首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基因工程改良植物对重金属污染土壤的修复   总被引:5,自引:1,他引:5  
利用基因工程改良植物,调整植物吸收、运输和富集重金属的能力以及它们对重金属的耐受性,开拓了植物修复的新领域。到目前为止,已有成功改变这些特性的少数例子。例如,汞离子还原酶可以改善植物抵抗力和提取能力,金属巯基蛋白可增强植物对镉的耐受力,铁还原酶和铁蛋白可增加植物对铁的吸收量。文章综述和讨论了这方面的研究进展及方向。  相似文献   

2.
Phytoremediation of heavy metals: mechanisms,methods and enhancements   总被引:1,自引:0,他引:1  
Polluted soil and water impact the quality of food and nutrients of human and animal biota. Soil and water are mainly polluted by effluent discharges from industries, which are broadly classified into metallic and nonmetallic pollutant-bearing effluents. In order to tackle this problem, a plant-based technology called phytoremediation is used to clean contaminated lands. Phytoremediation is based upon several processes such as phytodegradation, phytovolatilization, phytoaccumulation and phytoextraction. These methods are efficient, eco-friendly and economic. This paper reviews the methods and mechanisms involved in phytoremediation of heavy metals, and enhancement processes.  相似文献   

3.
This review focuses the behaviour of arsenic in plant?Csoil and plant?Cwater systems, arsenic?Cplant cell interactions, phytoremediation, and biosorption. Arsenate and arsenite uptake by plants varies in different environment conditions. An eco-friendly and low-cost method for arsenic removal from soil?Cwater system is phytoremediation, in which living plants are used to remove arsenic from the environment or to render it less toxic. Several factors such as soil redox conditions, arsenic speciation in soils, and the presence of phosphates play a major role. Translocation factor is the important feature for categorising plants for their remediation ability. Phytoremediation techniques often do not take into account the biosorption processes of living plants and plant litter. In biosorption techniques, contaminants can be removed by a biological substrate, as a sorbent, bacteria, fungi, algae, or vascular plants surfaces based on passive binding of arsenic or other contaminants on cell wall surfaces containing special active functional groups. Evaluation of the current literature suggests that understanding molecular level processes, and kinetic aspects in phytoremediation using advanced analytical techniques are essential for designing phytoremediation technologies with improved, predictable remedial success. Hence, more efforts are needed on addressing the molecular level behaviour of arsenic in plants, kinetics of uptake, and transfer of arsenic in plants with flowing waters, remobilisation through decay, possible methylation, and volatilisation.  相似文献   

4.
重金属进入土壤后难以被降解,并通过食物链在生物体内富集,长此以往会导致中毒、癌症、畸形、突变,严重影响了人类生产活动及地球生态系统的稳定。植物修复技术是一种经济有效的重金属污染修复技术,其依靠超富集植物强大的自身抗性机制,从土壤中提取或稳定重金属,达到污染治理的目的。然而修复土壤重金属污染的超富集植物通常生长缓慢、生物量低,其抗性机制也会受到植物本身对重金属胁迫的阈值限制,当胁迫超过这个阈值,植物修复的效率就会大大降低甚至失去修复功能。文章在解析植物重金属相互作用机制的基础上,综述了添加外源物质对重金属毒害植物的缓解效应以及其在强化植物修复土壤重金属污染中的应用研究进展;介绍了应用外源物质调控植物吸收转运重金属的3种途径,分别为提高土壤重金属生物利用度、促进植物生长以及增强植物耐性。提出了应用外源物质作为强化植物修复措施的潜力及今后的研究方向,其未来的研究应着重于以下方面:明确外源物质的应用浓度、时期、方式与植物吸收转运重金属之间的关系;从植物内源激素及信号分子间的互作、抗逆基因表达、内生及根际微生物等不同层面上揭示外源物质对植物积累重金属的调控机理;开展外源物质与其他植物修复强化技术的联合应用研究。这些研究可为土壤重金属污染的植物修复技术及其强化措施研究提供科学依据,同时也对植物修复工程技术的发展实践具有一定的指导意义。  相似文献   

