首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Juvenile weakfish, Cynoscion regalis (Bloch and Schneider, 1801), exhibit significant spatial diffrences in growth rate and condition factor among estuarine nursery zones in Delaware Bay. The potential influence of temperature and salinity on the suitability of estuarine nursery areas for juvenile weakfish was investigated in laboratory experiments by measuring ad libitum feeding rate, growth rate and gross growth efficiency of juveniles collected in Delaware Bay in 1990 (40 to 50 mm standard length; 1.4 to 2.1 g) in 12 temperature/salinity treatments (temperatures: 20, 24, 28°C; salinities: 5, 12, 19, 26 ppt) representing conditions encountered in different estuarine zones during spring/summer. Feeding rates (FR) increased significantly with temperature at all salinities, ranging from 10 to 15% body wt d-1 at 20°C to 33–39% body wt d-1 at 28°C. Specific growth rates (SGR) ranged from 1.4 to 9.4% body wt d-1 (0.3 to 1.5 mm d-1) and gross growth efficiencies (K 1) varied from 13.6 to 26.4% across temperature/salinity combinations. Based on nonlinear multiple regression models, predicted optimal temperatures for SGR and K 1 were 29 and 27°C, respectively. Salinity effects on SGR and K 1 were significant at 24 and 28°C where predicted optimal salinity was 20 ppt. At these warmer temperatures, SGR and K 1 were significantly lower at 5 than at 19 ppt despite higher FR at 5 ppt. Therefore, maximum growth rate and growth efficiency occurred under conditions characteristic of mesohaline nurseries. This finding is consistent with spatial patterns of growth in Delaware Bay, implying that physicochemical gradients influence the value of particular estuarine zones as nurseries for juvenile weakfish by affecting the energetics of feeding and growth. Laboratory results indicate a seasonal shift in the location of physiologically optimal nurseries within estuaries. During late spring/early summer, warmer temperatures in oligohaline areas permit higher feeding rate and faster growth compared to mesohaline areas. By mid-late summer, spatial temperature gradients diminish and mesohaline areas provide more suitable physicochemical conditions for growth rate and growth efficiency whereas oligohaline areas become energetically stressful. Substantial mortality occurred at 5 ppt and 28°C, providing additional evidence that oligohaline conditions are stressful during late summer. Furthermore, juveniles provided a choice among salinities in laboratory trials preferred those salinities which promoted higher growth rates. The extensive use of oligohaline nurseries by juvenile weakfish despite the potential for reduced growth rate and growth efficiency suggests this estuarine zone may provide a substantial refuge from predation.  相似文献   

2.
An Antarctic psychrophilic marine Vibrio species was isolated having the inducible ability to accumulate nonmetabolizable thiomethyl-14C--galactopyranoside (14C-TMG) through a galactose permease system. Induction of 14C-TMG uptake was found to have a salinity requirement which was higher than that required for uptake. At the optimum salinity, galactose and fucose were the primary inducers. Lactose produced a comparable induction but only at higher concentrations, whereas glucose did not cause induction. The initial rate of 14C-TMG uptake exhibited saturation kinetics with an apparent Km value of 4.8 x 10–6M. An amino acid, in addition to the inducer, was required for induction which could not be replaced by glycerol or galactose. Evidence is presented which indicates that the uptake of 14C-TMG is energy-dependent and that nutrient availability is more important than salinity for induction and uptake under conditions which would normally be found in the oceanic environment.Technical Paper No. 4911, Oregon Agricultural Experiment Station.  相似文献   

3.
Abstract

Interaction of Se up to 8?mg?kg?1 soil and Cd at 5 and 15?mg?kg?1 soil in wheat at different salinities was evaluated. Se concentrations in wheat shoots were progressively increased in parallel to Se in soil but decreased by addition of Cd. With increasing salinity, Cd concentrations increased and Se decreased. At low salinity, low addition of Se to the soil reduced Cd accumulation. At moderate and high salinities, only high Se amendment led to decline in Cd uptake, at the expense of reduction in biomass yield. Se at 0.5?mg?kg?1 soil alleviated the negative effect of Cd on shoot yield.  相似文献   

