首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Article 4.1(F) of the Framework Convention on Climate Change commits all parties to take climate change considerations into account, to the extent feasible, in relevant social, economic and environmental policies and actions and to employ methods such as impact assessments to minimize adverse effects of climate change. This could be achieved by,inter alia, incorporating climate change risk assessment into development planning processes i.e. relating climatic change to issues of habitability and sustainability. Adaptation is an ubiquitous and beneficial natural and human strategy. Future adaptation (or, better, adjustment) to climate is inevitable at the least to decrease the vulnerability to current climatic impacts. The urgent issue is the mismatch between the predictions ofglobal climatic change and the need for information onlocal to regional change in order to develop adaptation strategies. Mitigation efforts are essential since the more successful mitigation activities are, the less need there will be for adaptation responses. Moreover, mitigation responses can be global (e.g. a uniform percentage reduction in greenhouse gas emissions) while adaptation responses will be local to regional in character and therefore depend upon confident predictions of regional climatic change. The dilemma facing policymakers is that scientists have considerable confidence in likely global climatic changes but virtually zero confidence in regional changes. Mitigation and adaptation strategies relevant to climatic change can most usefully be developed in the context of sound understanding of climate, especially the near-surface continental climate, permitting discussion of societally relevant issues. Unfortunately, climate models cannot yet deliver this type of regionally and locationally specific prediction and some aspects of current research even seem to indicate increased uncertainty. These topics are explored in this paper using the specific example of the prediction of land-surface climate changes.  相似文献   

2.
This paper examines the risks associated with forest insect outbreaks in a changing climate from biological and forest management perspectives. Two important Canadian insects were considered: western spruce budworm (WSBW; Choristoneura occidentalis Freeman, Lepidoptera: Tortricidae), and spruce bark beetle (SBB; Dendroctonus rufipennis Kirby, Coleoptera: Curculionidae). This paper integrates projections of tree species suitability, pest outbreak risk, and bio-economic modelling.Several methods of estimating pest outbreak risk were investigated. A simple climate envelope method based on empirically derived climate thresholds indicates substantial changes in the distribution of outbreaks in British Columbia for two climate scenarios and both pests. A “proof of concept” bio-economic model, to inform forest management decisions in a changing climate, considers major stand-level harvest decision factors, such as preservation of old-growth forest, and even harvest flow rates in the presence of changing tree species suitability and outbreak risk. The model was applied to data for the Okanagan Timber Supply Area and also the entire Province of British Columbia.At the provincial level, the model determined little net timber production impact, depending on which of two climate scenarios was considered. Several potentially important factors not considered in this first version of the model are discussed, which indicates that impact may be underestimated by this preliminary study. Despite these factors, negative impacts were projected at the Okanagan Timber Supply Area level for both scenarios.Policy implications are described as well as guidance for future work to determine impacts of climate change on future distribution and abundance of forest resources.  相似文献   

3.
Phenological shifts are widely reported for different species as a response to climate change. Still, the efficiency of this mechanism is questioned because of the accelerated rate of change and the different change patterns of various climate parameters that may cause mismatches. Here, using loggerhead sea turtles (Caretta caretta) as model species, we examined whether phenological shifts could be an effective adaptive strategy over the critical period that determines reproductive output in the Mediterranean region. We compared the rate of temperature and precipitation change over the recent past (1971–2015) and future periods (2016–2060) along the 45 main nesting sites of the Mediterranean population, during the incubation period. Next, utilizing predictions of an earlier nesting season, we evaluated whether the timing of incubation will impact offspring survival on the Mediterranean population. To further assess species vulnerability, we investigated any potential relationship between hatching success and climate parameters at the largest Mediterranean nesting rookery (Zakynthos, Greece). We found that phenological changes would allow species to capture a thermal window similar to one they experience nowadays during the incubation period. Still, phenological shifts might be less adequate to follow precipitation changes, which however, were found to have a limited impact upon hatching success. Global adaptation management strategies should be directed towards (a) acquisition of long-term high-resolution temperature and precipitation series at nesting sites, (b) developing early warning systems to prevent negative impacts upon reproductive outputs, and (c) directly applying cooling of the nests when first altered climate signs are detected.  相似文献   