5.
Efficient phytoremediation of uranium mine tailings by tobacco   总被引:1,自引:0,他引:1  
This investigation shows that tobacco plant roots and leaves accumulate 60?times more uranium than previously reported. Phytoremediation is a convenient technique to clean up polluted soils using herbaceous plants and trees. Increasing research aims to identify novel plant species that accumulate toxic metals. Tobacco plant (Nicotiana tabacum L.) is a promising cultivar for phytoremediation because tobacco is fast growing and easily propagated. Here, we study phytoremediation of uranium by two tobacco varieties Virginia and Burley, bred in natural conditions. Plants were grown on uranium mine tailings with an average uranium content of 15.3?mg?kg?1. Each shoot sample was cross-sectioned into five uniform groups of leaves and stem segments. Results show a substantial variance in uranium uptake according to the section elderliness and origin of the plant parts. The highest concentrations of uranium values recorded in leaves of Burleys and Virginias nearest root shoot sections were 4.18 and 3.50?mg?kg?1, respectively. These values are 60?times higher rates than those previously published for leaves of cultivars grown under similar conditions. Taking into account the level of soil contamination, the content of accumulated uranium demonstrates uranium hyperaccumulatory properties of tobacco plant and its potential utilization in phytoremediation of uranium-contaminated mediums.  相似文献   

6.
• Bioremediation is the most cost-effective approach for degradation of HBCDs. • Bacteria or bacterial consortia are used in the cases of bio-augmentation. • Microbes combined with phytoremediation increase the remediation efficiency. Hexabromocyclododecanes (HBCDs) are the most common brominated flame-retardants after polybrominated diphenyl ethers. HBCDs can induce cancer by causing inappropriate antidiuretic hormone syndrome. Environmental contamination with HBCDs has been detected globally, with concentrations ranging from ng to mg. Methods to degrade HBCDs include physicochemical methods, bioremediation, and phytoremediation. The photodegradation of HBCDs using simulated sunlight or ultraviolet lamps, or chemical catalysts are inefficient and expensive, as is physicochemical degradation. Consequently, bioremediation is considered as the most cost-effective and clean approach. To date, five bacterial strains capable of degrading HBCDs have been isolated and identified: Pseudomonas sp. HB01, Bacillus sp. HBCD-sjtu, Achromobacter sp. HBCD-1, Achromobacter sp. HBCD-2, and Pseudomonas aeruginosa HS9. The molecular mechanisms of biodegradation of HBCDs are discussed in this review. New microbial resources should be explored to increase the resource library in order to identify more HBCD-degrading microbes and functional genes. Synthetic biology methods may be exploited to accelerate the biodegradation capability of existing bacteria, including modification of the degrading strains or functional enzymes, and artificial construction of the degradation microflora. The most potentially useful method is combining micro-degradation with physicochemical methods and phytoremediation. For example, exogenous microorganisms might be used to stimulate the adsorption capability of plants for HBCDs, or to utilize an interaction between exogenous microorganisms and rhizosphere microorganisms to form a new rhizosphere microbial community to enhance the biodegradation and absorption of HBCDs.  相似文献   

7.
Pollution of the biosphere by the toxic metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The primary source of this pollution includes the industrial operations such as mining, smelting, metal forging, combustion of fossil fuels and sewage sludge application in agronomic practices. The metals released from these sources accumulate in soil and in turn, adversely affect the microbial population density and physico-chemical properties of soils, leading to the loss of soil fertility and yield of crops. The heavy metals in general cannot be biologically degraded to more or less toxic products and hence, persist in the environment. Conventional methods used for metal detoxification produce large quantities of toxic products and are cost-effective. The advent of bioremediation technology has provided an alternative to conventional methods for remediating the metal-poisoned soils. In metal-contaminated soils, the natural role of metal-tolerant plant growth promoting rhizobacteria in maintaining soil fertility is more important than in conventional agriculture, where greater use of agrochemicals minimize their significance. Besides their role in metal detoxification/removal, rhizobacteria also promote the growth of plants by other mechanisms such as production of growth promoting substances and siderophores. Phytoremediation is another emerging low-cost in situ technology employed to remove pollutants from the contaminated soils. The efficiency of phytoremediation can be enhanced by the judicious and careful application of appropriate heavy-metal tolerant, plant growth promoting rhizobacteria including symbiotic nitrogen-fixing organisms. This review presents the results of studies on the recent developments in the utilization of plant growth promoting rhizobacteria for direct application in soils contaminated with heavy metals under a wide range of agro-ecological conditions with a view to restore contaminated soils and consequently, promote crop productivity in metal-polluted soils across the globe and their significance in phytoremediation.  相似文献   

