首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prediction of phenanthrene uptake by plants with a partition-limited model   总被引:12,自引:0,他引:12  
The performance of a partition-limited model on prediction of phenanthrene uptake by a wide variety of plant species was evaluated using a greenhouse study. The model predictions of root or shoot concentrations for tested plant species were all within an order of magnitude of the observed values. Modeled root concentrations appeared to be more accurate than modeled shoot concentrations. The differences of simulated and experimented concentrations of phenanthrene in roots and shoots of three representative plant species, including ryegrass, flowering Chinese cabbage, and three-colored amaranth, were less than 81% for roots and 103% for shoots. Results are promising in that the alpha(pt) values of the partition-limited model for root uptake of phenanthrene correlate well with root lipid contents. Additionally, a significantly positive correlation is also observed between root concentration factors (RCFs, defined as the ratio of contaminant concentrations in root and in soil on a dry weight basis) of phenanthrene and root lipid contents. Results from this study suggest that the partition-limited model may have potential applications for predicting the plant PAH concentration in contaminated sites.  相似文献   

2.

Polycyclic aromatic hydrocarbons as byproducts of carbon-based fuel combustion are an important group of pollutants with wide distribution in the environment. Polycyclic aromatic hydrocarbons are known as toxic compounds for almost all organisms. Different plant species can uptake polycyclic aromatic hydrocarbons by roots and translocate them to various aerial parts. The aim of this study is to investigate the uptake, translocation, and accumulation of pyrene and phenanthrene in maize under controlled conditions. Seeds were cultivated in perlite containing 25, 50, 75, and 100 ppm of phenanthrene and pyrene, and their concentrations in the roots and shoots of the plants were measured using high-performance liquid chromatography technique after 7, 14, and 21 days. The results revealed that phenanthrene naturally existed in maize and its concentration showed a time-dependent decrease in shoots and roots. In contrast, the concentration of pyrene was increased in the roots and reduced in the shoots. Although pyrene had higher uptake than phenanthrene in roots of maize, the translocation factor value for pyrene was lower than for phenanthrene. According to these findings, phenanthrene could be metabolized in maize in the shoot and root tissues, but pyrene had more tendency to be accumulated in roots.

  相似文献   

3.
Nicotiana glauca Graham, is the only perennial shrub growing in a solid waste contaminated site in the Negev desert of Israel. The concentration of heavy metals (Cu, Fe, Mn, Zn, Ni, Cd and Pb) in the upper soil layer was significantly higher (p<0.01) than in non-contaminated desert soil. In root and shoot of N. glauca, growing in the site, the concentration of Cu, Zn and Fe was significantly higher (p<0.05) than in plants of a non-contaminated site. In a controlled experiment, the concentrations of Zn and Cu in root of plants grown, in a mixture of contaminated and non-contaminated soil (1:1) was 9.5 and 4.7 higher than that of plants grown in non-contaminated soil, respectively. While Zn was accumulated in shoot of plants grown in contaminated soil (531 mgkg(-1)) in significantly higher concentration than in plants grown in non-contaminated soil (56 mgkg(-1)), no significant differences were found in Cu accumulation. Growth of N. glauca was inhibited on contaminated soil, but no other obvious stress symptoms were apparent. Therefore, long term experiments under controlled conditions are planned to study the mechanism of heavy metal tolerance and accumulation in N. glauca.  相似文献   

4.
Gao Y  Shen Q  Ling W  Ren L 《Chemosphere》2008,72(4):636-643
A greenhouse study examined plant uptake of phenanthrene and pyrene, as representatives of polycyclic aromatic hydrocarbons (PAHs), from an aqueous solution containing a nonionic surfactant Tween 80. The uptake was conducted with 1.0 mg l(-1) phenanthrene and 0.12 mg l(-1) pyrene under a wide range of Tween 80 concentrations (0-105.6 mg l(-1)). Tween 80 at the test concentrations did not show any apparent phytotoxity toward the growth of red clover (Trifolium pretense L.). At concentrations generally lower than 13.2 mg l(-1), Tween 80 enhanced the plant uptake based on the concentrations and PCFs (plant concentration factors) of these two PAHs. When present at higher concentrations, Tween 80 inhibited the uptake of both PAH compounds by the tested plant. The maximal plant uptake was observed at 6.6 mg l(-1) Tween 80, in which PAH concentrations and PCFs were 18-115% higher than those in Tween 80-free controls. The total mass removal (off-take) of phenanthrene and pyrene by root or shoot increased initially and decreased thereafter with the increase in Tween 80 concentrations. Although shoot biomass was evidently larger than root, the off-take was much higher in root than shoot because of the larger root concentrations of these chemicals. Results from this study show promises for the potential efficacy of enhanced phytoremediation in PAH contaminated sites using surfactant amendment.  相似文献   

