首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 603 毫秒
1.
Abstract: Regional curves, which relate bankfull channel dimensions and discharge to watershed drainage area, are developed to aid in identifying the bankfull stage in ungaged watersheds, and estimating the bankfull discharge and dimensions for river studies and natural channel design applications. This study assessed 26 stable stream reaches in two hydro‐physiographic regions of the Florida Coastal Plain: the Northwest Florida Coastal Plain (NWFCP) and the North Florida Coastal Plain (NFCP). Data from stream reaches in Georgia and Alabama were also used to develop the Florida regional curves, since they are located in the same hydro‐physiographic region. Reaches were selected based on the presence of U.S. Geological Survey gage stations and indicators of limited watershed development (e.g., <10% impervious surface). Analyses were conducted to determine bankfull channel dimensions, bankfull discharge, average channel slope, and Rosgen stream classification. Based on these data, significant relationships were found between bankfull cross‐sectional area, width, mean depth, and discharge as a function of drainage area for both regions. Data from this study suggested that bankfull discharges and channel dimensions were larger from NWFCP streams than from Coastal Plain streams in North Carolina and Maryland. Bankfull discharges were similar between NFCP and Georgia coastal plain streams; therefore, the data were combined into one regional curve. In addition, the data were stratified by Rosgen stream type. This stratification strengthened the relationships of bankfull width and mean depth as a function of drainage area.  相似文献   

2.
Brockman, Ruth R., Carmen T. Agouridis, Stephen R. Workman, Lindell E. Ormsbee, and Alex W. Fogle, 2012. Bankfull Regional Curves for the Inner and Outer Bluegrass Regions of Kentucky. Journal of the American Water Resources Association (JAWRA) 48(2): 391‐406. DOI: 10.1111/j.1752‐1688.2011.00621.x Abstract: Bankfull regional curves that relate channel dimensions and discharge to watershed drainage area are useful tools for assisting in the correct identification of bankfull elevation and in stream restoration and reconstruction. This study assessed 28 stable streams located in two physiographic regions of Kentucky: the Inner Bluegrass and the Outer Bluegrass. Bankfull channel dimensions, discharge, and return period as well as average channel slope, median bed material size, sinuosity, Rosgen stream classification, and percent impervious area were determined. Significant relationships were found between drainage area and the bankfull characteristics of cross‐sectional area, width, mean depth, and discharge for both the Inner Bluegrass and Outer Bluegrass regions (α = 0.05). It was also found that the percent impervious area in a watershed had minimal effect on bankfull dimensions, which is attributed to the well‐vegetated nature of the streambanks, cohesive streambank materials, and bedrock control. No significant differences between any of the Inner Bluegrass and Outer Bluegrass regional curves were found (α = 0.05). Comparisons were made between the Inner Bluegrass and Outer Bluegrass curves and others developed in karst‐influenced areas in the Eastern United States. Although few significant differences were found between the regional curves for bankfull discharge and width, a number of the curves differed with regards to bankfull cross‐sectional area and mean depth.  相似文献   

3.
Abstract: Consistency in determining Rosgen stream types was evaluated in 12 streams within the John Day Basin, northeastern Oregon. The Rosgen classification system is commonly used in the western United States and is based on the measurement of five stream attributes: entrenchment ratio, width‐to‐depth ratio, sinuosity, slope, and substrate size. Streams were classified from measurements made by three monitoring groups, with each group fielding multiple crews that conducted two to three independent surveys of each stream. In only four streams (33%) did measurements from all crews in all monitoring groups yield the same stream type. Most differences found among field crews and monitoring groups could be attributed to differences in estimates of the entrenchment ratio. Differences in entrenchment ratio were likely due to small discrepancies in determination of maximum bankfull depth, leading to potentially large differences in determination of Rosgen’s flood‐prone width and consequent values of entrenchment. The result was considerable measurement variability among crews within a monitoring group, and because entrenchment ratio is the first discriminator in the Rosgen classification, differences in the assessment of this value often resulted in different determination of primary stream types. In contrast, we found that consistently evaluated attributes, such as channel slope, rarely resulted in any differences in classification. We also found that the Rosgen method can yield nonunique solutions (multiple channel types), with no clear guidance for resolving these situations, and we found that some assigned stream types did not match the appearance of the evaluated stream. Based on these observations we caution the use of Rosgen stream classes for communicating conditions of a single stream or as strata when analyzing many streams due to the reliance of the Rosgen approach on bankfull estimates which are inherently uncertain.  相似文献   

