首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
在有无磁场的条件下,做活性炭吸附有机物的对比实验,从苯、苯酚、氯苯,硝基苯和苯甲酸5种有机物的吸附等温线及其Langmuir吸附等温式的拟和情况可见,一定磁场条件下的预磁处理并不改变活性炭吸附这几种有机物的吸附类型,但会在磁处理而破坏水的结构,增大水的极性,增大水的极性,从而依物质的极性大小改变吸附容量的大小,增大增场的强度能加强苯和苯甲酸的磁处理效果。  相似文献   

2.
测定了25℃时活性炭自水中吸附苯、苯酚、苯胺、对-氯苯酚、苯甲酸、对-羟基苯甲酸、对-氯苯胺、硝基苯、对-氨基苯甲酸、对-硝式苯酚、对-硝基苯胺、对硝基苯甲酸的等温线,它们的等温线均为Langmuir型的,利用Langmuir参数计算了吸吸标准自由能变化△G^0,计算结果表明,△G^0具有加和性,即化合物的△G^0是组成该化合物各基团贡献之总和,化合物的分子量及分子连接性指数与△G^0有近似的线性关系。  相似文献   

3.
活性碳纤维去除水中微污染物的研究   总被引:6,自引:0,他引:6  
研究了在不同温度、pH等条件下,活性碳纤维(ACF)对水中微污染苯酚和氮苯系列的吸附动力学。在碱性条件下由于活性炭纤维表面的弱极化作用,吸附容量有所加强,同时也随着环境温度的增加而增大。活性炭纤维对氮苯系列吸附容量的大小比较是:k六氧苯>k二氯苯>k;三氯苯>k氯零。通过对ACF与颗粒活性碳(GAC)吸附的QSAR推算和实测吸附容量进行比较,表明ACF的吸附容量要远大于GAC。  相似文献   

4.
采用了活性炭纤维吸附法净化水中微量的氯苯酚。在25℃和35℃下,实验测定活性炭纤维吸附氯苯酚的吸附平衡等温线.该吸附等温线符合Langmuir型。水溶液的pH值将影响吸附容量。在碱性条件下吸附容量显著下降。这将有利于吸附剂的再生。测量氯苯酚在活性炭纤维填充床的穿透曲线.在5%突破点处的动态吸附容量为0.23kg(氯苯酚)/kg(活性炭纤维)在25℃下。采用40℃、5%NaOH溶液再生被氯苯酚饱和的活性炭纤维填充床。再生后吸附效率达93%以上。  相似文献   

5.
水处理活性炭吸附性能指标的表征与应用   总被引:11,自引:0,他引:11       下载免费PDF全文
使用碘值、苯酚值、甲基蓝值和丹宁酸值4种吸附容量性能指标组成水处理活性炭选型技术.经BET测试验证,碘值可以体现活性炭中孔径略大于1.0nm微孔的发达程度,表征比表面积大小;甲基蓝值则代表孔径大于1.5nm的微孔和中孔发达程度;而丹宁酸值代表直径大于2.8nm左右的中孔数量;苯酚值体现活性炭表面化学信息,可表征活性炭对于小分子芳环类和极性有机物的吸附能力.硝基苯、甲基叔丁基醚(MTBE)、双酚A(BPA)、腐殖酸以及焦化厂二级生化出水的吸附实验结果均验证了该技术作为水处理活性炭实用选型方法的有效性.  相似文献   

6.
通过在聚二乙烯基苯(PDVB)树脂表面嫁接甲胺基或丙胺基(PDVB-JA,PDVB-BA),制备PDVB改性树脂吸附剂,并考察其对低浓度芳香族化合物(硝基苯、苯乙酮、苯胺、苯酚)水溶液的吸附特性。结果表明,树脂胺化后对芳香族化合物的吸附容量提高了11~14 mg/g,特别是对弱极性的苯胺,其饱和吸附量提高了99.7%。此外,在实验条件下,PDVB-JA对硝基苯、苯乙酮、苯胺、苯酚的吸附率分别达到95.40%、88.61%、64.34%、27.13%,吸附容量远大于商业树脂。甲胺基和丙胺基均为供电子基团,PDVB上接枝该类基团,有利于增强吸附剂与吸附质之间的π-π作用,另外,苯乙酮和硝基苯易在树脂表面形成配位化合物,促进芳香族化合物在该类改性树脂表面的吸附量显著增大。  相似文献   