5.
The Siam weed, Chromolaena odorata (L.) King & Robinson, Family Asteraceae, was found to be a new Pb hyperaccumulator by means of field surveys on Pb soil and hydroponic studies. Plants from field collection accumulated 1377 and 4236mgkg(-1) Pb in their shoots and roots, respectively, and could tolerate soil Pb concentrations up to 100000 mgkg(-1) with a translocation factor of 7.62. Very low concentrations of Cd and Zn were found in plants collected from the field. Under nutrient solution culture condition, C. odorata from the contaminated site (CS) and from non-contaminated site (NCS) grew normally with all three metals (Pb, Cd, Zn) supplied. However, the relative growth rates of all treated plants decreased with increased metal concentrations. The percentage uptakes of Pb, Cd, and Zn by C. odorata increased with increasing metal concentrations. Pb concentration in shoots and roots reached its highest values (1772.3 and 60655.7mgkg(-1), respectively) at a Pb supply level of 10mgl(-1). While the maximum concentrations of Cd (0.5mgl(-1)) in shoots and roots of C. odorata were 102.3 and 1440.9mgkg(-1), and the highest concentrations of Zn (20mgl(-1)) were 1876.0 and 7011.8mgkg(-1), respectively. The bioaccumulation coefficients of Pb and Cd were greater than 1000. These results confirm that C. odorata is a hyperaccumulator which grows rapidly, has substantial biomass, wide distribution and has a potential for the phytoremediation of metal contaminated soils.  相似文献   

6.
The uptake of selected polycyclic aromatic hydrocarbons (PAHs) by rice (Oryza sativa) seedlings from spiked aged soils was investigated. When applied to soils aged for 4 months, naphthalene, phenanthrene, and pyrene exhibited volatilization loss of 98, 95, and 30%, respectively, with the remaining fraction being fixed by soil organic matter and/or degraded by soil microbes. In general, concentrations of the three PAHs in rice roots were greater than those in the shoots. The concentrations of root associated PHN and PYR increased proportionally with both soil solution and rhizosphere concentrations. PAH concentrations in shoots were largely independent of those in soil solution, rice roots, or rhizosphere soil. The relative contributions of plant uptake and plant-promoted rhizosphere microbial biodegradation to the total mass balance were 0.24 and 14%, respectively, based on PYR concentrations in rhizosphere and non-rhizosphere soils, the biomass of rice roots, and the dry soil weight.  相似文献   

7.
Genotypic and environmental variation in Cr, Cd and Pb concentrations of rice grains and the interaction between these metals were investigated by using 138 rice genotypes grown in three contaminated soils. There were significant genotypic differences in the three heavy metal concentrations of rice grains, with the absolute difference among 138 genotypes in grain Cr, Cd and Pb concentrations being 24.5-, 9.1- and 23.8-folds, respectively, under the slightly contaminated soil (containing 4.61mgkg(-1) Cr, 1.09mgkg(-1) Cd and Pb 28.28mgkg(-1), respectively). A highly significant interaction occurred between genotype and environment (soil type) in the heavy metal concentrations of rice grains. Cr concentration in rice grains was not correlated with Cd and Pb concentration. However, there was a significant correlation between Cd and Pb in slightly and highly contaminated soils. The results suggest the possibility to develop the rice cultivars with low Cd and Pb concentrations in grain.  相似文献   

8.
Accumulation of phenanthrene and pyrene in rhizosphere soil   总被引:14,自引:0,他引:14  
A study was conducted to determine PAH concentrations in the rhizosphere of plants grown in soil containing phenanthrene or pyrene. The rhizosphere of tall fescue and wheat grown in sterile soil contained 4-5-fold higher pyrene concentrations than unplanted soil. The rhizosphere of several plant species grown in non-sterile soil temporarily contained appreciably more phenanthrene or pyrene than unplanted soil, but those PAHs were degraded with time. The data suggest that plants accumulate such hydrophobic compounds in the rhizosphere after facilitating their transport toward the roots.  相似文献   

