首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: Estimations of runoff volumes from urban areas can be made by the equation Q = a A σ(Pe– b), where Q is the runoff volume, a is the part of the total area A Contributing to runoff, Pe is the rainfall amount for a single event, and b is the initial rainfall losses. For the evaluation of a and b, rainfall/runoff measurements were made in five areas of sizes between 0.035 km2 and 1.450 km2. By linear regression analysis of rainfall volumes versus runoff volumes, the initial rainfall losses were found to vary from 0.38 mm to 0.70 mm for the different areas. The parts of the areas contributing to runoff were found to be proportional to the impermeable parts of the mas. The equation is applicable in urban areas with well defined paved surfaces and roofs and with a negligible amount of runoff from permeable areas.  相似文献   

2.
Computer models are a rapid, inexpensive way to identify agricultural areas with a high potential for P loss, but most models poorly simulate dissolved P release from surface-applied manures to runoff. We developed a simple approach to predict dissolved P release from manures based on observed trends in laboratory extraction of P in dairy, poultry, and swine manures with water over different water to manure ratios. The approach predicted well dissolved inorganic (R2 = 0.70) and organic (R2 = 0.73) P release from manures and composts for data from leaching experiments with simulated rainfall. However, it predicted poorly (R2 = 0.18) dissolved inorganic P concentrations in runoff from soil boxes where dairy, poultry, and swine manures had been surface-applied and subjected to simulated rainfall. Multiplying predicted runoff P concentrations by the ratio of runoff to rainfall improved the relationship between measured and predicted runoff P concentrations, but runoff P was still overpredicted for dairy and swine manures. We attributed this overprediction to immediate infiltration of dissolved P in the freely draining water of dairy and swine manure slurries upon their application to soils. Further multiplying predicted runoff dissolved inorganic P concentrations by 0.35 for dairy and 0.60 for swine manures resulted in an accurate prediction of dissolved P in runoff (R2 = 0.71). The ability of our relatively simple approach to predict dissolved inorganic P concentrations in runoff from surface-applied manures indicates its potential to improve water quality models, but field testing of the approach is necessary first.  相似文献   

3.
The potential loss of P in runoff is a function of the combined effects of fertilizer-soil interactions and climatic characteristics. In this study, we applied a Bayesian approach to experimental data to model the annualized long-term risk of P runoff following single and split P fertilizer applications using two example catchments with contrasting rainfall/runoff patterns. Split P fertilizer strategies are commonly used in intensive pasture production in Australia and our results showed that three applications of 13.3 kg P ha(-1) resulted in a greater risk of P runoff compared with a single application of 40 kg P ha(-1) when long-term surface runoff data were incorporated into a Bayesian P risk model. Splitting P fertilizer applications increased the likelihood of a coincidence of fertilizer application and runoff occurring. We found that the overall risk of P runoff is also increased in catchments where the rainfall/runoff pattern is less predictable, compared with catchments where rainfall/runoff is winter dominant. The findings of our study also question the effectiveness of current recommendations to avoid applying fertilizer if runoff is likely to occur in the next few days, as we found that total P concentrations at the half-life were still very high (18.2 and 8.2 mg P L(-1)) following single and split P treatments, respectively. Data from the current study also highlight that omitting P fertilizer on soils that already have adequate soil test P concentrations is an effective method of reducing P loss in surface runoff. If P fertilizer must be applied, we recommend less frequent applications and only during periods of the year when the risk of surface P runoff is low.  相似文献   

4.
ABSTRACT. Unit hydrographs derived by using two methods, linear programming and least squares, are compared. Test data comprise rainfall and runoff information from four storms over the North Branch Potomac River near Cumberland, Maryland. The mathematical bases of these methods for unit-hydrograph derivation are explained. The linear programming method minimizes the sum of absolute deviations, and the least squares method minimizes the sum of the squares of deviations. Computer subroutines are readily available for application of these methods. The unit hydrographs derived with the two methods are practically the same for storms 2 and 3, but differ somewhat for storms 1 and 4. However, the reconstituted direct surface runoff hydrographs are similar to those observed with the exception of the hydrograph for storm 4 which had a relatively more non-uniform rainfall excess of a considerably larger duration.  相似文献   

