首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A low-cost air sensor package was used to monitor indoor air quality (IAQ) in a classroom at the Albany Middle School in the San Francisco Bay Area of California. A rapid increase in carbon dioxide (CO2) was observed in the classroom as soon as it is occupied. When the classroom is unoccupied, the CO2 levels decay slowly toward the outdoor background level. All high CO2 concentrations observed inside the classroom, above the outdoor background, was due to exhaling of the occupants. The CO2 concentrations generally exceed the recommended level of 1000 ppb towards the end of the school day. The exceedances and slow decay may suggest that the ventilation rate in this school is not sufficient. The particulate level in the classroom was low until a distant wildfire advected large amount of particulate matter to the San Francisco Bay Area. Very high (10–15 times compared to the background) particle numbers (per m3 of particles with diameter >0.3 µm) were observed in the classroom during the wildfire. These particles were relatively small (0.3–1.0 µm) and the filters (MERV 8) of the ventilation system were unable to filter them out. Therefore, the measurements made by low-cost particle counters can inform the school administrators of adverse IAQ during future wildfire (or other combustion) events. The particle number was independent of the occupation before and during the wildfire suggesting that all observed particles were infiltrated into the classroom from outside. Consistent with previous studies, no appreciable increase in the local ambient CO2 background was observed during this distant wildfire event.

Implications: Low-cost air sensors are effective in monitoring indoor air quality in classrooms. The CO2 levels in classrooms are mainly generated indoors due to exhalation of occupants. Concentration of CO2 generally exceed the recommended level of 1000 ppb towards the end of the school day. In contrast, the particulate matter mostly comes from outdoors and small particles penetrate though the filters normally used at schools. Distant wildfires do not increase the local CO2 background appreciably, but significantly increase the particulate matter concentrations both indoors and outdoors. Further investigations are needed to assure that ventilation rates in classrooms are sufficiently health protective.  相似文献   

2.
The objectives of this study were: (1) to quantify the errors associated with saturation air quality monitoring in estimating the long-term (i.e., annual and 5 yr) mean at a given site from four 2-week measurements, once per season; and (2) to develop a sampling strategy to guide the deployment of mobile air quality facilities for characterizing intraurban gradients of air pollutants, that is, to determine how often a given location should be visited to obtain relatively accurate estimates of the mean air pollutant concentrations. Computer simulations were conducted by randomly sampling ambient monitoring data collected in six Canadian cities at a variety of settings (e.g., population-based sites, near-roadway sites). The 5-yr (1998-2002) dataset consisted of hourly measurements of nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), sulfur dioxide (SO2), coarse particulate matter (PM10), fine particulate matter (PM2.5), and CO. The strategy of randomly selecting one 2-week measurement per season to determine the annual or long-term average concentration yields estimates within 30% of the true value 95% of the time for NO2, PM10 and NOx. Larger errors, up to 50%, are expected for NO, SO2, PM2.5, and CO. Combining concentrations from 85 random 1-hr visits per season provides annual and 5-yr average estimates within 30% of the true value with good confidence. Overall, the magnitude of error in the estimates was strongly correlated with the variability of the pollutant. A better estimation can be expected for pollutants known to be less temporally variable and/or over geographic areas where concentrations are less variable. By using multiple sites located in different settings, the relationships determined for estimation error versus number of measurement periods used to determine long-term average are expected to realistically portray the true distribution. Thus, the results should be a good indication of the potential errors one could expect in a variety of different cities, particularly in more northern latitudes.  相似文献   

3.
Wang XK  Lu WZ 《Chemosphere》2006,63(8):1261-1272
Air pollution is an important and popular topic in Hong Kong as concerns have been raised about the health impacts caused by vehicle exhausts in recent years. In Hong Kong, sulphur dioxide SO2, nitrogen dioxide (NO2), nitric oxide (NO), carbon monoxide (CO), and respirable suspended particulates (RSP) are major air pollutants caused by the dominant usage of diesel fuel by goods vehicles and buses. These major pollutants and the related secondary pollutant, e.g., ozone (O3), become and impose harmful impact on human health in Hong Kong area after the northern shifting of major industries to Mainland China. The air pollution index (API), a referential parameter describing air pollution levels, provides information to enhance the public awareness of air pollutions in time series since 1995. In this study, the varying trends of API and the levels of related air pollutants are analyzed based on the database monitored at a selected roadside air quality monitoring station, i.e., Causeway Bay, during 1999-2003. Firstly, the original measured pollutant data and the resultant APIs are analyzed statistically in different time series including daily, monthly, seasonal patterns. It is found that the daily mean APIs in seasonal period can be regarded as stationary time series. Secondly, the auto-regressive moving average (ARMA) method, implemented by Box-Jenkins model, is used to forecast the API time series in different seasonal specifications. The performance evaluations of the adopted models are also carried out and discussed according to Bayesian information criteria (BIC) and root mean square error (RMSE). The results indicate that the ARMA model can provide reliable, satisfactory predictions for the problem interested and is expecting to be an alternative tool for practical assessment and justification.  相似文献   