9.
Vineyard soils have been contaminated by Cu as a consequence of the long-term use of Cu salts as fungicides against mildew. This work aimed at identifying which soil parameters were the best related to Cu bioavailability, as assessed by measuring the concentrations of Cu in shoots and roots of tomato cropped (in lab conditions) over a range of 29 (24 calcareous and five acidic) Cu-contaminated topsoils from a vine-growing area (22-398 mg Cu kg(-1)). Copper concentrations in tomato shoots remained in the adequate range and were independent of soil properties and soil Cu content. Conversely, strong, positive correlations were found between root Cu concentration, total soil Cu, EDTA- or K-pyrophosphate-extractable Cu and organic C contents in the 24 calcareous soils, suggesting a prominent role of organic matter in the retention and bioavailability of Cu. Such relations were not observed when including the five acidic soils in the investigated population, suggesting a major pH effect. Root Cu concentration appeared as a much more sensitive indicator of soil Cu bioavailability than shoot Cu concentration. Simple extractions routinely used in soil testing procedures (total and EDTA-extractable Cu) were adequate indicators of Cu bioavailability for the investigated calcareous soils, but not when different soil types were considered (e.g. acidic versus calcareous soils).  相似文献   

10.
Subterranean clover inoculated or not with the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown on soil containing six levels of 238U in the range 0-87 mg kg(-1). Increasing U concentration in soil enhanced the U concentration in roots and shoots of both mycorrhizal and nonmycorrhizal plants but had no significant effects on plant dry matter production or root AM colonization. Mycorrhizas increased the shoot dry matter and P concentration in roots and shoots, while in most cases, it decreased the Ca, Mg and K concentrations in plants. The AM fungus influenced U concentration in plants only in the treatment receiving 87 mg U kg(-1) soil. In this case, U concentration in shoots of nonmycorrhizal plants was 1.7 times that of shoots of mycorrhizal plants. These results suggested that mycorrhizal fungi can limit U accumulation by plants exposed to high levels of U in soil.  相似文献   

11.
Fan S  Li P  Gong Z  Ren W  He N 《Chemosphere》2008,71(8):1593-1598
Pot experiment was conducted to evaluate the phytoremediation of pyrene-contaminated soil using alfalfa (Medicago sativa L.). Alfalfa biomasses, microbial viable counts, dehydrogenase activity, residual pyrene concentration and pyrene removal percentage were determined after 60 days of alfalfa growth. The results indicated that pyrene had an inhibitive effect on alfalfa growth, and higher pyrene concentration seriously affected alfalfa growth. In addition, the inhibitive effect on the root was more severe than that on the shoot. When pyrene concentration reached 492 mg kg(-1) in soil, the shoot and root biomasses were only 34% and 22% of those of alfalfa growing in non-spiked soil, respectively. The rhizospheric bacterial and fungi counts were 5.0-7.5 and 1.8-2.3 times higher than those in non-rhizosphere soil, respectively. The residual concentrations of pyrene in the rhizosphere soil were lower than those in the non-rhizosphere soil. After 60 days, 69-85% and 59-80% of spiked pyrene disappeared from the rhizosphere and non-rhizosphere soils, respectively. The removal percentage decreased with increasing pyrene concentration. However, the average removal of pyrene in the rhizosphere soil was 6% higher than that in the non-rhizosphere soil. Therefore, the presence of alfalfa roots was effective in promoting the phytoremediation of freshly added pyrene into the soil.  相似文献   

12.
The effect of arbuscular mycorrhiza on heavy metal uptake and translocation was investigated in Cannabis sativa. Hemp was grown in the presence and absence of 100 microg g-1 Cd and Ni and 300 microg g-1 Cr(VI), and inoculated or not with the arbuscular mycorrhizal fungus Glomus mosseae. In our experimental condition, hemp growth was reduced in inoculated plants and the reduction was related to the degree of mycorrhization. The percentage of mycorrhizal colonisation was 42% and 9% in plants grown in non-contaminated and contaminated soil, suggesting a significant negative effect of high metal concentrations on plant infection by G. mosseae. Soil pH, metal bioavailability and plant metal uptake were not influenced by mycorrhization. The organ metal concentrations were not statistically different between inoculated and non-inoculated plants, apart from Ni which concentration was significantly higher in stem and leaf of inoculated plants grown in contaminated soil. The distribution of absorbed metals inside plant was related to the soil heavy metal concentrations: in plant grown in non-contaminated soil the greater part of absorbed Cr and Ni was found in shoots and no significant difference was determined between inoculated and non-inoculated plants. On the contrary, plants grown in artificially contaminated soil accumulated most metal in root organ. In this soil, mycorrhization significantly enhanced the translocation of all the three metals from root to shoot. The possibility to increase metal accumulation in shoot is very interesting for phytoextraction purpose, since most high producing biomass plants, such as non-mycorrhized hemp, retain most heavy metals in roots, limiting their application.  相似文献   