5.
Abstract: Quantifying the hydrologic responses to land use/land cover change and climate variability is essential for integrated sustainable watershed management in water limited regions such as the Loess Plateau in Northwestern China where an adaptive watershed management approach is being implemented. Traditional empirical modeling approach to quantifying the accumulated hydrologic effects of watershed management is limited due to its complex nature of soil and water conservation practices (e.g., biological, structural, and agricultural measures) in the region. Therefore, the objective of this study was to evaluate the ability of the distributed hydrologic model, MIKE SHE to simulate basin runoff. Streamflow data measured from an overland flow‐dominant watershed (12 km2) in northwestern China were used for model evaluation. Model calibration and validation suggested that the model could capture the dominant runoff process of the small watershed. We found that the physically based model required calibration at appropriate scales and estimated model parameters were influenced by both temporal and spatial scales of input data. We concluded that the model was useful for understanding the rainfall‐runoff mechanisms. However, more measured data with higher temporal resolution are needed to further test the model for regional applications.  相似文献   

6.
ABSTRACT: The rainfall‐runoff response of the Tygarts Creek Catchment in eastern Kentucky is studied using TOPMODEL, a hydrologic model that simulates runoff at the catchment outlet based on the concepts of saturation excess overland flow and subsurface flow. Unlike the traditional application of this model to continuous rainfall‐runoff data, the use of TOPMOEL in single event runoff modeling, specifically floods, is explored here. TOPMODEL utilizes a topographic index as an indicator of the likely spatial distribution of rainfall excess generation in the catchment. The topographic index values within the catchment are determined using the digital terrain analysis procedures in conjunction with digital elevation model (DEM) data. Select parameters in TOPMODEL are calibrated using an iterative procedure to obtain the best‐fit runoff hydrograph. The calibrated parameters are the surface transmissivity, TO, the transmissivity decay parameter, m, and the initial moisture deficit in the root zone, Sr0. These parameters are calibrated using three storm events and verified using three additional storm events. Overall, the calibration results obtained in this study are in general agreement with the results documented from previous studies using TOPMODEL. However, the parameter values did not perform well during the verification phase of this study.  相似文献   

7.
Runoff water management is among the inherent challenges which face the sustainability of the development of arid urban centers. These areas are particularly at risk from flooding due to rainfall concentration in few heavy showers. On the other hand, they are susceptible to drought. The capital of Sudan (Khartoum) stands as exemplary for these issues. Hence, this research study aims at investigating the potential of applying rainwater harvesting (RWH) in Khartoum City Center as a potential urban runoff management tool. Rapid urbanization coupled with the extension of impervious surfaces has intensified the heat island in Khartoum. Consequently, increased frequency of heat waves and dust storms during the dry summer and streets flooding during the rainy season have led to environmental, economical, and health problems. The study starts with exposing the rainfall behavior in Khartoum by investigating rainfall variability, number of raindays, distribution of rain over the season, probability of daily rainfall, maximum daily rainfall and deficit/surplus of rain through time. The daily rainfall data show that very strong falls of >30 mm occur almost once every wet season. Decreased intra- and inter-annual rainfall surpluses as well as increased rainfall concentration in the month of August have been taking place. The 30-year rainfall variability is calculated at decade interval since 1941. Increasing variability is revealed with 1981–2010 having coefficients of variation of 66.6% for the annual values and 108.8–118.0% for the wettest months (July–September). Under the aforementioned rainfall conditions, this paper then explores the potential of RWH in Khartoum City Center as an option for storm water management since the drainage system covers only 40% of the study area. The potential runoff from the 6.5 km2 center area is computed using the United States Natural Resources Conservation Services method (US-NRCS), where a weighted Curve Number (CN) of 94% is found, confirming dominant imperviousness. Rainfall threshold for runoff generation is found to be 3.3 mm. A 24,000 m3 runoff generated from a 13.1 mm rainfall (with 80% probability and one year return period) equals the drainage system capacity. An extreme rainfall of 30 mm produces a runoff equivalent to fourfold the drainage capacity. It is suggested that the former and latter volumes mentioned above could be harvested by applying the rational method from 18% and 80% rooftops of the commercial and business district area, respectively. Based on the above results, six potential sites can be chosen for RWH with a total roof catchment area of 39,558 m2 and potential rooftop RWH per unit area of 0.033 m3. These results reflect the RWH potential for effective urban runoff management and better water resources utilization. RWH would provide an alternative source of water to tackle the drought phenomenon.  相似文献   