4.
Regional curves are empirical relationships that can help identify the bankfull stage in ungaged watersheds and aid in designing the riffle dimension in stream restoration projects. Bankfull regional curves were developed from gage stations with drainage areas less than 102 mi2 (264.2 km2) for the Alleghany Plateau/Valley and Ridge (AP/VR), Piedmont, and Coastal Plain regions of Maryland. The AP/VR regions were combined into one region for this project. These curves relate bankfull discharge, cross‐sectional area, width, and mean depth to drainage area within the same hydro‐physiographic region (region with similar rainfall/runoff relationship). The bankfull discharge curve for the Coastal Plain region was further subdivided into the Western Coastal Plain (WCP) and Eastern Coastal Plain (ECP) region due to differences in topography and runoff. Results show that the Maryland Piedmont yields the highest bankfull discharge rate per unit drainage area, followed by the AP/VR, WCP, and ECP. Likewise, the Coastal Plain and AP/VR streams have less bankfull cross‐sectional area per unit drainage area than the Piedmont. The average bankfull discharge return interval across the three hydro‐physiographic regions was 1.4 years. The Maryland regional curves were compared to other curves in the eastern United States. The average bankfull discharge return interval for the other studies ranged from 1.1 to 1.8 years.  相似文献   

5.
6.
Thornton, Christopher I., Anthony M. Meneghetti, Kent Collins, Steven R. Abt, and S. Michael Scurlock, 2011. Stage‐Discharge Relationships for U‐, A‐, and W‐Weirs in Un‐submerged Flow Conditions. Journal of the American Water Resources Association (JAWRA) 47(1):169‐178. DOI: 10.1111/j.1752‐1688.2010.00501.x Abstract: Instream rock weirs are routinely placed into stream systems to provide grade control, reduce streambank erosion, provide energy dissipation, and allow fish passage. However, design and performance criteria for site specific applications are often anecdotal or qualitative in nature, and based upon the experience of the design team. A study was conducted to develop generic state‐discharge relationships for U‐, A‐, and W‐weirs. A laboratory testing program was performed in which scaled, near‐prototype U‐, A‐, and W‐rock weir structures were constructed in 11 configurations. Each configuration encompassed a unique weir shape, bed material, and/or bed slope. Thirty‐one tests were conducted in which each structure was subjected to a sequence of predetermined discharges that minimally included the equivalent of 1/3 bankfull, 2/3 bankfull, and bankfull conditions. All tests were performed in subcritical, un‐submerged flow conditions. Stage‐discharge relationships were developed using multivariant, power regression techniques for each of the U‐, A‐, and W‐rock weirs as a function of the effective weir length, flow depth, mean weir height, rock size, and discharge coefficient. Unique coefficient expressions were developed for each weir shape, and a single discharge coefficient was proposed applicable to the weirs for determining the channel stage‐discharge rating.  相似文献   

7.
ABSTRACT: Stream channel stability is affected by peak flows rather than average annual water yield. Timber harvesting and other land management activities that contribute to soil compaction, vegetation removal, or increased drainage density can increase peak discharges and decrease the recurrence interval of bankfull discharges. Increased peak discharges can cause more frequent movement of large streambed materials, leading to more rapid stream channel change or instability. This study proposes a relationship between increased discharge and channel stability, and presents a methodology that can be used to evaluate stream channel stability thresholds on a stream reach basis. Detailed surveys of the channel cross section, water surface slope, streambed particle size distribution, and field identification of bankfull stage are used to estimate existing bankfull flow conditions. These site specific stream channel characteristics are used in bed load movement formulae to predict critical flow conditions for entrainment of coarse bed material (D84 size fraction). The “relative bed stability” index, defined as the ratio of critical flow condition to the existing condition at bankfull discharge, can predict whether increased peak discharges will exceed stream channel thresholds.  相似文献   