4.
There has been much debate about the assessment process of the Intergovernmental Panel on Climate Change (IPCC). Yet two of the most fundamental challenges that directly threaten the ability of the IPCC to fulfill its mandate have been largely neglected so far. Firstly, the magnitude and rapid expansion of the climate change literature makes it increasingly impossible for the IPCC to conduct comprehensive and transparent assessments without major innovations in assessment practices and tools. Secondly, the structure, organization and scientific practices across the social sciences and humanities prohibit systematic learning on climate change solutions and increasingly limit the policy-relevance of IPCC assessments. We highlight the need for responses along three avenues to prepare the IPCC for continued success in the future: 1) IPCC assessments must make better use of big-data methods and available computational power to assess the growing body of literature and ensure comprehensiveness; 2) systematic review practices need to be enshrined into IPCC procedures to ensure adequate focus and transparency in its assessments; 3) a synthetic research culture needs to be established in the social sciences and humanities in order to foster knowledge accumulation and learning on climate solutions in the future. As policymakers become more interested in understanding solutions, the future prospects of global environmental assessment enterprises will depend heavily on a successful transformation within the social sciences and humanities towards systematic knowledge generation. This article is part of a special issue on solution-oriented Global Environmental Assessments.  相似文献   

5.
Among livestock systems, grazing is likely to be most impacted by climate change because of its dependency to feed quality and availability. In order to reduce the impact of climate change on grazing livestock systems, adaptation measures should be implemented. The goal of this study is to identify the best pasture composition for a representative grazing dairy farm in Michigan in order to reduce the impacts of climate change on production. In order to achieve the goal of this study, three objectives were sought: (1) identify the best pasture composition, (2) assess economic and resource use impacts of pasture compositions under future climate scenarios, and (3) evaluate the resiliency of pasture compositions. A representative farm was developed based on a livestock practices survey and incorporated into the Integrated Farm System Model (IFSM). For the pasture compositions, four cool-season grass species and two legumes were evaluated under both current and future climate scenarios. The effectiveness of adaptation measures based on economic and resource use criteria was evaluated. Overall, the pasture composition with 50% perennial ryegrass (Lolium multiflorum) and 50% red clover (Trifolium pratense) was identified as the best. In addition, the increase in precipitation and temperature of the most intensive climate scenario could significantly improve farm net return per cow (Bos taurus) and whole farm profit while no significant impact was observed on resource use criteria. Finally, the overall sensitivity assessment showed that the most resilient pasture composition under future climate scenarios was ryegrass with red clover and the least resilient was orchardgrass (Dactylis glomerata) with white clover (Trifolium repens).  相似文献   

6.
Most prior climate change assessments for U.S. agriculture have focused on major world food crops such as wheat and maize. While useful from a national and global perspective, these results are not particularly relevant to the Northeastern U.S. agriculture economy, which is dominated by dairy milk production, and high-value horticultural crops such as apples (Malus domestica), grapes (Vitis vinifera), sweet corn (Zea mays var. rugosa), cabbage (Brassica oleracea var. capitata), and maple syrup (sugar maple, Acer saccharum). We used statistically downscaled climate projections generated by the HadCM3 atmosphere–ocean general circulation model, run with Intergovernmental Panel on Climate Change future emissions scenarios A1fi (higher) and B1 (lower), to evaluate several climate thresholds of direct relevance to agriculture in the region. A longer (frost-free) growing season could create new opportunities for farmers with enough capital to take risks on new crops (assuming a market for new crops can be developed). However, our results indicate that many crops will have yield losses associated with increased frequency of high temperature stress, inadequate winter chill period for optimum fruiting in spring, increased pressure from marginally over-wintering and/or invasive weeds, insects, or disease, or other factors. Weeds are likely to benefit more than cash crops from increasing atmospheric carbon dioxide. Projections of thermal heat index values for dairy cows indicate a substantial potential negative impact on milk production. At the higher compared to lower emissions scenario, negative climate change effects will occur sooner, and impact a larger geographic area within the region. Farmer adaptations to climate change will not be cost- or risk-free, and the impact on individual farm families and rural communities will depend on commodity produced, available capital, and timely, accurate climate projections.  相似文献   