4.
Chan LY  Kwok WS  Chan CY 《Chemosphere》2000,41(1-2):93-99
The aim of this study is to evaluate the particulate air pollution in selected roadside microenvironments of Hong Kong through an intensive field study dated from January 1997 to February 1997. The study employed the microenvironment monitoring technique to access the exposure of pedestrians to respirable suspended particulate and airborne lead (Pb) at heavily trafficked roadsides. A total of 62 roadside sites in 14 districts covering the most urbanized and densely populated areas were selected. It was found that pedestrians were exposed to a 24 h average of respirable suspended particulate, PM10, and airborne Pb (APb), typically ranged from 25.56 to 337.40 microg/m3 and 70.71 to 285.71 ng/m3, respectively. The average PM10 concentrations at different roadside microenvironments corresponding to urban residential, urban commercial, urban industrial and new town areas were 91.84, 129.08, 83.83, and 118.89 microg/m3 respectively. The corresponding values for APb were 130.01, 143.40, 127.40 and 173.17 ng/m3, respectively. It was found that measurement at EPD nearby rooftop monitoring stations might not reflect the actual roadside PM10 exposure. Most APb field study data was significantly higher than the nearby fixed station data.  相似文献   

5.
Concentrations of air pollutants, nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), ozone (O(3)), particulate matter (PM(2.5) and PM(10)), trace metals, and polycyclic aromatic hydrocarbons (PAHs) were measured in 2008 and 2009 in the city of Eski?ehir, central Turkey. Spatial distributions of NO(2), SO(2), and ozone were determined by passive sampling campaigns carried out during two different seasons with fairly large spatial coverage. A basic population exposure assessment was carried out employing Geographical Information System techniques by combining population density maps with pollutant distribution maps of NO(2) and SO(2). It was found that 95 % of the population is exposed to NO(2) levels close to the World Health Organization guideline value. Regarding SO(2), a large proportion of the population (83 %) is exposed to levels above the WHO second interim target value. Concentrations of all the pollutants showed a seasonal pattern increasing in winter period, except for ozone having higher concentrations in summer season. Daily PM(10) and PM(2.5) concentrations exceeded European Union limit values almost every sampling day. Toxic fractions of the measured PAHs were calculated and approximately fourfold increase was observed in winter period. Copper, Pb, Sn, As, Cd, Zn, Sb, and Se were found to be moderately to highly enriched in PM(10) fraction, indicating anthropogenic input to those elements measured. Exposure assessment results indicate the need for action to reduce pollutant emissions especially in the city center. Passive sampling turns out to be a practical and economical tool for air quality assessment with large spatial coverage.  相似文献   

6.
室内空气中颗粒物污染特征研究   总被引:1,自引:0,他引:1  
为获得室内空气颗粒物污染特征,2009年8月18~24日在某单位工作及生活区选取4个室内点和1个室外点进行颗粒物采样和成分分析.结果表明,室内粗颗粒(PM10)符合<室内空气质量标准>(GB/T 18883-2002),而细粒子(PM2.5)的浓度水平较高,表明室内PM2.5的污染较重;室内与室外PM2.5比值显示,P...  相似文献   

7.
Resuspension experiments were performed in a single-family residence. Resuspension by human activity was found to elevate the mass concentration of indoor particulate matter with an aerodynamic diameter less than 10 microm (PM10) an average of 2.5 times as high as the background level. As summarized from 14 experiments, the average estimated PM10 resuspension rate by a person walking on a carpeted floor was (1.4 +/- 0.6) x 10(-4) hr(-1). The estimated residence time for PM in the indoor air following resuspension was less than 2 hr for PM10 and less than 3 hr for 2-microm tracer particles. However, experimental results show that the 2-microm tracer particles stayed in the combined indoor air and surface compartments much longer (>19 days). Using a two-compartment model to simulate a regular deposition and resuspension cycle by normal human activity (e.g., walking and sitting on furniture), we estimated residence time for 2-microm conservative particulate pollutants to be more than 7 decades without vacuum cleaning, and months if vacuum cleaning was done once per week. This finding supports the observed long residence time of persistent organic pollutants in indoor environments. This study introduces a method to evaluate the particle resuspension rate from semicontinuous concentration data of particulate matter (PM). It reveals that resuspension and subsequent exfiltration does not strongly affect the overall residence time of PM pollutants when compared with surface cleaning. However, resuspension substantially increases PM concentration, and thus increases short-term inhalation exposure to indoor PM pollutants.  相似文献   