8.
Channel dimensions (width and depth) at varying flows influence a host of instream ecological processes, as well as habitat and biotic features; they are a major consideration in stream habitat restoration and instream flow assessments. Models of widths and depths are often used to assess climate change vulnerability, develop endangered species recovery plans, and model water quality. However, development and application of such models require specific skillsets and resources. To facilitate acquisition of such estimates, we created a dataset of modeled channel dimensions for perennial stream segments across the conterminous United States. We used random forest models to predict wetted width, thalweg depth, bankfull width, and bankfull depth from several thousand field measurements of the National Rivers and Streams Assessment. Observed channel widths varied from <5 to >2000 m and depths varied from <2 to >125 m. Metrics of watershed area, runoff, slope, land use, and more were used as model predictors. The models had high pseudo R2 values (0.70–0.91) and median absolute errors within ±6% to ±21% of the interquartile range of measured values across 10 stream orders. Predicted channel dimensions can be joined to 1.1 million stream segments of the 1:100 K resolution National Hydrography Dataset Plus (version 2.1). These predictions, combined with a rapidly growing body of nationally available data, will further enhance our ability to study and protect aquatic resources.  相似文献   

9.
Procopio, Nicholas A., 2010. Hydrologic and Morphologic Variability of Streams With Different Cranberry Agriculture Histories, Southern New Jersey, United States. Journal of the American Water Resources Association (JAWRA) 46(3):527-540. DOI: 10.1111/j.1752-1688.2010.00432.x Abstract: The creation of reservoirs and the modification of stream channels are common practices used to facilitate the efficient production of cranberries. The potential impacts to hydrologic and geomorphic aspects of streamflow and channel structure have not been adequately assessed. In this study, the streamflow regime of 12 streams and the channel morphologies of 11 streams were compared for study sites in the Pinelands region of New Jersey with upstream active-cranberry bogs, upstream abandoned-cranberry bogs, and basins with no apparent agricultural history. Flow regime metrics included measures of low-flow, median-flow, and bankfull discharge, two measures of streamflow variability (spread and a modified Richards-Baker Flashiness index), and the frequency of overbank flooding. Stream-channel morphology metrics included average bank slope, average bankfull width, average bankfull depth, average bankfull width-to-depth ratio, and average bankfull area. No significant differences between stream types were apparent for any of the metrics. Basin-area normalized streamflow values of all 12 study sites were highly correlated to each other. Significant relationships existed between some of the flow-regime and channel-morphology metrics. Due to the lack of significant differences between stream types, it appears that neither historic nor current cranberry agricultural practices considerably influence flow regimes or the channel morphology of streams in the New Jersey Pinelands.  相似文献   

10.
ABSTRACT: Single‐barrel culverts are a common means of roadway crossings for smaller streams. While this culvert design provides an economical solution for a crossing, the adverse effects of conveying the stream through a single opening can be far reaching. The single‐barrel culvert is typically sized for a design storm much greater than the channel forming discharge. This oversizing causes an interruption of the normal flow patterns and sediment transport for the system. Shallow depths at low flow in the pipe and perching at the outlet can impede fish passage. Multicell culverts (where the main culvert at the channel invert is sized for bankfull discharge, and additional pipes are placed at the floodplain elevation to convey overbank flow up to the design discharge) have been recommended as a best management practice to minimize erosion and improve fish passage. This flume study scaled a prototype single‐barrel culvert to both a single‐cell model, and a multicell design to compare outlet scour and flow depths within the culvert. The results provide designers and planners with evidence of the benefits of multicell culverts to justify the higher cost of installation compared to single‐barrel culverts.  相似文献   