8.
9.
Phosphorus (P) in runoff from pastures amended with poultry litter may be a significant contributor to eutrophication of lakes and streams in Georgia and other areas in the southeastern United States. The objectives of this research were to determine the effects of litter application rate and initial runoff timing on the long-term loss of P in runoff from surface-applied poultry litter and to develop equations that predict P loss in runoff under these conditions. Litter application rates of 2, 7, and 13 Mg ha(-1), and three rainfall scenarios applied to 1- x 2-m plots in a 3 x 3 randomized complete block design with three replications. The rainfall scenarios included (i) sufficient rainfall to produce runoff immediately after litter application; (ii) no rainfall for 30 d after litter application; and (iii) small rainfall events every 7 d (5 min at 75 mm h(-1)) for 30 d. Phosphorus loss was greatest from the high litter rate and immediate runoff treatments. Nonlinear regression equations based on the small plot study produced fairly accurate (r(2) = 0.52-0.62) prediction of P concentrations in runoff water from larger (0.75 ha) fields over a 2-yr period. Predicted P concentrations were closest to observed values for events that occurred shortly after litter application, and the relative error in predictions increased with time after litter application. In addition, previously developed equations relating soil test P levels to runoff P concentrations were ineffective in the presence of surface-applied litter.  相似文献   

10.
ABSTRACT: A synthetic triangular hyetograph for a large data base of Texas rainfall and runoff is needed. A hyetograph represents the temporal distribution of rainfall intensity at a point or over a watershed during a storm. Synthetic hyetographs are estimates of the expected time distribution for a design storm and principally are used in small watershed hydraulic structure design. A data base of more than 1,600 observed cumulative hyetographs that produced runoff from 91 small watersheds (generally less than about 50 km2) was used to provide statistical parameters for a simple triangular shaped hyetograph model. The model provides an estimate of the average hyetograph in dimensionless form for storm durations of 0 to 24 hours and 24 to 72 hours. As a result of this study, the authors concluded that the expected dimensionless cumulative hyetographs of 0 to 12 hour and 12 to 24 hour durations were sufficiently similar to be combined with minimal information loss. The analysis also suggests that dimensionless cumulative hyetographs are independent of the frequency level or return period of total storm depth and thus are readily used for many design applications. The two triangular hyetographs presented are intended to enhance small watershed design practice in applicable parts of Texas.  相似文献   

11.
ABSTRACT: The objectives of this paper were to test the ability of various design storm distributions to simulate the actual rainfall pattern and to compare the runoff rates used in the design of stormwater management devices in the State of Florida using continuous simulation approach. The analyses were performed for four gaged stations to evaluate the applicability of design storm distributions in different parts of the State of Florida. The approach used in this study compared the peak runoff rates from design storms based on the various distributions to those that would result from actual rainfall events. A series of continuous runoff rates were developed through the use of actual fifteen-minute recorded rainfall data, Horton type infiltration decay and recovery rate, and a continuous simulation model. The runoff rates were analyzed using frequency distributions to obtain peak runoff rates associated with different return periods based on the assumption that the continuous simulation approach closely predicts the actual runoff rates from the gaged stations. The results show that the behavior of the design storm distributions varies for different watershed characteristics in different parts of the state. The study also suggests that in general the Florida Department of Transportation and the Suwanne River Water Management (FDOT/ SRWMD) distributions appeared to agree with the continuous simulation results.  相似文献   

12.
采用人工模拟降雨和室内分析相结合的方法,研究了黄土区不同耕作措施对降雨入渗的影响。结果表明:①不同耕作管理措施对降雨入渗的影响效用不同,在相同雨强和坡度下,降雨入渗速率表现为:耙耱地〉人工掏挖〉直线坡,在中小雨强和较短滞后情况下,这种情况表现更为显著;②不同耕作管理措施对降雨产流的影响效用不同,在相同雨强和坡度下,产流滞后表现为:耙耱地〉人工掏挖〉直线坡,在中小雨强和较短滞后情况下,这种情况表现更为显著;③根据水量平衡原理,得出了不同耕作管理措施不同坡度下入渗及产流滞后随雨强的变化关系式。上述结果为黄土高原坡耕地水土流失的治理和管理,提供了一定的理论依据。  相似文献   