7.
活性炭孔结构和表面化学性质对吸附硝基苯的影响   总被引:12,自引:1,他引:11  
刘守新  陈曦  张显权 《环境科学》2008,29(5):1192-1196
通过对活性炭HNO3氧化及随后的N2:气氛中热处理,研究了活性炭性质对其吸附硝基苯性能的影响.以低温液氮(N2/77K)吸附测定活性炭的比表面积和孔容、孔径分布,以SEM观测活性炭表面形貌,以Boehm滴定、FTIR、零电荷点pHpzc测定及元素分析定量表征活性炭表面含氧官能团变化.结果表明, HNO3氧化可以显著改变活性炭表面化学性质,增加活性炭表面酸性含氧官能团数量,对活性炭孔隙结构影响不大.随后N2:气氛中热处理可以造成活性炭表面酸性含氧官能团分解,外表面积增大,微孔烧蚀为中孔.硝基苯在活性炭上的吸附基本符合Langmuir方程,改性后活性炭对硝基苯的吸附容量明显改变, ACNO-T、ACraw、ACNO吸附容量分别为1011.31、483.09、321.54 mg·g-1.较大的外表面积、适宜数量的中孔以及较少的酸性含氧官能团是ACNO-T对硝基苯表现出较高吸附容量的主要原因.  相似文献   

8.
以梧桐枯叶为原料、磷酸为活化剂制备活性炭,研究了不同浸渍比、活化温度、活化时间对活性炭孔结构和表面化学性质的影响.通过XRD(X射线衍射)、BET比表面积、红外图谱、XPS(X射线光电子能谱)等对梧桐叶活性炭进行表征,并对其表面零电荷点(pH pzc)进行了测定,从热力学的角度研究了梧桐叶活性炭对水溶液中不同极性酚类物质的吸附行为.结果表明,梧桐叶活性炭制备的最佳工艺条件为:浸渍比(质量比)为3∶1,活化温度为450℃,活化时间为2.5 h.浸渍比增大、活化温度升高和活化时间的延长,都有利于增加活性炭表面极性;活性炭的极性表面对酚类物质的吸附有重要影响,梧桐叶活性炭对苯酚、邻硝基苯酚和对硝基苯酚的吸附量分别达到79.2、93.9和95.8 mg/g.热力学研究表明,梧桐叶活性炭对不同极性酚类物质的吸附符合Frenundlich等温吸附方程,并且是一个自发的放热过程,其吸附焓变、吸附熵变、吸附自由能变均小于零.  相似文献   

9.
苯及其取代物与对硝基苯胺在沉积物上的竞争吸附   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了沉积物-水体系中苯及其单取代化合物甲苯、氯苯、硝基苯、苯酚、苯胺和苯甲酸(作为共溶质)与对硝基苯胺(作为主溶质)之间的竞争吸附作用.结果表明,在相同的相对浓度下,易与沉积物有机质形成氢键的共溶质竞争能力强于不易形成氢键的共溶质;共溶质对主溶质吸附的竞争效应主要发生在表面吸附部分,对分配部分影响不大;有机化合物在单溶质体系中吸附等温线的非线性程度与其在多溶质体系中作为共溶质时的竞争能力具有相关性.  相似文献   

10.
梧桐叶活性炭对不同极性酚类物质的吸附   总被引:3,自引:0,他引:3       下载免费PDF全文
以梧桐枯叶为原料、磷酸为活化剂制备活性炭,研究了不同浸渍比、活化温度、活化时间对活性炭孔结构和表面化学性质的影响. 通过XRD(X射线衍射)、BET比表面积、红外图谱、XPS(X射线光电子能谱)等对梧桐叶活性炭进行表征,并对其表面零电荷点(pHpzc)进行了测定,从热力学的角度研究了梧桐叶活性炭对水溶液中不同极性酚类物质的吸附行为. 结果表明,梧桐叶活性炭制备的最佳工艺条件为:浸渍比(质量比)为3∶1,活化温度为450℃,活化时间为2.5h. 浸渍比增大、活化温度升高和活化时间的延长,都有利于增加活性炭表面极性;活性炭的极性表面对酚类物质的吸附有重要影响,梧桐叶活性炭对苯酚、邻硝基苯酚和对硝基苯酚的吸附量分别达到79.2、93.9和95.8mg/g. 热力学研究表明,梧桐叶活性炭对不同极性酚类物质的吸附符合Frenundlich等温吸附方程,并且是一个自发的放热过程,其吸附焓变、吸附熵变、吸附自由能变均小于零.   相似文献   