8.
An indoor size-dependent particulate matter (PM) transport approach is developed to investigate coarse PM (PM10), fine PM (PM2.5), and very fine PM (PM1) removal behaviors in a ventilated partitioned indoor environment. The approach adopts the Eulerian large eddy simulation of turbulent flow and the Lagrangian particle trajectory tracking to solve the continuous airflow phase and the discrete particle phase, respectively. Model verification, including sensitivity tests of grid resolution and particle numbers, is conducted by comparison with the full-size experiments conducted previously. Good agreement with the measured mass concentrations is found. Numerical scenario simulations of the effect of ventilation patterns on PM removal are performed by using three common ventilation patterns (piston displacement, mixing, and cross-flow displacement ventilation) with a measured indoor PM10 profile in the Taipei metropolis as the initial condition. The temporal variations of suspended PM10, PM2.5, and PM1 mass concentrations and particle removal mechanisms are discussed. The simulated results show that for all the of the three ventilation patterns, PM2.5 and PM1 are much more difficult to remove than PM10. From the purpose of health protection for indoor occupants, it is not enough to only use the PM10 level as the indoor PM index. Indoor PM2.5 and PM1 levels should be also considered. Cross-flow displacement ventilation is more effective to remove all PM10, PM2.5, and PM1 than the other ventilation patterns. Displacement ventilation would result in more escaped particles and less deposited particles than mixing ventilation.  相似文献   

9.
The objective of this project is to demonstrate how the ambient air measurement record can be used to define the relationship between O3 (as a surrogate for photochemistry) and secondary particulate matter (PM) in urban air. The approach used is to develop a time-series transfer-function model describing the daily PM10 (PM with less than 10 microm aerodynamic diameter) concentration as a function of lagged PM and current and lagged O3, NO or NO2, CO, and SO2. Approximately 3 years of daily average PM10, daily maximum 8-hr average O3 and CO, daily 24-hr average SO2 and NO2, and daily 6:00 a.m.-9:00 a.m. average NO from the Aerometric Information Retrieval System (AIRS) air quality subsystem are used for this analysis. Urban areas modeled are Chicago, IL; Los Angeles, CA; Phoenix, AZ; Philadelphia, PA; Sacramento, CA; and Detroit, MI. Time-series analysis identified significant autocorrelation in the O3, PM10, NO, NO2, CO, and SO2 series. Cross correlations between PM10 (dependent variable) and gaseous pollutants (independent variables) show that all of the gases are significantly correlated with PM10 and that O3 is also significantly correlated lagged up to two previous days. Once a transfer-function model of current PM10 is defined for an urban location, the effect of an O3-control strategy on PM concentrations is estimated by calculating daily PM10 concentrations with reduced O3 concentrations. Forecasted summertime PM10 reductions resulting from a 5 percent decrease in ambient O3 range from 1.2 microg/m3 (3.03%) in Chicago to 3.9 microg/m3 (7.65%) in Phoenix.  相似文献   

10.
Paired indoor and outdoor concentrations of fine and coarse particulate matter (PM), PM2.5 reflectance [black carbon(BC)], and nitrogen dioxide (NO2) were determined for sixteen weeks in 2008 at four elementary schools (two in high and two in low traffic density zones) in a U.S.-Mexico border community to aid a binational health effects study. Strong spatial heterogeneity was observed for all outdoor pollutant concentrations. Concentrations of all pollutants, except coarse PM, were higher in high traffic zones than in the respective low traffic zones. Black carbon and NO2 appear to be better traffic indicators than fine PM. Indoor air pollution was found to be well associated with outdoor air pollution, although differences existed due to uncontrollable factors involving student activities and building/ventilation configurations. Results of this study indicate substantial spatial variability of pollutants in the region, suggesting that children’s exposures to these pollutants vary based on the location of their school.  相似文献   