4.
We examined the impact of exposing natural populations of marine bacteria (from seawater collected near Woods Hole, Massachusetts, USA) to multiple nitrogen and carbon sources in a series of batch growth experiments conducted from 1989 through 1990. The substrate C:N ratio (C:Ns) was varied from 1.5:1 to 10:1 either with equal amounts of NH 4 + and different amino acids or an amino acid mixture, all supplemented with glucose to maintain the C:Ns ratio equal to that of the respective amino acid, or with combinations of glucose and NH 4 + alone. A common feature of the experiments involving amino acids was the concurrent uptake of NH 4 + and amino acids that persisted as long as a readily assimilable carbon source (glucose in our case) was taken up. There was no net regeneration of NH 4 + , even though catabolism of amino acids occurred. Regeneration of NH 4 + was evident only after glucose was completely utilized, which usually occurred at the end of exponential growth. The contribution of15NH 4 + to total nitrogen uptake by the end of exponential growth varied from ~60 to 80% when individual amino acids were present and down to ~24% when the amino acid mixture was added. These estimates are conservative because we did not account for possible isotope dilution effects resulting from amino acid catabolism. When NH 4 + and glucose were the sole nitrogen and carbon sources, there was a stoichiometric balance between glucose and NH 4 + uptake over a wide range of C:Ns ratios, leading to a constant bacterial biomass C:N ratio (C:NB) of ~4.5:1. As a result NH 4 + usage varied from 50% when the C:Ns ratio was 3.6:1, to 100% when the C:Ns ratio was 10:1. Gross growth efficiency varied from ~60% when NH 4 + plus glucose were added alone or with the amino acid mixture, to 47% when the individual amino acids were used in place of the mixture. It is thus evident that actively growing bacteria will act as sinks for nitrogen when a carbon source that can be assimilated easily is available to balance NH 4 + uptake, even when amino acids are available and are being co-metabolized.  相似文献   

5.
To assess the interaction between testosterone (T) treatment and acclimation to different salinities, seawater-acclimated gilthead sea bream (Sparus auratus) were implanted with slow-release coconut oil implants alone (control) or containing T (5 μg/g body mass). After 5 days, eight fish of control and T-treated groups were sampled. The same day, eight fish of each group were transferred to low salinity water (LSW, 6 ppt, hypoosmotic test), seawater (SW, 38 ppt, control test) and high salinity water (HSW, 55 ppt, hyperosmotic test) and sampled 9 days later. Gill Na+, K+-ATPase activity increased in HSW-acclimated fish with respect to SW- and LSW-acclimated fish in both control and T-treated groups. Kidney Na+, K+-ATPase activity was also enhanced in HSW-acclimated fish, but only in T-treated group. From a metabolic point of view, most of the changes observed can be attributed to the action of salinity and T treatment alone, since few interactions between T treatment and osmotic acclimation to different salinities were observed. Those interactions included in treated fish: in the liver, decreased capacity in using glucose in fish acclimated to extreme salinities; in the gills, decreased capacity in using amino acids in HSW; in the kidneys increased capacity in using amino acids in extreme salinities; and in the brain, decreased glycogen and acetoacetate levels of fish in LSW.  相似文献   

6.
The uptake of lead (Pb) and cadmium (Cd) by Rhizophora apiculata and Avicennia alba under various salinity levels was examined using hydroponic cultivations. After 3 months of exposure at four levels of Pb (0, 0.03, 0.3 and 3 mg·L?1) and four levels of Cd (0, 0.005; 0.05 and 0.5 mg·L?1) at different salinities (0, 15 and 30), uptake of the metals was shown to be differently affected by salinity. For uptake of Pb by R. apiculata, the salinity effect was not significant for the leaves and was most significant in the stem, whereas for A. alba, the effect of salinity was significant only in the stem. Uptake of Pb in the roots and stems of both species was similar, but a higher concentration was recorded in the leaves of A. alba. Salinity was shown to affect the uptake of Cd by all tissues of R. apiculata, but most significantly roots. For A. alba, salinity significantly affects the total uptake of Cd, but this is most significant in the roots. The two mangrove species demonstrated different mechanisms of metal distribution into their organs which may be related to different adaptation mechanisms to saline conditions.  相似文献   

7.
Glycolate excreted by phytoplankton is a potentially important nutrient for bacteria in coastal and estuarine environments. The metabolism of glycolate by Pseudomonas sp., strain S227, originally isolated from the New York Bight Apex, has been studied. The specific growth rate for this strain on glycolate is 0.156 doublings h-1. The apparent Vmax and Km for glycolate uptake are 83.6 nmol min-1 mg cell protein-1 and 7.4x10-8 M, respectively. The preferential respiration of the carboxyl carbon (C-1) and the incroporation of the hydroxymethyl carbon (C-2) suggest that the glycerate pathway is used for growth on glycolate. Alternatively, another pathway can be utilized which results in the complete catabolism of glycolate. Glycolate and lactate metabolism are also closely linked either by a common metabolic pathway or a common transport system other than the monocarboxylate transport system. The magnesium ion concentration is also important in glycolate metabolism. The characteristics of glycolate metabolism observed in Pseudomonas sp., strain S227, are advantageous in coastal and estuarine environments where glycolate production is intermittent, and the concentrations are low.  相似文献   