11.
七种苯的一取代物在小球藻中的积累及其对藻生长的影响   总被引:2,自引:0,他引:2  
试验合成的有机化合物对藻生长的影响,不仅能对化学品安全评价提供信息,而且对水质富营养化的理论研究和实际治理都有重要意义。Korte教授曾提出把藻对化学品的积累多寡作为评价化学品安全与否的指标之一。西德联邦环境署也推荐了把藻作为水毒理学试验生物之一,并被很多实验室采用了。在上述以藻作为试验生物的实验中,作者们或者是仅仅做积累试验,或者是仅仅做毒性试验,而使用同一化合物进行上述两个试验并比较其结果,以便从中得到有益的启示至今尚未见报道。本文正是基于此想法,试验了一组苯的取代物对小球藻(Chlorella fusca)生长的影响(促进增殖或抑制增殖)以及藻对化合物的积累。  相似文献   

12.
氧化物修饰电极降解有机污染物的电催化特性   总被引:14,自引:0,他引:14  
采用高温热解氧化沉积法将金属氧化物SnO2, RuO2, Cr2O3, PdO修饰到钛基体表面,制备得到4种金属氧化物修饰电极.比较4种电极氧化降解苯、苯甲酸、苯酚、苯胺、硝基苯以及甲基橙染料6种有机污染物的氧化电流效率,结果表明,电极在各种介质中的析氧电位和氧化反应传递系数(β值)是衡量电极能否有效处理有机污染物废水的两个重要指标,其中SnO2电极的析氧电位最高,PbO电极的b值最大,SnO2电极的β 值次之.这为研制和筛选高效催化电极提供了理论依据.  相似文献   

13.
黄乐  徐颖峰  谢茜青  赵娴  冯华军 《环境科学》2020,41(4):1716-1724
高盐废水处理存在处理难度大和能耗成本高等问题.近年来发展的界面光蒸汽水处理技术以绿色、高效和低能耗等特点成为了目前水资源回收利用领域的研究热点.本研究以纤维状结构的碳化氮(h-CN)修饰石墨烯(r-GO),通过水热反应制备了新型三维多孔石墨烯复合材料(3D h-CN/r-GO),并以硝基苯和苯酚作为模拟污染物,考察了其光热蒸发处理高盐废水的性能.研究结果表明,所制备的3D h-CN/r-GO材料具备宽光谱吸收范围和多级孔道结构,并呈现出快速热响应的特点.在模拟太阳光照条件下,光蒸汽转化效率可达90.4%.并且在处理过程中可实现硝基苯和苯酚等常见挥发性污染物的吸附,其吸附容量分别为67.6 mg·g-1和57.5 mg·g-1.而且,3D h-CN/r-GO可实现长时间稳定的光热水体蒸发回收,且对污染物及盐分截留率高达98%左右,冷凝水体达到污水处理的排放标准.因此,本研究为高盐废水的低能耗和低成本处理提供了一种新的技术.  相似文献   

14.
参照文献报道的提取方法,利用GC和HPLC对南淝河不同河段沉积物中的四种浓度较高有机污染物(苯酚、氯代苯类、多环芳烃(PAHs)和邻苯二甲酸酯类(PAEs))进行了定量分析,结果表明其浓度高低顺序为多环芳烃类>邻苯二甲酸酯类>氯代苯类>苯酚类.与世界各地表层沉积物中有机污染物的浓度进行对比,分析了南淝河各河段沉积物的有...  相似文献   

