacities on a hypotehtical watershed. Pending further tests, the use of the procedure is very limited, but it is an initial step to incorporating detention storage into regional storm water management plans.  相似文献   

11.
Stormwater management that relies on ecosystem processes, such as tree canopy interception and rhizosphere biology, can be difficult to achieve in built environments because urban land is costly and urban soil inhospitable to vegetation. Yet such systems offer a potentially valuable tool for achieving both sustainable urban forests and stormwater management. We evaluated tree water uptake and root distribution in a novel stormwater mitigation facility that integrates trees directly into detention reservoirs under pavement. The system relies on structural soils: highly porous engineered mixes designed to support tree root growth and pavement. To evaluate tree performance under the peculiar conditions of such a stormwater detention reservoir (i.e., periodically inundated), we grew green ash (Fraxinus pennsylvanica Marsh.) and swamp white oak (Quercus bicolor Willd.) in either CUSoil or a Carolina Stalite-based mix subjected to three simulated below-system infiltration rates for two growing seasons. Infiltration rate affected both transpiration and rooting depth. In a factorial experiment with ash, rooting depth always increased with infiltration rate for Stalite, but this relation was less consistent for CUSoil. Slow-drainage rates reduced transpiration and restricted rooting depth for both species and soils, and trunk growth was restricted for oak, which grew the most in moderate infiltration. Transpiration rates under slow infiltration were 55% (oak) and 70% (ash) of the most rapidly transpiring treatment (moderate for oak and rapid for ash). We conclude this system is feasible and provides another tool to address runoff that integrates the function of urban green spaces with other urban needs.  相似文献   

12.
Stormwater management infrastructure is utilized in urban areas to alleviate flooding caused by decreased landscape permeability from increased impervious surface cover (ISC) construction. In this study, we examined two types of stormwater detention basins, SDB-BMPs (stormwater detention basin-best management practice), and SDB-FCs (stormwater detention basin-flood control). Both are constructed to retain peak stormwater flows for flood mitigation. However, the SDB-BMPs are also designed using basin topography and wetland vegetation to provide water quality improvement (nutrient and sediment removal and retention). The objective of this study was to compare SDB (both SDB-BMP and SDB-FC) surface soil P concentrations, P saturation, and Fe chemistry with natural riparian wetlands (RWs), using sites in Fairfax County, Virginia as a model system. The SDB-BMPs had significantly greater surface soil total P (P(t)) concentrations than the RWs and SDB-FCs (831.9 +/- 32.5 kg ha(-1), 643.3 +/- 19.1 kg ha(-1), and 652.1 +/- 18.8 kg ha(-1), respectively). The soil P sorption capacities of SDB-BMPs were similar to the RWs, and were greater than those of SDB-FCs, appearing to result in greater soil P removal and retention in SDB-BMPs compared with SDB-FCs. Increased Fe concentrations and relatively greater amounts of more crystalline forms of Fe in SDB-BMP soils suggested increased sediment deposition compared with RW and SDB-FC soils. Data suggest that SDB nutrient and sediment retention is facilitated in SDB-BMPs. When stormwater management is necessary, use of SDB-BMPs instead of SDB-FCs could foster more responsible urban development and be an appropriate mitigation action for receiving aquatic ecosystems.  相似文献   

13.
The Keelung River Basin in northern Taiwan lies immediately upstream of the Taipei metropolitan area. The Shijr area is in the lower basin and is subject to frequent flooding. This work applies micromanagement and source control, including widely distributed infiltration and detention/ retention runoff retarding measures, in the Wudu watershed above Shijr. A method is also developed that combines a genetic algorithm and a rainfall runoff model to optimize the spatial distribution of runoff retarding facilities. Downstream of Wudu in the Shijr area, five dredging schemes are considered. If 10‐year flood flows cannot be confined in the channel, then a levee embankment that corresponds to the respective runoff retarding scheme will be required. The minimum total cost is considered in the rule to select from the regional flood mitigation alternatives. The results of this study reveal that runoff retarding facilities installed in the upper and middle parts of the watershed are most effective in reducing the flood peak. Moreover, as the cost of acquiring land for the levee embankment increases, installing runoff retarding measures in the upper portion of the watershed becomes more economical.  相似文献   

14.
This paper examines and compares the management practices and regulatory approaches used by the Mid-Atlantic States of Delaware, Maryland, New Jersey, and Pennsylvania for improving the quality of storm-water runoff. Such practices range from simple extended detention criteria in Pennsylvania through the BMP credit system used by Maryland, to the latest "green technology" methods promoted in Delaware and the recharge, quality and peak reduction approaches of New Jersey. All practices are designed to meet EPA requirements for total suspended solids (TSS) removal, but verification of performance is not required. More sophisticated methods of evaluating TSS removal that can be used for engineering design purposes are needed.  相似文献   