8.
Thallus segments of Fucus serratus L. and F. vesiculosus L. (Phaeophyceae, Fucales) were transferred into seawater media with a salinity range from 32.65 to 2.25 and maintained for at least 2 weeks. Several parameters of chemical composition as well as rates of photosynthetic and respiratory oxygen exchange, 14C-assimilate patterns, and release of 14C-assimilates into the culture medium have been investigated. Compared to controls, in both species dry weight, ash, chloride, and mannitol contents distinctly decline proportionally to reduction of salinity in the incubation media, whereas content of total N (in terms of protein content) remarkably increase. Respiratory O2-consumption is markedly increased at lower salinities, whereas rate of photosynthetic O2-evolution shows some depression. Relatively little effects of salinity changes are observed in distribution of photosynthetically assimilated 14C among the major groups of photosynthates. Release of 14C-assimilates into the incubation medium never exceeds 2% of total 14C-uptake, but is stimulated in media of reduced salt content. The results are discussed with emphasis on phenomena of long-term adaptation and osmoregulation in the marine fucoid species.  相似文献   

9.
Plants of Halophila johnsonii Eiseman were exposed, in mesocosms, to either pulsed hyposalinity treatments of 30, 15, 10, and 8 or gradual salinity reductions of two every 2?days. When salinity was pulsed, survivorship (>80?%) and maximum quantum yields (>0.7) were high in the 30 and 15 salinity treatments, but both declined in the 10 and 8 salinity treatments. Leaf osmolality declined with respect to salinity treatment, but the difference between leaf and media osmolality remained relatively constant (675?±?177?mmol?kg?1). In contrast, when salinity was gradually reduced, survivorship remained high from salinities of 30 to 4, and maximum quantum yields remained high from salinities of 30 to 6. Leaf osmolality declined linearly with respect to media osmolality and, similar to the pulsed treatments, the difference between leaf and media osmolality remained relatively constant from salinities of 30 to 2 (638?±?161?mmol?kg?1). Trolox equivalent antioxidant capacity declined over time in both pulsed and gradual salinity reduction. The results indicate that H. johnsonii is more tolerant of hyposalinity than has previously been reported and that gradually reducing salinity extended its low-salinity tolerance threshold by approximately a salinity of 10.  相似文献   

10.
The effect of salinity on survival, bioenergetics and predation risk was studied in two common mud crabs in the Gulf of Mexico, Eurypanopeus depressus and Panopeus simpsoni. Eurypanopeus survived better at low salinities (the 28-day LC50 of E. depressus was 0.19 PSU compared with 6.97 PSU for P. simpsoni). While low salinity increased energy expenditure and reduced food consumption and absorption, resulting in lower scope for growth, identical responses to salinity occurred in both species. Both species also had similar salinity-dependent patterns of hyper-osmoregulation. Because these physiological mechanisms could not explain differences between the two species in salinity tolerance, we explored the effect of salinity on competition for refugia. Eurypanopeus had higher resource holding potential for refugia, especially at low salinity. As a consequence it had lower predation risk to blue crabs in laboratory experiments. The higher tolerance by E. depressus for low salinities, and greater resource holding potential for refugia may explain why it has a more euryhaline distribution than P. simpsoni.  相似文献   

11.
Physiological responses of Nodularia harveyana to osmotic stress   总被引:1,自引:0,他引:1  
The effects of salinity stress on biomass yield, photosynthetic O2 evolution and nitrogenase activity were investigated using axenic cultures of Nodularia harveyana (Thwaites) Thuret originally isolated from a salt marsh at Gibraltar Point, Lincolnshire, UK in 1971 and studied in this laboratory in 1983. Biomass yields, as chlorophyll a per culture, were highest in the 0 to 100% seawater (0 to 35 sea salt) range with negligible growth in 200% seawater; growth on NH 4 + was greater than on N2 and NO 3 - , which did not differ significantly from each other. In short-term experiments, photosynthetic O2 evolution remained high at salinities up to 150% seawater (52.5 sea salt); nitrogenase activity remained high at salinities up to 100% seawater (35 sea salt). The major internal low molecular weight carbohydrate which accumulated in response to increased salinity was sucrose, the levels of which fluctuated markedly and rapidly in response to salinity change.  相似文献   