11.
Indoor air quality in selected indoor environments in Hong Kong such as homes, offices, schools, shopping malls and restaurants were investigated. Average CO2 levels and total bacteria counts in air-conditioned classrooms, shopping malls and restaurants were comparatively higher than those measured in occupied offices and homes. Elevated CO2 levels exceeding 1000 ppm and total bacteria counts resulted from high occupancy combined with inadequate ventilation. Average PM10 levels were usually higher indoors than outdoors in homes, shopping malls and restaurants. The highest indoor PM10 levels were observed at investigated restaurants due to the presence of cigarette smoking and extensive use of gas stoves for cooking. The restaurants and shopping malls investigated had higher formaldehyde levels than other indoor environments when building material, smoking and internal renovation work were present. Volatile organic compounds (VOCs) in both indoor and outdoor environments mainly resulted from vehicle exhaust emissions. It was observed that interior decoration work and the use of industrial solvents in an indoor environment could significantly increase the indoor levels of VOCs.  相似文献   

12.
Abstract

This paper describes a statistic to quantify spatial representativeness for the air measurements of an urban fixed-site ambient air monitoring station. The application of such a statistic of representativeness has also been successfully demonstrated by two data sets collected at the Gu-Ting monitoring station in Taipei. By measuring NO2 at 22 sites simultaneously around the Gu-Ting station, the statistic has characterized different degrees of spatial representativeness for nitrogen dioxide (NO2) at various areas and microenvironments surrounding this fixed-site monitoring station. By measuring ambient air concentrations at six sites sequentially around the Gu-Ting station, the statistic has also characterized different degrees of representativeness for particulates less than 10 urn in size—(PM10), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), NO2, nitrogen oxides (NOX), nitrogen monoxide (NO), total hydrocarbons (THC), and nonmethane hydrocarbons (NMHQ—at an open area surrounding this fixed-site monitoring station. This statistical method identifies the Gu-Ting station is well representative of outdoor concentrations of all nine air pollutants for a period of three weeks at the areas within a 700 m radius around this station. The indoor NO2 concentrations, however, are not represented by the measurements at the fixed-site monitoring station.  相似文献   

13.
Human health effects of air pollution   总被引:21,自引:0,他引:21  
Hazardous chemicals escape to the environment by a number of natural and/or anthropogenic activities and may cause adverse effects on human health and the environment. Increased combustion of fossil fuels in the last century is responsible for the progressive change in the atmospheric composition. Air pollutants, such as carbon monoxide (CO), sulfur dioxide (SO(2)), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone (O(3)), heavy metals, and respirable particulate matter (PM2.5 and PM10), differ in their chemical composition, reaction properties, emission, time of disintegration and ability to diffuse in long or short distances. Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs. It ranges from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks. In addition, short- and long-term exposures have also been linked with premature mortality and reduced life expectancy. These effects of air pollutants on human health and their mechanism of action are briefly discussed.  相似文献   

14.
In response to community concerns, the air quality impact of imploding a 22-story building in east Baltimore, MD, was studied. Time- and space-resolved concentrations of indoor and outdoor particulate matter (PM) (nominally 0.5-10 microm) were measured using a portable nephelometer at seven and four locations, respectively. PM10 levels varied in time and space; there was no measurable effect observed upwind of the implosion. The downwind peak PM10 levels varied with distance (54,000-589 microg/m3) exceeding pre-implosion levels for sites 100 and 1130 m 3000- and 20-fold, respectively. Estimated outdoor 24-hr integrated mass concentrations varied from 15 to 72 microg/m3. The implosion did not result in the U.S. Environmental Protection Agency (EPA) National Ambient Air Quality Standard (NAAQS) for PM10 being exceeded. X-ray fluorescence analysis indicated that the elemental composition was dominated by crustal elements: calcium (57%), silicon (23%), aluminum (7.6%), and iron (6.1%). Lead was above background but at a low level (0.17 microg/m3). Peak PM10 concentrations were short-lived; most sites returned to background within 15 min. No increase in indoor PM10 was observed even at the most proximate 250 m location. These results demonstrate that a building implosion can have a severe but short-lived impact on community air quality. Effective protection is offered by being indoors or upwind.  相似文献   