11.
ABSTRACT: Loading functions are proposed as a general model for estimating monthly nitrogen and phosphorus fluxes in stream flow. The functions have a simple mathematical structure, describe a wide range of rural and urban nonpoint sources, and couple surface runoff and ground water discharge. Rural runoff loads are computed from daily runoff and erosion and monthly sediment yield calculations. Urban runoff loads are based on daily nutrient accumulation rates and exponential wash off functions. Ground water discharge is determined by lumped parameter unsaturated and saturated zone soil moisture balances. Default values for model chemical parameters were estimated from literature values. Validation studies over a three-year period for an 850 km2 watershed showed that the loading functions explained at least 90 percent of the observed monthly variation in dissolved and total nitrogen and phosphorus fluxes in stream flow. Errors in model predictions of mean monthly fluxes were: dissolved phosphorus - 4 percent; total phosphorus - 2 percent; dissolved nitrogen - 18 percent; and total nitrogen - 28 percent. These results were obtained without model calibration.  相似文献   

12.
Water quality and stream habitat in agricultural watersheds are under greater scrutiny as hydrologic pathways are altered to increase crop production. Agricultural drainage ditches function to remove water quickly from farmed landscapes. Conventional ditch designs lack the form and function of natural stream systems and tend to be unstable and provide inadequate habitat. In October of 2009, 1.89 km of a conventional drainage ditch in Mower County, Minnesota, was converted to an alternative system with a two‐stage channel to investigate the improvements in water quality, stability, and habitat. Longitudinal surveys show a 12‐fold increase in the pool‐riffle formation. Cross‐sectional surveys show an average increase in bankfull width of approximately 10% and may be associated to an increased frequency in large storm events. The average increase in bankfull depth was estimated as 18% but is largely influenced by pool formation. Rosgen Stability Analyses show the channel to be highly stable and the banks at a low risk of erosion. The average bankfull recurrence interval was estimated to be approximately 0.30 years. Overall, the two‐stage ditch design demonstrates an increase in fluvial stability, creating a more consistent sediment budget, and increasing the frequency of important instream habitat features, making this best management practice a viable option for addressing issues of erosion, sediment imbalance, and poor habitat in agricultural drainage systems.  相似文献   

13.
Mulvihill, Christiane I. and Barry P. Baldigo, 2012. Optimizing Bankfull Discharge and Hydraulic Geometry Relations for Streams in New York State. Journal of the American Water Resources Association (JAWRA) 48(3): 449-463. DOI: 10.1111/j.1752-1688.2011.00623.x Abstract: This study analyzes how various data stratification schemes can be used to optimize the accuracy and utility of regional hydraulic geometry (HG) models of bankfull discharge, width, depth, and cross-sectional area for streams in New York. Topographic surveys and discharge records from 281 cross sections at 82 gaging stations with drainage areas of 0.52-396 square miles were used to create log-log regressions of region-based relations between bankfull HG metrics and drainage area. The success with which regional models distinguished unique bankfull discharge and HG patterns was assessed by comparing each regional model to those for all other regions and a pooled statewide model. Gages were also stratified (grouped) by mean annual runoff (MAR), Rosgen stream type, and water-surface slope to test if these models were better predictors of HG to drainage area relations. Bankfull discharge models for Regions 4 and 7 were outside the 95% confidence interval bands of the statewide model, and bankfull width, depth, and cross-sectional area models for Region 3 differed significantly (p < 0.05) from those of other regions. This study found that statewide relations between drainage area and HG were strongest when data were stratified by hydrologic region, but that co-variable models could yield more accurate HG estimates in some local regional curve applications.  相似文献   

14.
Regional curves relate drainage area to the bankfull channel characteristics discharge, cross‐sectional area, width, and mean depth. These curves are used for a variety of purposes, including aiding in the field identification of bankfull elevation and in the natural channel design process. When developing regional curves, the degree to which landform, geology, climate, and vegetation influence stream systems within a single physiographic province may not be fully considered. This study examined the use of the U.S. Geological Survey's Hydrologic Landscape Regions (HLR), as well as data from 2,856 independent sites throughout the contiguous United States (U.S.), to develop a set of regional curves (bankfull discharge, cross‐sectional area, width, and mean depth) for (1) the contiguous U.S., (2) each of the 20 HLRs, (3) each of the eight physiographic divisions, (4) 22 of the 25 physiographic provinces, and (5) individual HLRs within the physiographic provinces. These regional curves were then compared to each other, as well as those from the literature. Regional curves developed for individual HLRs, physiographic divisions, and physiographic provinces tended to outperform the contiguous U.S. indicating increased stratification was beneficial. Further stratifying physiographic provinces by HLR markedly improved regional curve reliability. Use of HLR as a basis of regional curve development, rather than physiographic region alone, may allow for the development of more robust regional curves.  相似文献   