7.
Rice (Oryza) is a staple food in China, and rice yield is inherently sensitive to climate change. It is of great regional and global importance to understand how and to what degree climate change will impact rice yields and to determine the adaptation options effectiveness for mitigating possible adverse impacts or for taking advantage of beneficial changes. The objectives of this study are to assess the climate change impact, the carbon dioxide (CO2) fertilization effect, and the adaptation strategy effectiveness on rice yields during future periods (2011–2099) under the newly released Representative Concentration Pathway (RCP) 4.5 scenario in the Sichuan Basin, one of the most important rice production areas of China. For this purpose, the Crop Estimation through Resource and Environment Synthesis (CERES)-Rice model was applied to conduct simulation, based on high-quality meteorological, soil and agricultural experimental data. The modeling results indicated a continuing rice reduction in the future periods. Compared to that without incorporating of increased CO2 concentration, a CO2 fertilization effect could mitigate but still not totally offset the negative climate change impacts on rice yields. Three adaptive measures, including advancing planting dates, switching to current high temperature tolerant varieties, and breeding new varieties, could effectively offset the negative climate change impacts with various degrees. Our results will not only contribute to inform regional future agricultural adaptation decisions in the Sichuan Basin but also gain insight into the mechanism of regional rice yield response to global climate change and the effectiveness of widely practiced global thereby assisting with appropriate adaptive strategies.  相似文献   

8.
The water cycle, a fundamental component of climate, is likely to be altered in important ways by climate change. Climate change will most likely worsen the already existing water related problems. Then the question is how should policy makers respond to this dilemma. Climate change mitigation, through greenhouse gas (GHG) emissions reduction and sequestration is not a sufficient response. Adaptation will also need to feature as a response strategy. Mitigation and adaptation need to be viewed as complementary responses to climate change. Complementarity between adaptation and mitigation in the water sector will be addressed in this paper. The paper will also outline the main impacts of climate change on water resources and identify those areas that are most dependent and vulnerable to hydrological systems (e.g., hydroelectric systems, irrigation, agriculture) and any changes thereof resulting from climate change. It will aim to assess the impact of water demand and water use, with a view to identifying the main relationships between mitigation and adaptation in the water sector and the means through which individual mitigation and adaptation actions can potentially interact with each other for the benefit of the water sector as a whole. It will also explore the implications of climate change on the management of water resources. Adaptation and mitigation options would be considered in the context of their socio-economic and environmental impacts and their contribution to sustainable development. A brief evaluation of how this information can be directly used for planning purpose will also be presented.
Luis J. MataEmail:
  相似文献   

9.
Managing risk by adapting long-lived infrastructure to the effects of climate change must become a regular part of planning for water supply, sewer, wastewater treatment, and other urban infrastructure during this century. The New York City Department of Environmental Protection (NYCDEP), the agency responsible for managing New York City’s (NYC) water supply, sewer, and wastewater treatment systems, has developed a climate risk management framework through its Climate Change Task Force, a government-university collaborative effort. Its purpose is to ensure that NYCDEP’s strategic and capital planning take into account the potential risks of climate change—sea-level rise, higher temperature, increases in extreme events, changes in drought and flood frequency and intensity, and changing precipitation patterns—on NYC’s water systems. This approach will enable NYCDEP and other agencies to incorporate adaptations to the risks of climate change into their management, investment, and policy decisions over the long term as a regular part of their planning activities. The framework includes a 9-step Adaptation Assessment procedure. Potential climate change adaptations are divided into management, infrastructure, and policy categories, and are assessed by their relevance in terms of climate change time-frame (immediate, medium, and long term), the capital cycle, costs, and other risks. The approach focuses on the water supply, sewer, and wastewater treatment systems of NYC, but has wide application for other urban areas, especially those in coastal locations.  相似文献   