15.
Concentrations of particulate matter (PM) and carbonaceous particulates in indoor and outdoor air at roadside private households were measured in Osaka, Japan. The particulate samples were collected on filters using a portable AND sampler capable of separating particles into three different size ranges: over 10 microm, 2-10 microm (coarse) and below 2 microm (fine) in aerodynamic diameter. The filters were weighed and then analyzed for elemental carbon (EC) and organic carbon (OC) by thermal oxidation using a CHN CORDER. The results showed that indoor fine PM concentration is considerably affected by fine EC and the fine EC in indoor air is significantly correlated to that in outdoor air, r=0.86 (n=30, p<0.001). A simple estimation from EC content ratio in diesel exhaust particles indicated that about 30% of indoor particulates of less than 10 microm (PM10) were contributed from diesel exhaust. Additionally, the size characteristics of outdoor PM at roadside and background sites were examined using Andersen Cascade Impactors.  相似文献   

16.
Crop residue burning is an extensive agricultural practice in the contiguous United States (CONUS). This analysis presents the results of a remote sensing-based study of crop residue burning emissions in the CONUS for the time period 2003-2007 for the atmospheric species of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrogen dioxide (NO2, sulfur dioxide (SO2), PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter), and PM10 (PM < or = 10 microm in aerodynamic diameter). Cropland burned area and associated crop types were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Emission factors, fuel load, and combustion completeness estimates were derived from the scientific literature, governmental reports, and expert knowledge. Emissions were calculated using the bottom-up approach in which emissions are the product of burned area, fuel load, and combustion completeness for each specific crop type. On average, annual crop residue burning in the CONUS emitted 6.1 Tg of CO2, 8.9 Gg of CH4, 232.4 Gg of CO, 10.6 Gg of NO2, 4.4 Gg of SO2, 20.9 Gg of PM2.5, and 28.5 Gg of PM10. These emissions remained fairly consistent, with an average interannual variability of crop residue burning emissions of +/- 10%. The states with the highest emissions were Arkansas, California, Florida, Idaho, Texas, and Washington. Most emissions were clustered in the southeastern United States, the Great Plains, and the Pacific Northwest. Air quality and carbon emissions were concentrated in the spring, summer, and fall, with an exception because of winter harvesting of sugarcane in Florida, Louisiana, and Texas. Sugarcane, wheat, and rice residues accounted for approximately 70% of all crop residue burning and associated emissions. Estimates of CO and CH4 from agricultural waste burning by the U.S. Environmental Protection Agency were 73 and 78% higher than the CO and CH4 emission estimates from this analysis, respectively. This analysis also showed that crop residue burning emissions are a minor source of CH4 emissions (< 1%) compared with the CH4 emissions from other agricultural sources, specifically enteric fermentation, manure management, and rice cultivation.  相似文献   

17.
The shipping industry has been an unrecognized source of criteria pollutants: nitrogen oxides (NOx), volatile organic compounds, coarse particulate matter (PM10), fine particulate matter (PM2.5), sulfur dioxide (SO2), and carbon monoxide (CO). Liquefied natural gas (LNG) has traditionally been transported via steam turbine (ST) ships. Recently, LNG shippers have begun using dual-fuel diesel engines (DFDEs) to propel and offload their cargoes. Both the conventional ST boilers and DFDE are capable of burning a range of fuels, from heavy fuel oil to boil-off-gas (BOG) from the LNG load. In this paper a method for estimating the emissions from ST boilers and DFDEs during LNG offloading operations at berth is presented, along with typical emissions from LNG ships during offloading operations under different scenarios ranging from worst-case fuel oil combustion to the use of shore power. The impact on air quality in nonattainment areas where LNG ships call is discussed. Current and future air pollution control regulations for ocean-going vessels (OGVs) such as LNG ships are also discussed. The objective of this study was to estimate and compare emissions of criteria pollutants from conventional ST and DFDE ships using different fuels. The results of this study suggest that newer DFDE ships have lower SO2 and PM2.5/PM10 emissions, conventional ST ships have lower NOx, volatile organic compound, and CO emissions; and DFDE ships utilizing shore power at berth produce no localized emissions because they draw their required power from the local electric grid.  相似文献   