15.
We coupled rainfall–runoff and instream water quality models to evaluate total suspended solids (TSS) in Wissahickon Creek, a mid‐sized urban stream near Philadelphia, Pennsylvania. Using stormwater runoff and instream field data, we calibrated the model at a subdaily scale and focused on storm responses. We demonstrate that treating event mean concentrations as a calibration parameter rather than a fixed input can substantially improve model performance. Urban stormwater TSS concentrations vary widely in time and space and are difficult to represent simply. Suspended and deposited sediment pose independent stressors to stream biota and model results suggest that both currently impair stream health in Wissahickon Creek. Retrofitting existing detention basins to prioritize infiltration reduced instream TSS loads by 20%, suggesting that infiltration mitigates sediment more effectively than detention. Infiltrating stormwater from 30% of the watershed reduced instream TSS loads by 47% and cut the frequency of TSS exceeding 100 mg/L by half. Settled loads and the frequency of high TSS values were reduced by a smaller fraction than suspended loads and duration at high TSS values. A widely distributed network of infiltration‐focused projects is an effective stormwater management strategy to mitigate sediment stress. Coupling rainfall–runoff and water quality models is an important way to integrate watershed‐wide impacts and evaluate how management directly affects urban stream health.  相似文献   

16.
This study presents an innovative approach for the integration of flood hazard into the site selection of detention basins. The site selection process is conducted by taking into account multiple criteria and disciplines. Hydraulic modeling results derived from stormwater management model are employed by Technique for the Order of Prioritization by Similarity to Ideal Solution (TOPSIS) to determine flood hazard score. The score generated by TOPSIS is used in a spatial multi-criteria decision-making site selection framework. Applying the framework, a suitability map is generated in which primary locations for detention basin placement are determined. The method is demonstrated through the case study of Darakeh River Catchment, which is located in northern Tehran, Iran. The presented framework can be easily utilized for site selection of other stormwater management techniques, such as low impact development and best management practices, due to its versatility.  相似文献   

17.
ABSTRACT: A framework for combining economic factors and the hydrolo of detention basins is provided. The general development of economic production functions for water quality (sediment) and flood control is discussed. Example production functions are generated to compare water quality (sediment control only) and flood control. For the given example, the design of a detention basin for downstream sediment control is economically unwarranted. When compared to on-site detention facilities, regional detention structures appear to be more practical from an economic standpoint for water quality control. Since sediment was the only water quality parameter assessed, it is entirely possible that the design of a detention basin for water quality control would be justified if the effects of all pollutants of concern could be quantified. Policy aspects of detention facilities that relate to the economics of water quality control are also discussed.  相似文献   

18.
ABSTRACT The limnology of a 1.9-ha storm-water detention pond is described. The eutrophic nature of this impoundment is attributed to the nutrients in runoff from the surrounding residential area. During the summer, photosynthetic activity of the phytoplankton caused surface waters to become super-saturated with oxygen, while decomposing organic material greatly reduced dissolved oxygen concentrations in the deeper water. Sediment derived from construction activity within the drainage basin caused the impoundment to be turbid. The use of road deicing salts within the drainage basin produced high chloride concentrations and a temporary meromixis during the winter and early spring. The benthic fauna consisted primarily of oligochaetes, chironomids, and chaoborids. High densities of oligochaetes were present in the settling basin. Chaoborid larvae were abundant in the deep basin where low oxygen concentrations reduced the numbers of other benthic macroinvertebrates.  相似文献   

19.
A diversion system has been designed to carry the flow from East Fork of Coal Creek around the area proposed for mining at Thunder Basin Coal Company's (TBCC) Coal Creek mine in Campbell County, Wyoming. This paper describes the field and analysis procedures necessary to prepare the diversion design and impact evaluation, and the innovative concepts developed for the diversion system design to minimize impacts on downstream channel stability. Under the proposed diversion system design, water from the East Basin of Coal Creek will be diverted at two locations. At one location, flow will be impounded by a small dam and decanted by a pump through a pipeline into East Fork at the location of the second diversion. At this location, a training dike will be placed across the stream channel to divert flows into a diversion channel. Gravity flow along the diversion channel will deliver water to a playa area which will be converted into a detention basin by placing a small dam across its southern end. Flows up to the magnitude of the 24-hour 2-year peak flow will be passed directly through the detention basin into Middle Fork with negligible attenuation of flow rates. For less frequent events, water will be stored in the detention basin in order to prevent velocities in Lower Middle Fork from exceeding the maximum permissible velocity above which scouring may occur. Evaporation and seepage losses from the diversion system were estimated to be small and should be more than offset by the addition of water from the playa drainage basin into the Coal Creek drainage. Velocities predicted for the Lower Middle Fork after-the diversion is constructed are expected to be low enough that significant erosion of the channel is not expected to occur.  相似文献   

20.
ABSTRACT: While the quality of rivers has received much attention, the degradation of small streams in upland areas of watersheds has only recently been recognized as a major problem. A major cause of the problem is increases in nonpoint source pollution that accompany urban expansion. A case study is used to examine the potential for storm water detention as a means of controlling water quality in streams of small watersheds. The storm water management basin, which is frequently used to control increases in discharge rates, can also be used to reduce the level of pollutants in inflow to receiving streams. Data collected on a 148-acre site in Maryland shows that a detention basin can trap as much as 98 percent of the pollutant in the inflow. For the 11 water quality parameters, most showed reductions of at least 60 percent, depending on storm characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号