8.
A simple approach to modeling microbial biomass in the rhizosphere   总被引:4,自引:0,他引:4  
Microorganisms make an important contribution to the degradation of contaminants in bioremediation as well as in phytoremediation. An accurate estimation of microbial concentrations in the soil would be valuable in predicting contaminant dissipation during various bioremediation processes. A simple modeling approach to quantify the microbial biomass in the rhizosphere was developed in this study. Experiments were conducted using field column lysimeters planted with Eastern gamagrass. The microbial biomass concentrations from the rhizosphere soil, bulk soil, and unplanted soil were monitored for six months using an incubation–fumigation method. The proposed model was applied to the field microbial biomass data and good correlation between simulated and experimental data was achieved. The results indicate that plants increase microbial concentrations in the soil by providing root exudates as growth substrates for microorganisms. Since plant roots are initially small and do not produce large quantities of exudates when first seeded, the addition of exogenous substrates may be needed to increase initial microbial concentrations at the start of phytoremediation projects.  相似文献   

9.
土壤原位修复技术研究与应用进展   总被引:1,自引:0,他引:1  
冯俊生  张俏晨 《生态环境》2014,(11):1861-1867
土壤原位修复技术是指不经挖掘,直接在污染场地就地修复污染土壤的土壤修复技术,具有投资低,对周边环境影响小的特点,是土壤修复的研究热点。土壤原位修复技术主要有淋洗,气相抽提(SVE),多相抽提(MPVE),气相喷射(IAS),生物降解,原位化学氧化(ISCO),原位化学还原,污染物固定,植物修复等。淋洗法主要用于治理高渗透性土壤中的重金属和难挥发降解的有机物。土壤气相抽提和喷射技术适用于处理土壤中的易挥发污染物,并有常与加热技术,生物处理技术等联用,可以起到促进污染物挥发,增氧促分解的作用。多相抽提法主要用于治理存在大量非水相流体的污染场地,可将土壤中有机相污染物直接抽出。生物降解有生物好氧降解、生物厌氧降解、生物还原降解多种,降解方式由污染物种类和地质条件决定。化学方法可将污染物氧化或还原为低毒无毒物质,周期一般较短。固定污染物可以直接加入药剂反应生成沉淀,也可制造合适条件使微生物生成可沉淀重金属的离子。植物修复主要用于富集重金属,成本低廉,但富集了重金属的植物体的有效利用尚待进一步研究。土壤原位修复需要因地制宜,灵活结合工期、污染情况、地质条件、地面设施等,得出最经济实用的修复方法,并在辅助提高技术上展开更多研究,使原位修复技术更经济有效。  相似文献   

10.
Bisphenol A (BPA), an endocrine disrupting compound, has caused wide public concerns due to its wide occurrence in environment and harmful effects. BPA has been detected in many surface waters and drinking water with the maximum concentrations up to tens of μg·L-1. The physicochemical technology options in eliminating BPA can be divided into four categories: oxidation, advanced oxidation, adsorption and membrane filtration. Each removal option has its own limitation and merits in removing BPA. Oxidation and advanced oxidation generally can remove BPA efficiently while they also have some drawbacks, such as high cost, the generation of a variety of transformation products that are even more toxic than the parent compound and difficult to be mineralized. Only few advanced oxidation methods have been reported to be able to mineralize BPA completely. Therefore, it is important not only to identify the major initial transformation products but also to assess their estrogenic activity relative to the parent compounds when oxidation methods are employed to remove BPA. Without formation of harmful by-products, physical separation methods such as activated carbon adsorption and membrane processes are able to remove BPA in water effluents and thus have potential as BPA removal technologies. However, the necessary regeneration of activated carbon and the low BPA removal efficiency when the membrane became saturated may limit the application of activated carbon adsorption and membrane processes for BPA removal. Hybrid processes, e.g. combining adsorption and biologic process or combining membrane and oxidation process, which can achieve simultaneous physical separation and degradation of BPA, will be highly preferred in future.  相似文献   