12.
The carbon-fixation patterns of freshly isolated zooxanthellae from the hermatypic coral Acropora formosa were examined during a 15 min exposure to sodium mosa were examined during a 15 min exposure to sodium [14C]bicarbonate. The labelling pattern during the first 60 s exposure showed that the C3 carbon-fixation pathway is the major route for photosynthetic carbon fixation in Symbiodinium sp. 3-Phosphoglyceric acid, which constituted >50% of the label after 5 s, steadily decreased over the first 60 s. Hexose phosphates, aspartate, malate and glucose were the other main products during the first 60 s. Over longer periods, significant amounts of the organic acids succinate, aspartate and glutamate were found in the extract along with glucose; but no glycerol.  相似文献   

13.
Abstract

Salinity is a serious limiting factor for crop growth and production. The present study was conducted to investigate the response of wheat grown at salinities of 0.12, 0.30 and 0.60?S?m?1 on soil supplemented with 0, 0.5, 1 and 4?mg?kg?1 Se as selenite. Chlorophyll a and b, carotenoid contents, Fe, Zn and Se in shoots as well as shoot dry weight were negatively affected by increased salinity. Se had a dual effect: at 0.5?mg?kg?1, chlorophyll b, proline, and shoot Fe content were increased, catalase activity was stimulated; there was no effect on Zn content and shoot dry weight. At the two higher concentrations, Se led to decreases in chlorophyll content, nutrient concentration, and shoot dry weight. Thus, moderate addition of Se to soil could be a strategy to improve physiological responses and micronutrient status in wheat under salinity stress.  相似文献   

14.
Changes in salinity affect the metabolic rate of the sympagic amphipodOnisimus glacialis collected from the Barents Sea in 1986 and 1988. When transferred from 35 to 5 ppt S, oxygen consumption and ammonia excretion both increase three-fold during the first 5 h of exposure, and they remain high throughout the rest of the experimental period (26 h). During 24-h acclimation to various salinities (5 to 45 ppt), the amphipods exhibit a respiratory and excretory response to hyper- and hypoosmotic stress; however, a rather constant O:N atomic ratio (around 15) was obtained at the experimental salinities, indicating protein/lipids as metabolic substrate. Both rates of oxygen consumption and ammonia excretion increased with an increasing osmotic difference (0 to 650 mOsm) between the haemolymph and the environmental medium, indicating higher energy requirements for osmotic and ionic regulation at low salinities. In amphipods abruptly transferred from 35 to 5 ppt, a minor decrease of the haemolymph sodium concentrations together with an increased ammonia excretion output indicate a counter-ion regulation of NH 4 + and Na+ during hyposmotic stress.  相似文献   

15.
Clupea harengus pallasi deposit their eggs in the coastal zone, which is the most dynamic part of the sea in respect to its regime. Salimity is one of the most variable factors on the spawning grounds. Observations were made in the seas of the European North and Far East, and in experiments where salinities varied from 0 to 70. Study of the influence of salinity on the development of sea herring eggs is of interest for several reasons. Firstly, salinity fluctuation patterns differ in different parts of a given habitat. In each area inhabited, salinity boundaries exist within which eggs can develop normally. Secondly, the levels of limiting salinities on spawning grounds differ noticeably in different seas. Hence, attention was paid to population-specific differences in the responses of eggs to salinity. Finally, detailed knowledge on the responses of sexual cells to low-salinity conditions helps to elucidate the ecological situation in areas with reduced salinity, and the reproductive potential of the population considered. Sexual cells of numerous populations of Pacific herring are capable of fertilization over a wide range of salinities. Fertilizability in low salinities and, partially, also in high salinities, reveals a population specificity. The responses of the eggs ofC. harengus pallasi to reduced salinities differ from those ofC. harengus harengus. Osmotic resistance of eggs to low salinities is considerably higher in the first-mentioned subspecies. Under salinity stress, eggs reveal individual differences which are not seen under optimum conditions of salinity. In all populations studied, responses to salinity change during embryology.  相似文献   

16.
O. Oku  A. Kamatani 《Marine Biology》1997,127(3):515-520
The marine planktonic diatom Chaetoceros anastomosans, which was isolated from Sagami Bay, was used for a study of resting spore formation mechanisms in batch culture experiments. Vegetative cells could grow at salinities ranging from 20.7 to 45.5‰, and resting spore formation was enhanced significantly in nitrate-depleted, high salinity media (40.0 to 45.5‰). The rate of resting spore formation (1.9 d−1) was comparable to the specific growth rate (1.8 d−1) of vegetative cells in the exponential growth phase in normal salinity medium. The size of resting spores formed under high salinity conditions was smaller than that of spores formed in normal salinity media. Unlike vegetative cells, resting spores seemed to possess some mechanisms to survive over a wider range of salinities by resisting bacterial attacks on their cell walls. Received: 4 August 1996 / Accepted: 27 August 1996  相似文献   