13.
Wu S  Wu E  Qiu L  Zhong W  Chen J 《Chemosphere》2011,83(4):429-434
To assess the toxic effects of phenanthrene on earthworms, we exposed Eisenia fetida to artificial soils supplemented with different concentrations (0.5, 2.5, 12.5, mgkg(-1) soil) of phenanthrene. The residual phenanthrene in the soil, the bioaccumulation of phenanthrene in earthworms, and the subsequent effects of phenanthrene on growth, anti-oxidant enzyme activities, and lipid peroxidation (LPO) were determined. The degradation rate of low concentrations of phenanthrene was faster than it was for higher concentrations, and the degradation half-life was 7.3d (0.5 mgkg(-1)). Bioaccumulation of phenanthrene in the earthworms decreased the phenanthrene concentration in soils, and phenanthrene content in the earthworms significantly increased with increasing initial soil concentrations. Phenanthrene had a significant effect on E. fetida growth, and the 14-d LC(50) was calculated as 40.67 mgkg(-1). Statistical analysis of the growth inhibition rate showed that the concentration and duration of exposure had significant effects on growth inhibition (p<0.001). Superoxide dismutase (SOD) activity increased at the beginning (2 and 7d) and decreased in the end (14 and 28 d). Catalase (CAT) activity in all treatments was inhibited from 1 to 14 d of exposure. However, no significant perturbations in malondialdehyde (MDA) content were noted between control and phenanthrene-treated earthworms except after 2d of exposure. These results revealed that bioaccumulation of phenanthrene in E. fetida caused concentration-dependent, sub-lethal toxicity. Growth and superoxide dismutase activity can be regarded as sensitive parameters for evaluating the toxicity of phenanthrene to earthworms.  相似文献   

14.
Yang Z  Zhu L 《Chemosphere》2007,67(2):402-409
Accurate modeling of the uptake and accumulation behavior of organic contaminants like polycyclic aromatic hydrocarbons (PAHs) in plants is essential to assess crop contamination and subsequent human exposure. In this study, the performance of a partition-limited model on predicting ryegrass uptake of PAHs (acenaphthene, fluorene, phenanthrene and pyrene) from water was evaluated and the major factors were examined. It was found that model predictions of PAH concentrations in roots and shoots of ryegrass were all within an order of magnitude of the observed values with the differences between estimated and measured concentrations less than 42.1% for roots and 78.4% for shoots. Since the model considered soil/water-plant pathway only, it was inevitable that simulated concentrations in shoots suffered a bigger error than those in roots due to the influence of foliar uptake, the other important pathway for PAHs. If the impact of foliar uptake was excluded, the accuracy of simulated shoot concentrations would be greatly enhanced, with the maximum prediction error reduced from 78.4% to 47.1% for pyrene. Other factors aside from foliar uptake were also examined, including aqueous PAH concentrations, uptake time, plant composition and chemical properties. These factors were found to influence the model performance generally through acting on the quasi-equilibrium factor (alpha(pt)). Results from this study substantiated the utility of this partition-limited model for vegetation-uptake assessment, and then provided some testimony valuable for the modification of a model with a better performance.  相似文献   

15.
Brian L. Worobey 《Chemosphere》1984,13(10):1103-1111
Three soils of varying organic matter (OM) concentrations (0, 1.7 and 57%) were treated with 3,3′4,4′-tetrachlorazobenzene (TCAB) at the 25 ppm level. Germinated soybeans(Glycinemax (L.) Merr.) were planted in the treated soils, along with controls, and grown for 12 days. The shoots, roots and soil were air-dried and analyzed for TCAB and 3,3′,4,4′-tetrachloroazoxybenzene (TCAOB). TCAB appears to translocate from the treated soil into the plant shoots and roots. Residue levels varied with the percentage organic matter of each soil; levels as high as 58.4 ppm were identified in roots of soybeans grown in 1.7% OM soil and 0.620 ppm in the shoots from 0% OM soil. TCAOB was identified in soil and root extracts with the highest levels in soybean roots grown in 0% OM soil, 0.317 ppm. Residues of TCAB and TCAOB decreased in soil and root and shoot tissues as percentage OM increased. Bound residues of TCAB were released from roots grown in 0% OM soil by refluxing with boron trifluoride methanol (BF3CH3OH).  相似文献   