18.
Prior to this study, indoor air constituent levels and ventilation rates of hospitality environments had not been measured simultaneously. This investigation measured indoor Environmental Tobacco Smoke-related (ETS-related) constituent levels in two restaurants, a billiard hall and a casino. The objective of this study was to characterize ETS-related constituent levels inside hospitality environments when the ventilation rates satisfy the requirements of the ASHRAE 62-1989 Ventilation Standard. The ventilation rate of each selected hospitality environment was measured and adjusted. The study advanced only if the requirements of the ASHRAE 62-1989 Ventilation Standard – the pertinent standard of the American Society of Heating, Refrigeration and Air Conditioning Engineers – were satisfied. The supply rates of outdoor air and occupant density were measured intermittently to assure that the ventilation rate of each facility satisfied the standard under occupied conditions. Six ETS-related constituents were measured: respirable suspended particulate (RSP) matter, fluorescent particulate matter (FPM, an estimate of the ETS particle concentrations), ultraviolet particulate matter (UVPM, a second estimate of the ETS particle concentrations), solanesol, nicotine and 3-ethenylpyridine (3-EP). ETS-related constituent levels in smoking sections, non-smoking sections and outdoors were sampled daily for eight consecutive days at each hospitality environment. This study found that the difference between the concentrations of ETS-related constituents in indoor smoking and non-smoking sections was statistically significant. Differences between indoor non-smoking sections and outdoor ETS-related constituent levels were identified but were not statistically significant. Similarly, differences between weekday and weekend evenings were identified but were not statistically significant. The difference between indoor smoking sections and outdoors was statistically significant. Most importantly, ETS-related constituent concentrations measured indoors did not exceed existing occupational standards. It was concluded that if the measured ventilation rates of the sampled facilities satisfied the ASHRAE 62-1989 Ventilation Standard requirements, the corresponding ETS-related constituents were measured at concentrations below known harmful levels as specified by the American Conference of Governmental Industrial Hygiene (ACGIH).  相似文献   

19.
The main goal of this study was to evaluate the magnitude of outdoor exposure to fine particulate matter (PM10) potentially experienced by the population of metropolitan Mexico City. With the use of a geographic information system (GIS), spatially resolved PM10 distributions were generated and linked to the local population. The PM10 concentration exceeded the 24-hr air quality standard of 150 microg/m3 on 16% of the days, and the annual air quality standard of 50 microg/m3 was exceeded by almost twice its value in some places. The basic methodology described in this paper integrates spatial demographic and air quality databases, allowing the evaluation of various air pollution reduction scenarios. Achieving the annual air quality standard would represent a reduction in the annual arithmetic average concentration of 14 microg/m3 for the typical inhabitant. Human exposure to particulate matter (PM) has been associated with mortality and morbidity in Mexico City; reducing the concentration levels of this pollutant would represent a reduction in mortality and morbidity and the associated cost of such impacts. This methodology is critical to assessing the potential benefits of the current initiative to improve air quality implemented by the Environmental Metropolitan Commission of Mexico City.  相似文献   

20.
A study of carbonaceous aerosol was initiated in Nanchang, a city in eastern China, for the first time. Daily and diurnal (daytime and nighttime) PM2.5 (particulate matter with aerodynamic diameter < or =2.5 microm) samples were collected at an outdoor site and in three different indoor environments (common office, special printing and copying office, and student dormitory) in a campus of Nanchang University during summer 2009 (5-20 June). Daily PM10 (particulate matter with aerodynamic diameter < or =10 microm) samples were collected only at the outdoor site, whereas PM2.5 samples were collected at both indoor and outdoor sites. Loaded PM2.5 and PM10 samples were analyzed for organic and elemental carbon (OC, EC) by thermal/optical reflectance following the Interagency Monitoring of Protected Visual Environments-Advanced (IMPROVE-A) protocol. Ambient mass concentrations of PM10 and PM2.5 in Nanchang were compared with the air quality standards in China and the United States, and revealed high air pollution levels in Nanchang. PM2.5 accounted for about 70% of PM10, but the ratio of OC and EC in PM2.5 to that in PM10 was higher than 80%, which indicated that OC and EC were mainly distributed in the fine particles. The variations of carbonaceous aerosol between daytime and nighttime indicated that OC was released and formed more rapidly in daytime than in nighttime. OC/EC ratios were used to quantify secondary organic carbon (SOC). The differences in SOC and SOC/OC between daytime and nighttime were useful in interpreting the secondary formation mechanism. The results of (1) OC and EC contributions to PM2.5 at indoor sites and the outdoor site; (2) indoor-outdoor correlation of OC and EC; (3) OC-EC correlation; and (4) relative contributions of indoor and outdoor sources to indoor carbonaceous aerosol indicated that OC indoor sources existed in indoor sites, with the highest OC emissions in I2 (the special printing and copying office), and that indoor EC originated from outdoor sources. The distributions of eight carbon fractions in emissions from the printer and copier showed obviously high OC1 (>20%) and OC2 (approximately 30%), and obviously low EC1-OP (a pyrolyzed carbon fraction) (<10%), when compared with other sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号