17.
Juvenile lesser blue crabs, Callinectes similis Williams, were exposed to a range of salinities for measurement of survival and bioenergetics. Effects of salinity on survival were determined by exposing juvenile crabs to salinity treatments ranging from 0 to 74‰. All crabs survived 21 d of exposure to 5 and 45‰S. The 21 d LC50 values for salinity tolerance (calculated from survival data) were 2.6 and 60.8‰S at low and high salinities, respectively. Energy-budget components and scope for growth were determined for crabs exposed to 2.5, 10, 25, 35 and 50‰S. Energetic absorption rates were highest at 2.5 and 35‰S. Energetic expenditure rates (energy lost to respiration and excretion) were greatest at 2.5‰S, and decreased as salinity increased. Respiration constituted the majority of energetic expenditure at all salinities (92.3% average). Scope for growth was significantly affected by salinity and was highest in crabs exposed to 35‰S. Increased respiration at low salinity may indicate that C. similis incurs greater costs due to osmoregulation. The results of this study indicate that C. similis is capable of surviving and growing in waters with salinities as low as 10‰. Received: 10 January 1997 / Accepted: 11 February 1997  相似文献   

18.
Notwithstanding the great importance of the salinity factor in the marine environment, the knowledge of influence of salinity on growth of marine benthic algae is very limited. Rate of growth (mg, cm2) and O2 output of the intertidal red algaPorphyra umbilicalis from Helgoland, North Sea, were measured during a 3 week culture in 3 different salinities (1/2-, 1- and 2-concentrated artificial sea water; Table 1). Under hypertonic conditions (2-concentrated sea water) growth rate and photosynthesis rate were depressed, compared to values obtained in normal concentrated sea water. Under hypotonic conditions (1/2-concentrated sea water), growth expressed in mg was the same as in normal concentrated sea water, or higher when expressed in cm3. Rate of O2 output was almost unaltered in one of the two experiments, lowered in the other. Cell size increased at higher salinity, while swelling of cell walls and intercellular substances as well as the intensity of colouring decreased with salinity. The discrepancies between growth and photosynthesis under hypotonic conditions cannot be completely explained by the observed influences of salinity on morphological structures (cell size, swelling of cell substances). Detailed studies on the time course of photosynthesis and respiration rates, and preparation of a metabolic balance for the algae are necessary.  相似文献   

19.
Tolerance to hyposalinity of the scleractinian coral S. radians was examined in a mesocosm study. Colonies of S. radians were collected from five basins in Florida Bay, USA, which occur along a northeast-to-southwest salinity gradient. Salinity treatments were based on historical salinity records for these basins. Photophysiology of the endosymbiont Symbiodinium spp. (maximum quantum yield; F v/F m) was measured as an indicator of holobiont stress to hyposalinity. Colonies from each basin were assigned four salinity treatments [The Practical Salinity Scale (PSS) was used to determine salinity. Units are not assigned to salinity values because it is a ratio and has no unit as defined by UNESCO (UNESCO Technical papers no. 45, IAPSO Pub. Sci. No. 32, Paris, France, 1985)] (30, 20, 15, and 10) and salinities were reduced 2 per day from ambient (30) to simulate a natural salinity decrease. Colonies treated with salinities of 20 and 15 showed no decrease in F v/F m versus controls (i.e. 30), up to 5 days after reaching their target salinity. This indicates a greater ability to withstand reduced salinity for relatively extended periods of time in S. radians compared to other reef species. Within 1 day after salinity of 10 was reached, there was a significant reduction in F v/F m, indicating a critical threshold for hyposaline tolerance. At the lowest treatment salinity (10), F v/F m for the more estuarine, northeast-basin colonies were significantly higher than the most marine southwest-basin colonies (Twin Key Basin). Our results suggest that historical salinity ranges within basins determine coral population salinity tolerances.  相似文献   

20.
A salinity dependent mictic response was observed in a clone of Brachionus plicatilis cultured in the 2 to 4 salinity range. This response was related to asexual exponential reproduction rates (G) and could be divided into three categories: (a) no mixis occurred at a salinity of 35 S and above, where G values were lower than 0.30 d-1, (b) low mictic levels in rotifers cultured at 2 and 30 S, where G values ranged between 0.40 to 0.50 d-1, and (c) high mictic levels in rotifers cultured at salinities ranging between 4 and 20 S, where G values ranged between 0.50 to 0.85 d-1. Fluctuations in mictic levels varied with time during the course of the experiments. Results suggest that salinity conditions leading to optimal parthenogenic reproduction also support mixis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号