首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The chlorinated volatile organic compounds (CVOCs), tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA), often found as commingled contaminants of concern (COCs) in groundwater, can degrade via a variety of biotic and abiotic reductive pathways. In situ remediation of a groundwater contaminant source area containing commingled 1,1,1‐TCA, PCE, and TCE was conducted using a combined remedy/treatment train approach. The first step was to create geochemically reducing conditions in the source area to degrade the CVOCs to lesser chlorinated CVOCs (i.e., 1,1‐dichloroethane [1,1‐DCA], 1,1‐dichlorethene [1,1‐DCE], cis‐1,2‐dichoroethene [cis‐1,2‐DCE], and vinyl chloride [VC]) via enhanced reductive dechlorination (ERD). Carbon substrates were injected to create microbial‐induced geochemically reducing conditions. An abiotic reductant (zero‐valent iron [ZVI]) was also used to further degrade the CVOCs, minimizing the generation of 1,1‐DCE and VC, and co‐precipitate temporarily mobilized metals. An in situ aerobic zone was created downgradient of the treatment zone through the injection of oxygen. Remaining CVOC degradation products and temporarily mobilized metals (e.g., iron and manganese) resulting from the geochemically reducing conditions were then allowed to migrate through the aerobic zone. Within the aerobic zone, the lesser chlorinated CVOCs were oxidized and the solubilized metals were precipitated out of solution. The injection of a combination of carbon substrates and ZVI into the groundwater system at the site studied herein resulted in the generation of a geochemically reducing subsurface treatment zone that has lasted for more than 4.5 years. Mass concentrations of total CVOCs were degraded within the treatment zone, with near complete transformation of chlorinated ethenes and a more than 90 percent reduction of CVOC mass concentrations. Production of VC and 1,1‐DCE has been minimized through the combined effects of abiotic and biological processes. CVOC concentrations have declined over time and temporarily mobilized metals are precipitating out of the dissolved phase. Precipitation of the dissolved metals was mitigated using the in situ oxygenation system, also resulting in a return to aerobic conditions in downgradient groundwater. Chloroethane (CA) is the dominant CVOC degradation product within the treatment zone and downgradient of the treatment zone, and it is expected to continue to aerobically degrade over time. CA did not accumulate within and near the aerobic oxygenation zone. The expectations for the remediation system are: (1) the concentrations of CVOCs (primarily in the form of CA) will continue to degrade; (2) total organic carbon concentrations will continue to decline to pre‐remediation levels; and, (3) the groundwater geochemistry will experience an overall trend of transitioning from reducing back to pre‐remediation mildly oxidizing conditions within and downgradient of the treatment zone.  相似文献   

2.
In situ reductive dechlorination of perchloroethene (PCE) and trichloroethene (TCE) generates characteristic chlorinated (cis‐dichloroethene [cis‐DCE] and vinyl chloride [VC]) and nonchlorinated (ethene and ethane) products. The accumulation of these daughter products is commonly used as a metric for ongoing biodegradation at field sites. However, this interpretation assumes that reductive dechlorination is the only chloroethene degradation process of any significance in situ and that the characteristic daughter products of chloroethene reductive dechlorination persist in the environment. Laboratory microcosms, prepared with aquifer and surface‐water sediments from hydrologically diverse sites throughout the United States and amended with [1,2‐14C] TCE, [1,2‐14C] DCE, [1,2‐14C] DCA, or [1,2‐14C] VC, demonstrated widely variable patterns of intermediate and final product accumulation. In predominantly methanogenic sediment treatments, accumulation of 14C‐DCE, 14C‐VC, 14C‐ethene, and 14C‐ethane predominated. Treatments characterized by significant Fe(III) and/or Mn(IV) reduction, on the other hand, demonstrated substantial, and in some cases exclusive, accumulation of 14CO2 and 14CH4. These results suggest that relying on the accumulation of cis‐DCE, VC, ethene, and ethane may substantially underestimate overall chloroethene biodegradation at many sites. © 2007 Wiley Periodicals, Inc. *
  • 1 This article is a U.S. government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    3.
    Bioremediation of 1,1,1‐trichloroethane (TCA) is more challenging than bioremediation of other chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene (TCE). TCA transformation often occurs under methanogenic and sulfate‐reducing conditions and is mediated by Dehalobacter. The source area at the project site contains moderately permeable medium sand with a low hydraulic gradient and is approximately 0.5 acre. TCA contamination generally extended to 35 feet, with the highest concentrations at approximately 20 feet. The concentrations then decreased with depth; several wells contained 300 to 600 mg/L of TCA prior to bioremediation. The area of treatment also contained 2 to 30 mg/L of TCE from an upgradient source. Initial site groundwater conditions indicated minimal biotic dechlorination and the presence of up to 20 mg/L of nitrate and 90 mg/L of sulfate. Microcosm testing indicated that TCA dechlorination was inhibited by the site's relatively low pH (5 to 5.5) and high TCA concentration. After the pH was adjusted and TCA concentrations were reduced to less than 35 mg/L (by dilution with site water), dechlorination proceeded rapidly using whey (or slower with sodium lactate) as an electron donor. Throughout the remediation program, increased resistance to TCA inhibition (from 35 to 200 mg/L) was observed as the microbes adapted to the elevated TCA concentrations. The article presents the results of a full‐scale enhanced anaerobic dechlorination recirculation system and the successful efforts to eliminate TCA‐ and pH‐related inhibition. © 2012 Wiley Periodicals, Inc.  相似文献   