11.
丛枝菌根对土壤-植物系统中重金属迁移转化的影响   总被引:9,自引:0,他引:9  
丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)是一类在自然和农业生态系统中广泛存在并能与多数陆生植物形成共生关系的土壤真菌,在重金属污染土壤中对宿主植物的生长及吸收累积重金属具有重要影响,因而对污染土壤的生物修复具有潜在应用价值。以重金属从根际土壤进入植物并在植物体内再分配过程为主线,介绍丛枝菌根在这一过程中对重金属环境行为,特别是根际土壤中重金属赋存形态及植物吸收重金属的影响。最后,对丛枝菌根影响植物重金属耐性机制研究前沿和菌根修复技术的应用前景进行展望。  相似文献   

12.
During the phytoremediation of contaminated soils and water, a multitude of pathways, partly not yet quantified, are activated. ‘Phytovolatilisation’ is considered to be a process, where primarily organic compounds are emitted from the above-ground sections of the plant into the atmosphere. Thus, all compounds are included which are taken up by the root, partly transformed within the roots and transported into the sprout. The phytovolatilisation is particularly suitable for the elimination of volatile compounds in shallow groundwater contaminations. In gas exchange experiments, the dynamics of these emissions were examined and, on the basis of a model, the compounds which are preferentially emitted by plants due to their physical characteristics was estimated.  相似文献   

13.
利用美洲商陆修复锰尾渣污染土壤对后茬植物的影响   总被引:2,自引:0,他引:2  
采用盆栽法研究用锰超富集植物美洲商陆(Phytolacca americana)修复锰尾渣污染土壤对后茬植物大豆(Glycine max)和绿豆(Phaseolus radiatus)的影响.经美洲商陆修复锰尾渣污染土壤后,后茬植物大豆和绿豆的镉、铅、锌和锰含量降低,污染土壤的毒性减弱,有利于这2种植物生长.经美洲商陆修复2~3 a,可显著减弱污染土壤对大豆的毒性.由此可见,在经美洲商陆修复的污染土壤上栽培大豆,可以增加含氮量,促进其他植物生长,从而维持锰尾渣污染区植被持续发展.  相似文献   

14.
环境中六溴环十二烷的修复技术研究进展   总被引:1,自引:0,他引:1  
钱翌  朱晓艳 《生态环境》2014,(8):1390-1395
六溴环十二烷(hexabromocyclododecane,HBCD)是一种非芳香的溴代环烷烃,作为阻燃剂被广泛应用于塑料、泡沫、纤维、纺织品、电子产品及其他有机材料中,也可以作为聚乙烯、聚碳酸酯、不饱和聚酯等塑料的阻燃添加剂。HBCD作为一种持久性有机污染物,能够在环境中长期积累、迁移和转化,对人类和环境构成潜在的的危害。随着全球 HBCD 用量的增加,HBCD造成的水体及土壤的污染也越来越严重,因此环境中HBCD修复技术的研究也日益成为各个国家和地区研究的热点之一。文章综述了近年来国内外关于 HBCD 的去除或降解技术,包括物理修复、化学修复和生物修复,同时阐述了各个修复方法的原理、条件及优缺点。重点介绍了光降解和微生物降解这两种修复方法:光降解是一种利用光照和催化剂使水体中 HBCD 发生降解的修复方法,该方法去除效率高、清洁环保,但发生条件高,并且成本较高;微生物降解是指利用环境中的某种微生物来实现HBCD降解的,HBCD在厌氧条件下的降解效率明显高于好氧的条件,微生物降解具有不产生二次污染、降解彻底等优点,但相关研究还很少,发展还不成熟。目前开展 HBCD 植物修复研究的报道也很少,因此探讨利用植物修复HBCD的研究应该成为今后此类工作的研究重点之一。关于未来HBCD修复研究的方向,作者认为光降解和微生物降解仍然是 HBCD 修复的主要研究重点;还可以尝试采用两种或两种以上的修复方法联用以达到满意的修复效果;另外,微生物共代谢等修复方法也是今后发展的主要方向。  相似文献   