10.
Climate is an important component of the operating environment for the Canadian mining sector. However, in recent years mines across Canada have been affected by significant climatic hazards, several which are regarded to be symptomatic of climate change. For the mining sector, climate change is a pressing environmental threat and a significant business risk. The extent to which the mining sector is able to mitigate its own impact and adapt to climate change will affect its long-term success and prosperity, and have profound economic consequences for host communities. This paper draws upon case studies conducted with mining operations in Canada involving in-depth interviews with mining professionals and analysis of secondary sources to characterize the vulnerability of the Canadian mining industry to climate change. Five key findings are discussed: i) mines in the case studies are affected by climate events that are indicative of climate change, with examples of negative impacts over the past decade; ii) most mine infrastructure has been designed assuming that the climate is not changing; iii) most industry stakeholders interviewed view climate change as a minor concern; iv) limited adaption planning for future climate change is underway; v) significant vulnerabilities exist in the post-operational phase of mines. This paper argues for greater collaboration among mining companies, regulators, scientists and other industry stakeholders to develop practical adaptation strategies that can be integrated into existing and new mine operations, including in the post-operational phase.  相似文献   

11.
Globally, yam (Dioscorea spp.) is the fifth most important root crop after sweet potatoes (Ipomoea batatas L.) and the second most important crop in Africa in terms of production after cassava (Manihot esculenta L.) and has long been vital to food security in sub-Saharan Africa (SSA). Climate change is expected to have its most severe impact on crops in food insecure regions, yet very little is known about impact of climate change on yam productivity. Therefore, we try estimating the effect of climate change on the yam (variety: Florido) yield and evaluating different adaptation strategies to mitigate its effect. Three regional climate models REgional MOdel (REMO), Swedish Meteorological and Hydrological Institute Regional Climate Model (SMHIRCA), and Hadley Regional Model (HADRM3P) were coupled to a crop growth simulation model namely Environmental Policy Integrated Climate (EPIC) version 3060 to simulate current and future yam yields in the Upper Ouémé basin (Benin Republic). For the future, substantial yield decreases were estimated varying according to the climate scenario. We explored the advantages of specific adaptation strategies suggesting that changing sowing date may be ineffective in counteracting adverse climatic effects. Late maturing cultivars could be effective in offsetting the adverse impacts. Whereas, by coupling irrigation and fertilizer application with late maturing cultivars, highest increase in the yam productivity could be realized which accounted up to 49 % depending upon the projection of the scenarios analyzed.  相似文献   

12.
Climate change will impact forest ecosystems, their biodiversity and the livelihoods they sustain. Several adaptation and mitigation strategies to counteract climate change impacts have been proposed for these ecosystems. However, effective implementation of such strategies requires a clear understanding of how climate change will influence the future distribution of forest ecosystems. This study uses maximum entropy modelling (MaxEnt) to predict environmentally suitable areas for cork oak (Quercus suber) woodlands, a socio-economically important forest ecosystem protected by the European Union Habitats Directive. Specifically, we use two climate change scenarios to predict changes in environmental suitability across the entire geographical range of the cork oak and in areas where stands were recently established. Up to 40 % of current environmentally suitable areas for cork oak may be lost by 2070, mainly in northern Africa and southern Iberian Peninsula. Almost 90 % of new cork oak stands are predicted to lose suitability by the end of the century, but future plantations can take advantage of increasing suitability in northern Iberian Peninsula and France. The predicted impacts cross-country borders, showing that a multinational strategy, will be required for cork oak woodland adaptation to climate change. Such a strategy must be regionally adjusted, featuring the protection of refugia sites in southern areas and stimulating sustainable forest management in areas that will keep long-term suitability. Afforestation efforts should also be promoted but must consider environmental suitability and land competition issues.  相似文献   

13.
Factors influencing support for climate mitigation policy in the United States are well researched, however, research regarding individuals’ support for climate adaptation policy is relatively sparse. This study explores how an individual’s perception of climate change impacts may influence their support for adaptation actions. Results of a survey of the U.S. public (n = 653) indicates that individuals who believe climate change impacts are unlikely to happen or will primarily affect other people in other places are less likely to be concerned about climate change impacts and less likely to support climate adaptation. However, an individual’s support for climate change adaptation measures is not influenced by their perception of when climate change impacts will occur even when taking into account concern for climate impacts. Critical for policy-makers, a belief that climate adaptation measures will not be effective attenuates the relationship between psychological distance, concern for climate change impacts, and adaptation policy measures. Our results indicate that to effectively communicate about climate change, policy-makers should emphasize that: (i) climate change impacts are occurring, (ii) that their constituents are being affected now, or will be in the future, and (iii) communicate that adaptation measures can be effective in addressing risks associated with climate change impacts.  相似文献   