15.
ABSTRACT: The model bankfull discharge recurrence interval (annual series) (Ta) in streams has been approximated at a 1.5‐year flow event. This study tests the linkage between regional factors (climate, physiography, and ecoregion) and the frequency of bank‐full discharge events in the Pacific Northwest (PNW). Patterns of Ta were found to be significant when stratified by EPA Ecoregion. The mean value for Ta in the PNW is 1.4 years; however, when the data is stratified by ecoregion, the humid areas of western Oregon and Washington have a mean value of 1.2 years, while the dryer areas of Idaho and eastern Oregon and Washington have a mean value of 1.4 to 1.5 years. Among the four factors evaluated, vegetation association and average annual precipitation are the primary factors related to channel form and Ta. Based on the results of the Ta analyses, regional hydraulic geometry relationships of streams were developed for the PNW, which relate variables, such as bank‐full cross‐sectional area, width, depth, and velocity, to bankfull discharge and drainage area. The verification of Ta values, combined with the development of regional hydraulic geometry relationships, provides geographically relevant information that will result in more accurate estimates of hydraulic geometry variables in the PNW.  相似文献   

16.
Huang, Jung-Chen, William J. Mitsch, and Andrew D. Ward, 2010. Design of Experimental Streams for Simulating Headwater Stream Restoration. Journal of the American Water Resources Association (JAWRA) 1-15. DOI: 10.1111/j.1752-1688.2010.00467.x Abstract: Headwater streams flowing through agricultural fields in the midwestern United States have been extensively modified to accommodate subsurface drainage systems, resulting in deepened, straightened, and widened streams. To restore these headwater streams, partial or total reconstruction of channels is frequently attempted. There are different approaches to reconstructing the channel, yet there is little evidence that indicates which promises more success and there has been no experimental work to evaluate these approaches. This study designs three experimental channels – two-stage, self-design, and straightened channels – on a human-created swale at the Olentangy River Wetland Research Park, Columbus, Ohio, for long-term evaluation of headwater stream evolution after restoration. The swale receives a continuous flow of pumped river water from upstream wetlands. Using streamflow and stage data for the past 12 years, a channel-forming discharge of 0.18 m3/s was estimated from bankfull discharge, effective discharge, and recurrence interval. These stream channels, after construction, will be monitored to evaluate physical, chemical, and biological responses to different channels over a decade-long experiment. We hypothesize that the three stream restoration designs will eventually evolve to a similar channel form but with different time periods for convergence. Monitoring the frequency and magnitude of changes over at least 10 years is needed to document the most stable restored channel form.  相似文献   

17.
ABSTRACT: Hydraulic geometry relationships, or regional curves, relate bankfull stream channel dimensions to watershed drainage area. Hydraulic geometry relationships for streams throughout North Carolina vary with hydrology, soils, and extent of development within a watershed. An urban curve that is the focus of this study shows the bankfull features of streams in urban and suburban watersheds throughout the North Carolina Piedmont. Seventeen streams were surveyed in watersheds that had greater than 10 percent impervious cover. The watersheds had been developed long enough for the streams to redevelop bankfull features, and they had no major impoundments. The drainage areas for the streams ranged from 0.4 to 110.3 square kilometers. Cross‐sectional and longitudinal surveys were conducted to determine the channel dimension, pattern, and profile of each stream and power functions were fitted to the data. Comparisons were made with regional curves developed previously for the rural Piedmont, and enlargement ratios were produced. These enlargement ratios indicated a substantial increase in the hydraulic geometry for the urban streams in comparison to the rural streams. A comparison of flood frequency indicates a slight decrease in the bankfull discharge return interval for the gaged urban streams as compared to the gaged rural streams. The study data were collected by North Carolina State University (NCSU), the University of North Carolina at Charlotte (UNC), and Charlotte Storm Water Services. Urban regional curves are useful tools for applying natural channel design in developed watersheds. They do not, however, replace the need for field calibration and verification of bankfull stream channel dimensions.  相似文献   