13.
ABSTRACT: Existing discrete, linear rainfall-runoff models generally require the effective rainfall of a given storm as the input for computing the runoff hydrograph. This paper proposes a method for estimating, simultaneously, the optimal values of model parameters and the rainfall losses frem the measured rainfall hyetograph and the runoff hydrograph. The method involves an ARMA model for the rainfall-runoff process and a nonlinear iterative technique. The number of model parameters to be estimated for the ARMA model is much less than the unit hydrograph model. Applications of the model to three different watersheds show that the computed runoff hydrographs agree well with the measurements.  相似文献   

14.
ABSTRACT: An approach is developed for incorporating the uncertainty of parameters for estimating runoff in the design of polder systems in ungaged watersheds. Monte Carlo Simulation is used to derive a set of realizations of streamflow hydrographs for a given design rainstorm using the U. S. Soil Conservation Service (SCS) unit hydrograph model. The inverse of the SCS curve number, which is a function of the antecedent runoff condition in the SCS model, is the random input in the Monte Carlo Simulation. Monte Carlo realizations of streamfiow hydrographs are used to simulate the performance of a polder flood protection system. From this simulation the probability of occurrence of flood levels for a particular hydraulic design may be used to evaluate its effectiveness. This approach is demonstrated for the Pluit Polder flood protection system for the City of Jakarta, Indonesia. While the results of the application indicate that uncertainty in the antecedent runoff condition is important, the effects of uncertainty in rainfall data, in additional runoff parameters, such as time to peak, in the hydraulic design, and in the rainfall-runoff model selected should also be considered. Although, the SCS model is limited to agricultural conditions, the approach presented herein may be applied to other flood control systems if appropriate storm runoff models are selected.  相似文献   

15.
Spence, Porchè L., Deanna L. Osmond, Wesley Childres, Joshua L. Heitman, and Wayne P. Robarge, 2012. Effects of Lawn Maintenance on Nutrient Losses Via Overland Flow During Natural Rainfall Events. Journal of the American Water Resources Association (JAWRA) 48(5): 909‐924. DOI: 10.1111/j.1752‐1688.2012.00658.x Abstract: A sampling system was used to evaluate the effect of residential lawn management on nutrient losses via overland flow generated during natural rainfall events from three residential landscapes: a high maintenance fescue lawn (HMFL), a low maintenance fescue lawn (LMFL), and a mixed forested residential landscape (FRL). A sampling system was located in designated areas within each landscape such that 100% of the runoff follows natural flow paths to the outlet ports and collects in sterile Nalgene® B3 media bags (Thermo Fisher Scientific, Rochester, NY). A rainfall event was defined as producing ≥2.54 mm of water. A total of 87 rainfall events occurred during a 20‐month monitoring period. The total runoff volume collected from the LMFL was higher than from the HMFL and FRL, but on average <1% of the total rainfall was collected from the three landscapes. Mean nitrate concentrations from each lawn did not exceed 0.6 mg N/l. Nutrient unit area losses from the HMFL, LMFL, and FRL were 1,000 times less than fertilizer and throughfall inputs, which were due to the presence of well‐structured soils (low bulk densities) with high infiltration rates. This study demonstrated that the frequency of runoff, total runoff volumes, and nutrient losses during natural rainfall events are lower from highly maintained (i.e., irrigation, fertilizer application, and reseeding) densely uniform manicured lawns than low maintenance lawns and forested residential landscapes.  相似文献   

16.
Abstract: Urban impervious surfaces absorb and store thermal energy, particularly during warm summer months. During a rainfall/runoff event, thermal energy is transferred from the impervious surface to the runoff, causing it to become warmer. As this higher temperature runoff enters receiving waters, it can be harmful to coldwater habitat. In an urban watershed, impervious asphalt surfaces (roads, parking lots, and driveways) and pervious residential lawns comprise a significant portion of the watershed area. A paired asphalt‐turfgrass sod plot was constructed to compare the thermal runoff characteristics between asphalt and turfgrass sod surfaces, to identify meteorological variables that influence these thermal characteristics, and to evaluate evaporative heat loss for runoff from asphalt surfaces. Rainfall simulations were conducted during the summers of 2004 and 2005 under a range of climatic conditions. Asphalt surface temperatures immediately prior to rainfall simulations averaged 43.6°C and decreased an average of 12.3°C over 60 min as rain cooled the surface. In contrast, presimulation sod surface temperatures averaged only 23.3°C and increased an average of 1.3°C throughout the rainfall events. Heat transferred from the asphalt to the runoff resulted in initial asphalt runoff temperatures averaging 35.0°C that decreased by an average of 4.1°C at the end of the event. Sod runoff temperatures averaged only 25.5°C and remained fairly constant throughout the simulations. Multivariable regression equations were developed to predict (1) average asphalt surface temperature (R2 = 0.90) and average asphalt runoff temperature (R2 = 0.92) as a function of solar radiation, rain temperature, and wind speed, and (2) average sod surface temperature (R2 = 0.85) and average sod runoff temperature (R2 = 0.94) as a function of solar radiation, rain temperature, rain intensity, and wind speed. Based on a heat balance analysis, existing evaporation equations developed from studies on lakes were not adequate to predict evaporation from runoff on a heated impervious surface. The combined heat from the asphalt and sod plots was an average of 38% less than the total heat had the total area consisted solely of asphalt.  相似文献   