14.
Defining response capacity to enhance climate change policy   总被引:1,自引:0,他引:1  
Climate change adaptation and mitigation decisions made by governments are usually taken in different policy domains. At the individual level however, adaptation and mitigation activities are undertaken together as part of the management of risk and resources. We propose that a useful starting point to develop a national climate policy is to understand what societal response might mean in practice. First we frame the set of responses at the national policy level as a trade off between investment in the development and diffusion of new technology, and investment in encouraging and enabling society to change its behaviour and or adopt the new technology. We argue that these are the pertinent trade-offs, rather than those usually posited between climate change mitigation and adaptation. The preference for a policy response that focuses more on technological innovation rather than one that focuses on changing social behaviour will be influenced by the capacity of different societies to change their greenhouse gas emissions; by perceived vulnerability to climate impacts; and by capacity to modify social behaviour and physical environment. Starting with this complete vision of response options should enable policy makers to re-evaluate the risk environment and the set of response options available to them. From here, policy makers should consider who is responsible for making climate response decisions and when actions should be taken. Institutional arrangements dictate social and political acceptability of different policies, they structure worldviews, and they determine the provision of resources for investment in technological innovation and social change. The importance of focussing on the timing of the response is emphasised to maximise the potential for adjustments through social learning and institutional change at different policy scales. We argue that the ability to respond to climate change is both enabled and constrained by social and technological conditions. The ability of society to respond to climate change and the need for technological change for both decarbonisation and for dealing with surprise in general, are central to concepts of sustainable development.  相似文献   

15.
Canada’s Wild Salmon Policy gives Canadians the opportunity to make informed decisions about the amount of habitat, ecosystem, and salmon diversity to protect, in order to provide salmon with the potential to adapt and survive in a changing environment. Valuable lessons learned during the completion of this recent landmark conservation policy include: (1) there must be an express need for major new policies and decision makers should be receptive to proposed changes; (2) resource and expertise allocation should be realistic to ensure successful and timely policy completion; (3) science-based policies must be based on good science; (4) environmental policies require input from multiple disciplines—biological consequences are only one element that politicians and decision-makers need to consider; (5) since there will always be uncertainty, and different perspectives on the level of risk that various stakeholders are willing to accept, a precautionary approach is appropriate; (6) to be effective, communication should be open and transparent; and finally (7) it is important to think beyond policy completion—how will the policy be implemented? Documenting these lessons should assist others, thereby resulting in more efficient completion of science-based policies.  相似文献   

16.
Small farmers who supply the city of Bogotá with food are facing many challenges that are jeopardizing their livelihoods and by extension, the food security of Colombia’s capital. We expect future changes in climatic conditions to exacerbate the plight of the small farmers and this is expected to compromise Bogota’s food security even further. This paper specifically seeks to assess the impact of climate change (CC) on the livelihoods of smallholders who supply Bogota with most of its food. In our multidisciplinary methodology, we translated the exposure to CC into direct impact on crops and assessed sensitivity and adaptive capacity using the sustainable rural livelihoods framework. The results show that rainfall (by average of 100 mm) and temperature (by average of 2.1 °C) will increase over the study area, while the future climate suitability of the most important crops such as mango (Mangifera indica), papaya (Carica papaya), corn (Zea mays) and plantain (Musa balbisiana) shows a decrease of 19 % to 47 % climate suitability by the year 2050. The assessment of sensitivity and adaptive capacity demonstrates that farmers participating in a farmers’ market, initiated by several local and international non-governmental organizations (NGOs), are less vulnerable to CC than farmers who sell through intermediaries. Those farmers selling directly to consumers in the farmers’ market have a higher adaptive capacity (3 on a scale of 3) in social and financial capital than those selling to intermediaries with less adaptive capacity (1 on a scale of 3). In light of the reduction in overall climatic suitability of some of the major crops and the change of geographic location of suitability for others, there are likely to be serious threats for Bogotá’s food security, the ecological landscape around the city, and farmers’ livelihoods. We further conclude that unless proper adaptation measures are implemented, the geographical shift in climate suitability may also force farmers to shift their crops to higher elevations including remaining forests and páramos (the Colombian alpine tundra ecosystems), which may be threatened in the near future.  相似文献   