18.
River floodplains provide critical habitat for a wide range of animal and plant species and reduce phosphorus and nitrogen loads in streams. It has been observed that baseflow‐dominated streams flowing through wetlands are commonly at or near bankfull and overflow their banks much more frequently than other streams. However, there is very little published quantitative support for this observation. The study focuses on a 1‐km reach of Black Earth Creek, a stream in the Midwestern United States (U.S.). We used one‐dimensional hydraulic modeling to estimate bankfull discharge at evenly spaced stream cross sections, and two‐dimensional modeling to quantitate the extent of wetland inundation as a function of discharge. We then used historical streamflow data from two U.S. Geological Survey gaging stations to quantitate the frequency of wetland inundation. For the with‐sediment case, the frequency of overbank conditions at the 38 cross sections in the wetland ranged from 3 to 85 days per year and averaged 43 days per year. Ten percent of the wetland was inundated for an average of 35 days per year. For the without‐sediment case, the frequency of overbank conditions ranged from 2.6 to 48 days per year and averaged 14 days per year. Also, 10% of the wetland was inundated for an average of 25 days per year. These unusually high rates of floodplain inundation are likely due in part to the very low stream gradient and shallow depths of overbank flow.  相似文献   

19.
ABSTRACT: Regional average evapotranspiration estimates developed by water balance techniques are frequently used to estimate average discharge in ungaged streams. However, the lower stream size range for the validity of these techniques has not been explored. Flow records were collected and evaluated for 16 small streams in the Southern Appalachians to test whether the relationship between average discharge and drainage area in streams draining less than 200 acres was consistent with that of larger basins in the size range (> 10 square miles) typically gaged by the U.S. Geological Survey (USGS). This study was designed to evaluate predictors of average discharge in small ungaged streams for regulatory purposes, since many stream regulations, as well as recommendations for best management practices, are based on measures of stream size, including average discharge. The average discharge/drainage area relationship determined from gages on large streams held true down to the perennial flow initiation point. For the southern Appalachians, basin size corresponding to perennial flow is approximately 19 acres, ranging from 11 to 32 acres. There was a strong linear relationship (R2= 0.85) between average discharge and drainage area for all streams draining between 16 and 200 acres, and the average discharge for these streams was consistent with that predicted by the USGS Unit Area Runoff Map for Georgia. Drainage area was deemed an accurate predictor of average discharge, even in very small streams. Channel morphological features, such as active channel width, cross‐sectional area, and bankfull flow predicted from Manning's equation, were not accurate predictors of average discharge. Monthly baseflow statistics also were poor predictors of average discharge.  相似文献   

20.
Geomorphic, hydraulic and hydrologic principles are applied in the design of a stable stream channel for a badly disturbed portion of Badger Creek, Colorado, and its associated riparian and meadow complexes. The objective is to shorten the period of time required for a channel in coarse alluvium to recover from an impacted morphologic state to a regime condition representative of current watershed conditions. Channel geometry measurements describe the stream channel and the normal bankfull stage in relatively stable reaches. Critical shear stress equations were used to design a stable channel in noncohesive materials with dimensions which approximate those of less disturbed reaches. Gabion controls, spaced at approximately 300 m intervals, are recommended to help reduce the chance of lateral migration of the newly constructed channel. Controls are designed to allow for some vertical adjustment of the channel bed following increased bank stability due to revegetation. The flood plain is designed to dissipate flood flow energy and discourage multiple flood channels. The channel has approximately a 90 percent chance of remaining stable the first two years following construction, the time estimated for increased stability to occur due to revegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号