15.
热脱附技术一般用于土壤中有机物的异位修复,然而对于受有机物污染较深土壤的原位修复却鲜有报道.本文以某退役溶剂厂土壤中苯、氯苯和石油类为目标污染物,运用燃气热脱附技术进行原位修复.本文介绍了燃气热脱附技术的工艺设计流程,针对场地目标污染物进行燃气热脱附的工程化试验,结果显示热脱附处理后土壤中苯、氯苯和石油类最高去除率接近100%.本文还探讨了温度、停留时间、土壤含水率和土壤质地对热脱附效率的影响,发现在温度和停留时间相同情况下,含水率较小、孔隙率较大的粉砂土热脱附效果更好.试验表明,燃气热脱附原位修复技术处理场地挥发性有机污染物效果良好,可以进行大规模的实际运用.  相似文献   

16.
以正己烷为萃取剂,SDS和Tween 80为表面活性剂,苯和硝基苯为污染物,通过批次实验研究了萃取时间、油水比、表面活性剂及污染物性质对二者分离效果的影响.结果表明,萃取时间为2h、油水比为0.1是萃取的最佳条件参数;正己烷对Tween 80和苯的分离效果较SDS好,且Tween 80浓度对分离效果影响不大;随着SDS浓度的升高,其与苯的分离效果先增大后减小,在1.375CMC时达到最佳分离效果;正己烷对苯与SDS的分离效果较硝基苯好,且分离效果随着污染物浓度的升高而增大;苯和硝基苯共存时,其与SDS的分离存在竞争作用.  相似文献   

17.
典型电器工业区河涌沉积物中有机污染物特征分析   总被引:2,自引:2,他引:0  
刘近  邓代永  许玫英  孙国萍 《环境科学》2013,34(3):1142-1149
为评估制造业对纳污水体有机物的污染影响,了解污染河道中有机物的种类、含量及赋存特性,采用极性和非极性逐步分离的方法对广东佛山市顺德区容桂街道内河涌沉积物中的有机物进行了综合的物理图谱解析研究.结果表明,污染沉积物中共检出包括烷烃类、烯烃类、多环芳烃、苯系物、杂环类、邻苯二甲酸酯类、醛酮、极性化合物、含硅物质以及烷酸酯类等10大类有机污染物共171种.按检出污染物种类的数量分析,烷烃类>极性化合物>多环芳烃>醛酮类>杂环>苯系物、邻苯二甲酸酯类>烷酸酯类>含硅物质>烯烃.按照有机物相对丰度分析,烷烃类>极性化合物>烷酸酯类>烯烃类>多环芳烃>邻苯二甲酸酯类>含硅物质>醛酮>杂环类>苯系物.在相对含量最高的烷烃类有机污染物中,十九烷在同类物质中占比高达14.83%.毒害性持久性有机污染物多环芳烃的总有机物占比为2.33%,检测中还发现大量有机醇、酚等和涂料工业,邻苯二甲酸酯类等塑料工业以及和电子工业产业相关的有机硅类等物质.和同类研究相比,该区域检出51种、占总有机物55.5%丰度的烷烃类物质种类更丰富,含量更高.本研究对制造业纳污河涌沉积物的有机污染物分析研究,为同质污染河涌的污染治理提供参考.  相似文献   

18.
文章以标准纤维素为对照吸附剂,以菲为对照吸附质,采用批量平衡振荡法进行吸附实验,研究不同pH条件下,小麦根吸附极性污染物(2,4-二氯苯酚和硝基苯)的行为差异。结果表明:污染物吸附以疏水性分配为主,吸附系数(K_d)值随化合物疏水性的增强而增强;非解离型极性污染物(硝基苯)的吸附与疏水性污染物(菲)类似,吸附等温线呈线性,相关系数(R2)均大于0.98,同时pH对吸附的影响无显著性差异(P>0.05);解离型极性污染物(2,4-二氯苯酚)的吸附随pH增加而降低,仅在pH 5.0时呈现吸附线性,在pH 7.0和8.0时均呈非线性,等温线逐渐向浓度轴弯曲,这源于疏水作用以及解离的2,4-二氯苯酚与吸附剂之间静电作用的共同影响。根的吸附能力大于纤维素,这与根中含有类脂物质有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号