17.
When evaluating the environmental impacts of finfish production systems, both regional impacts (e.g., eutrophication) and global impacts (e.g., climate change) should be taken into account. The life cycle assessment (LCA) method is well suited for this purpose. Three fish farms that represent contrasting intensive production systems were investigated using LCA: rainbow trout (Oncorhynchus mykiss) in freshwater raceways in France, sea-bass (Dicentrarchus labrax) in sea cages in Greece, and turbot (Scophtalmus maximus) in an inland re-circulating system close to the seashore in France. Two main characteristics differentiated the three farm systems: feed use and energy use. Emission of nitrogen and phosphorus accounted for more than 90% of each farm's potential eutrophication impact. In the trout and sea-bass systems, feed production was the major contributor to potential climate change and acidification impacts and net primary production use (NPPU). In these systems, the main source of variation for environmental impacts was the feed conversion ratio. Results from this study indicate that the sea-bass cage system was less efficient than the trout raceway system, with a higher level of potential eutrophication (65% greater) and NPPU (15% greater). The turbot re-circulating system was a high energy-consumer compared to the trout raceway system (four times higher) and the sea-bass cage system (five times higher). Potential climate change and acidification impacts were largely influenced by energy consumption in the turbot re-circulating system. In the turbot re-circulating system 86% of energy use was due to on-site consumption, while in the sea-bass cage farming system 72% of energy use was due to feed production. These results are discussed in relation to regional contexts of production and focus attention on the sensitivity of each aquatic environment and the use of energy carriers.  相似文献   

18.
Climate change is likely to exacerbate the negative effects of invasive alien species (IAS) as it will foster their further spread. This paper analyses the potential socio-economic effects of three emerging IAS (giant ragweed, Ambrosia trifida; annual wormwood, Artemisia annua; and burweed marshelder, Iva xanthiifolia), which are known to cause substantial harm to human health and to have negative effects on agricultural production. The novelty of the study consists in an integrated approach that combines several aspects of IAS research and management. We model the future spread of the study species in Central Europe by the year 2050 under several climate change, management and spread scenarios. The costs and benefits of controlling the expansion of these IAS are based on this forecast. The results show that an early and coordinated response to the spread of these IAS yields substantial net benefits under all scenarios. Under the conditions of moderate climate change (+1.5 °C), discounted net benefits range from €19 to €582 million. Assuming more severe climate change (+2.4 °C), total savings over the full period are projected to add up to €1063 million. These large socio-economic benefits provide compelling evidence that public authorities should act preventively to restrict the spread of these three IAS.  相似文献   

19.
Recent extreme weather events worldwide have highlighted the vulnerability of many urban settlements to future climatic change. These events are expected to increase in frequency and intensity under climate change scenarios. Although the climatic change may be unavoidable, effective planning and response can reduce its impacts. Drawing on empirical data from a 3-year multi-sectoral study of climate change adaptation for human settlements in the South East Queensland region, Australia, this paper draws on multi-sectoral perspectives to propose enablers for maximising synergies between disaster risk reduction and climate change adaptation to achieve improved planning outcomes. Multi-sectoral perspectives are discussed under four groups of identified enablers: spatial planning; cross-sectoral planning; social/community planning; and strategic/long term planning. Based on the findings, a framework is proposed to guide planning systems to maximise synergies between the fields of disaster risk reduction and climate change adaptation to minimise the vulnerability of communities to extreme weather events in highly urbanised areas.  相似文献   

20.
Mitigation strategies for natural hazards will always be dealing with risk. With climate change bringing a new set of risks, each with its uncertainties, the risk manager has new challenges. Since natural hazards like tornadoes have large impacts and divert resources towards mitigation and recovery, changing natural hazards are a factor affecting development. In this paper, an analysis of tornado risk in Canada in the context of a changing climate is given which leads to the conclusion that risk-management strategies should assume more frequent events in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号