15.
With many northern gold mining operations the disposal of waste water from the process presents some unique problems. The level of heavy metals and cyanide is generally too high to allow discharge to the environment. Total impoundment of the effluent in tailing dams or the use of expensive treatment plants is necessary to ensure protection of the environment. The costs and dangers of these treatment methods cannot always be justified in the remote locations of these mines and alternatives must be explored.In this paper, experiments have been performed to determine the partial freezing and melting characteristics of cyanide solutions as well as the rates of natural degradation. These studies could result in a novel method to protect our northern environments and ensure the continued operation of gold mines in these regions in a safe and economic manner. A multi-pond containment system has been proposed which may be feasible in certain circumstances.  相似文献   

16.
植物对重金属具有一定的吸附能力,植物修复是生态修复不可或缺的一部分,利用植物减缓和治理重金属污染具有重要意义.选取开阳磷矿马路坪矿区生命周期较长的木本植物及其土壤作为研究对象,探究木本植物受Cu、Zn、Pb、Cd、As等5种重金属污染土壤的效应,对植物重金属含量及其富集特性进行研究分析,筛选出累积重金属的植物,作为矿区...  相似文献   

17.
克隆植物生理整合作用的研究方法及其应用   总被引:1,自引:0,他引:1  
生理整合作用是克隆植物的一个重要特征,克隆植物所表现出的许多独特的生态学行为,均与其所具有的生理整合效应密切相关.本文总结并分析了迄今为止在研究克隆植物生理整合作用方面所采用的各种方法,并将其归纳为直接和间接方法两个大类.通过这些研究方法的综合运用,克隆植物生理整合效应的机制、格局及其影响因素可以得到更加深入的揭示.在不断深化和拓展现有研究方法的基础上,今后在克隆植物生理整合效应的研究方面,还应较多地关注更为精确的研究方法,以及野外或自然条件下的实地研究.参104  相似文献   

18.
19.
贵州万山汞矿地区耐汞野生植物研究   总被引:3,自引:0,他引:3  
在贵州万山地区废弃汞矿堆和矿山附近,受长期高剂量汞暴露的影响经过的自然选择,该地区出现了一些能耐受汞毒性的生态型植物。对汞耐受及汞富集植物的筛选对于汞污染土壤的植物修复具有一定的现实意义。通过对万山梅子溪地区汞污染土壤及汞耐受植物采样调查发现,该区域采样土壤中汞的含量均在50 mg·kg-1以上,达到重度汞污染水平。对该地区野生植物的采样分析发现,蔷薇科植物悬钩子不仅数量较多,单株植物生物量较大,表现出很强的耐汞毒性的能力,而且植株内可以很大程度地富集汞,在其植株中汞的含量可达20 mg·kg-1左右,属于汞富集植物,另外发现野蒿对汞也具有较强的富集能力,其植株中汞的含量可达10 mg·kg-1以上。该类型植物的发现将为植物的汞耐受以及汞富集机理研究提供新的素材,为汞污染土壤的植物修复技术提供新的植物类型,也为进一步开发汞污染土壤处理技术提供了一种可能。  相似文献   

20.
Molecular methods of assessing dispersal have become increasingly powerful and have superseded direct methods of studying dispersal. Although now less popular, direct methods of studying dispersal remain important tools for understanding the evolution of dispersal. Here, we use data from Siberian jays Perisoreus infaustus, a group-living bird species, to compare natal dispersal distances and rates using visual mark–recapture, radio-tracking and microsatellite data. Siberian jays have bimodal natal dispersal timing; socially dominant offspring remain with their parents for up to 5 years (delayed dispersers), while they force their subordinate brood mates to leave the parental territory at independence (early dispersers). Early dispersers moved about 9,000 m (visual mark–recapture, radio-tracking) before settling in a group as a non-breeder. In contrast, delayed dispersers moved about 1,250 m (visual mark–recapture only) and mainly moved to a breeding opening. Dispersal distances were greater in managed habitat compared to natural habitat for both early and delayed dispersers. Molecular estimates based on 23 microsatellite loci and geographical locations supported distance estimates from the direct methods. Our study shows that molecular methods are at least 22 times cheaper than direct methods and match estimates of dispersal distance from direct methods. However, molecular estimates do not give insight into the behavioural mechanisms behind dispersal decisions. Thus, to understand the evolution of dispersal, it is important to combine direct and indirect methods, which will give insights into the behavioural processes affecting dispersal decisions, allowing proximate dispersal decisions to be linked to the ultimate consequences thereof.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号