17.
ABSTRACT: Genetic Programming (GP) is a domain‐independent evolutionary programming technique that evolves computer programs to solve, or approximately solve, problems. To verify GP's capability, a simple example with known relation in the area of symbolic regression, is considered first. GP is then utilized as a flow forecasting tool. A catchment in Singapore with a drainage area of about 6 km2 is considered in this study. Six storms of different intensities and durations are used to train GP and then verify the trained GP. Analysis of the GP induced rainfall and runoff relationship shows that the cause and effect relationship between rainfall and runoff is consistent with the hydrologic process. The result shows that the runoff prediction accuracy of symbolic regression based models, measured in terms of root mean square error and correlation coefficient, is reasonably high. Thus, GP induced rainfall runoff relationships can be a viable alternative to traditional rainfall runoff models.  相似文献   

18.
ABSTRACT: Remotely sensed soil moisture data measured during the Southern Great Plains 1997 (SGP97) experiment in Oklahoma were used to characterize antecedent soil moisture conditions for the Soil Conservation Service (SCS) curve number method. The precipitation‐adjusted curve number and the soil moisture were strongly related (r2= 0.70). Remotely sensed soil moisture fields were used to adjust the curve numbers and the runoff estimates for five watersheds, in the Little Washita watershed; the results ranged from 2.8 km2 to 601.6 km2. The soil moisture data were applied at two spatial scales, a finer one (800 m) measuring spatial resolution and a coarser one (28 km). The root mean square error (RMSE) and the mean absolute error (MAE) of the runoff estimated by the standard SCS method was reduced by nearly 50 percent when the 800 m soil moisture data were used to adjust the curve number. The coarser scale soil moisture data also significantly reduced the error in the runoff predictions with 41 percent and 28 percent reductions in MAE and RMSE, respectively. The results suggest that remote sensing of soil moisture, when combined with the SCS method, can improve rainfall runoff predictions at a range of spatial scales.  相似文献   

19.
ABSTRACT Significant parameters for predicting thunderstorm runoff from small semiarid watersheds are determined using data from the Walnut Gulch watershed in southern Arizona. Based on these data, thunderstorm rainfall is dominant over watershed parameters for predicting runoff from multiple linear regression equations. In some cases antecedent moisture added significantly to the models. A technique is developed for estimating precision of predicted values from multiple linear regression equations. The technique involves matrix methods in estimating the variance of mean predicted values from a regression equation. The estimated variance of the mean predicted value is then used to estimate the variance of an individual predicted value. A computer program is developed to implement these matrix methods and to form confidence limits on predicted values based on both a normality assumption and the Chebyshev inequality.  相似文献   

20.
Extreme rainfall frequency analysis provides one means to predict, within certain limits of probability, the average time interval between the recurrences of storms of a specified duration and magnitude. This in turn furnishes the forest hydrologist a valuable tool for engineering design and runoff and erosion forecast. A modification in the application of the annual maximum and annual exceedance series analysis described by V. T. Chow can, for special purposes, lead to an even more useful estimate of extreme events on a seasonal basis. This can be particularly important on small forested headwater watersheds where the runoff response to extreme rainfall may vary considerably with seasonal changes in canopy cover and soil moisture characteristics. Although the application of data covering a relatively short period of record has produced some inconsistencies among the frequency diagrams, under certain circumstances for short-term recurrence interval forecast and for non-critical application the analysis of extreme rainfall frequency from less than 20 years data seems justified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号