16.
Soil ecotoxicity assessment using cadmium sensitive plants   总被引:15,自引:0,他引:15  
Four crop plant species (sweet corn, Zea may; wheat, Triticum aestivum; cucumber, Cucumis sativus; and sorghum, Sorghum bicolor) were tested to assess an ecotoxicity in cadmium-amended soils. The measurement endpoints used were seed germination and seedling growth (shoot and root). The presence of cadmium decreased the seedling growth. The medium effective concentration values (EC50) for shoot or root growth were calculated by the Trimmed Spearman-Karber method. Due to the greater accumulation of Cd to the roots, root growth was a more sensitive endpoint than shoot growth. Bioavailability and transport of Cd within plant were related to concentration and species. The ratio of bioaccumulation factor (BAF) in the shoots to the roots indicated high immobilization of Cd in the roots. Seed germination was insensitive to Cd toxicity, and is not recommended for a suitable assay. Among the test plants and test endpoints, root growth of sorghum and cucumber appears to be a good protocol to assess ecotoxicity of soils contaminated by Cd.  相似文献   

17.
Reducing the transfer of contaminants from soils to plants is a promising approach to produce safe agricultural products grown on contaminated soils. In this study, 0-400 mg/kg cetyltrimethylammonium bromide (CTMAB) and dodecylpyridinium bromide (DDPB) were separately utilized to enhance the sorption of PAHs onto soils, thereby reducing the transfer of PAHs from soil to soil solution and subsequently to plants. Concentrations of phenanthrene and pyrene in vegetables grown in contaminated soils treated with the cationic surfactants were lower than those grown in the surfactant-free control. The maximum reductions of phenanthrene and pyrene were 66% and 51% for chrysanthemum (Chrysanthemum coronarium L.), 62% and 71% for cabbage (Brassica campestris L.), and 34% and 53% for lettuce (Lactuca sativa L.), respectively. Considering the impacts of cationic surfactants on plant growth and soil microbial activity, CTMAB was more appropriate to employ, and the most effective dose was 100-200 mg/kg.  相似文献   

18.
The growth and metal uptake of two willow clones (Salix fragilis 'Belgisch Rood' and Salix viminalis 'Aage') was evaluated in a greenhouse pot experiment with six sediment-derived soils with increasing field Cd levels (0.9-41.4 mg kg-1). Metal concentrations of eight elements were measured in roots, stems and leaves and correlated to total and soil water metal concentrations. Dry weight root biomass, number of leaves and shoot length were measured to identify eventual negative responses of the trees. No growth inhibition was observed for both clones for any of the treatments (max. 41.4 mg kg-1 Cd, 1914 mg kg-1 Cr, 2422 mg kg-1 Zn, 655 mg kg-1 Pb), allowing their use for phytoextraction on a broad range of contaminated sediments. However, dry weight root biomass and total shoot length were significantly lower for S. viminalis compared to S. fragilis for all treatments. Willow foliar Cd concentrations were strongly correlated with soil and soil water Cd concentrations. Both clones exhibited high accumulation levels of Cd and Zn in aboveground plant parts, making them suitable subjects for phytoextraction research. Cu, Cr, Pb, Fe, Mn and Ni were found mainly in the roots. Bioconcentration factors of Cd and Zn in the leaves were highest for the treatments with the lowest soil Cd and Zn concentration.  相似文献   

19.
Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates.  相似文献   

20.
Phytoextraction is a promising tool to extract metals from contaminated soils and Brassica napus L. seems to be a possible candidate species for this purpose. To select accessions with the ability to accumulate cadmium, hydroponically grown 21 day old seedlings of 77 B. napus L. accessions were exposed to 0.2 microM CdSO(4) for an additional 10 days. The effects of Cd on several parameters were quantified i.e.; shoot Cd concentration ([Cd](shoot)), total amount of Cd in shoots (Total Cd) and the shoot to root Cd concentration ratio (S/R ratio). Though generally natural variation was low for [Cd](shoot), Total Cd and S/R ratio, a number of accessions could be selected. Our results indicated that Total Cd and S/R ratio are independent parameters for Cd accumulation and translocation. The selected varieties were then tested in field experiments on two locations nearby metal smelters. The two locations differed in extractable soil Cd, Zn, Ca concentration and pH levels. On both locations B. napus L. accessions showed significant differences in [Cd](shoot) and Total Cd. Furthermore we found significant correlations between Cd and Zn accumulation in shoots. There were site-specific effects with respect to Cd accumulation in the B. napus L. accessions, however, two accessions seem to perform equally well on both sites. The results of the field experiment suggest that certain B. napus L. accessions are suitable for phytoextraction of moderately heavy metal contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号