    4.
    This article presents a case study of the source‐area treatment of tetrachloroethene (PCE) in a low‐permeability formation using zero‐valent iron (ZVI). Evidence of the stimulation of biological reduction processes within the treatment zone occurred. Pneumatic fracturing and injection of microscale ZVI slurry in the overburden and weathered bedrock zones was performed at a commercial brownfields redevelopment site in Maryland. A 20,000‐square‐foot source area impacted with PCE at concentrations greater than 15,000 µg/L was treated at depths ranging from 10 to 70 feet bgs. An average ZVI dosage of 0.0024 iron‐to‐soil mass ratio within the overburden zone led to a 75 percent decrease in PCE mass in less than one year. For the weathered bedrock zone, an average 0.0045 iron‐to‐soil mass ratio resulted in a 92 percent decrease in PCE mass during the same period. The reducing environment and hydrogen generated by the ZVI may have stimulated Dehalobacter populations, as evidenced by concentrations up to 104 cells per milliliter measured within the treatment area despite a groundwater pH as high as 9. The biological reductive dechlorination of the chlorinated ethenes explains the temporary increase in trichloroethene and cis‐1,2‐dichloroethene concentrations. © 2013 Wiley Periodicals, Inc.  相似文献   

    5.
    Two adjacent automotive component manufacturers in Japan had concentrations of trichloroethene (TCE) and perchloroethene (PCE) in soils and groundwater beneath their plants. One of the manufacturers extensively used these solvents in its processes, while the adjacent manufacturer had no documentation of solvent use. The conceptual site model (CSM) initially involved a single source that migrated from one building to under the adjacent building. Further, because low concentrations of daughter products (e.g., cis‐1,2‐dichloroethene; 3.6 to 840 micrograms per liter [μg/L]) were detected in groundwater, the CSM did not consider intrinsic degradation to be a significant fate mechanism. With this interpretation, the initial remedial design involved both source treatment and perimeter groundwater control to prevent offsite migration of the solvents in groundwater. Identifying whether intrinsic degradation was occurring and could be quantified represented a means of eliminating this costly and potentially redundant component. Further, incorporating intrinsic degradation into the remediation design would also allow for a more focused source treatment, resulting in further cost savings. Three rounds of sampling and data interpretation applying compound specific isotope analysis (CSIA) were used to refine the CSM. The first sampling round involved three‐dimensional CSIA (13C, 37Cl, and 2H), while the second two rounds involved 13C only, focusing on degradation over time. For the May 2012 sampling, δ13C for PCE ranged from –31‰ to –29.6 ‰ and for TCE ranged from –30.4‰ to –28.3‰; showing similar values. δ2H for TCE ranged from 581‰ to 629‰, indicating a manufactured TCE rather than that resulting from dehalogenation processes from PCE. However, mixing of manufactured TCE with that resulting from degraded PCE cannot be ruled out. Because of the similar δ13C ratios for PCE and TCE, and 37Cl data for PCE and TCE, fractionation and enrichment factors could not be relied upon. Fractionation patterns were evaluated using graphical methods to trace TCE to the source location to better focus the locations for steam injection. Graphical methods were also used to define the degradation mechanism and from this, incorporate intrinsic degradation processes into the remedial design, eliminating the need for a costly perimeter pump and treat system. ©2015 Wiley Periodicals, Inc.  相似文献   

    6.
    Degradation of chlorinated ethenes under aerobic conditions has been reported using a cometabolic pathway. A site in Illinois had shallow contamination and sandy soils, which in combination created aerobic conditions. The aerobic conditions prevented the degradation of chlorinated ethenes by reductive dechlorination. Biodegradation of chloroethenes under aerobic conditions does not occur naturally at all sites; however, it can be enhanced if microorganisms capable of cometabolic degradation are introduced into the soil. In this study, trichloroethene (TCE) removal in the soil was enhanced by the injection of a commercially available microbial inoculum (CL‐OUT® inoculum, CL‐Solutions, Cincinnati, OH) and nutrients and was compared to chlorinated ethene removal in soil that had received nutrients only and soil that had received activated sludge and nutrients. Trichloroethene removal was measured after one week, seven weeks, and eleven weeks. After one week, no significant TCE removal had occurred in any of the test microcosms. After seven weeks, a slight decrease in TCE levels accompanied by an increase in cis‐1,2‐dichloroethene (cis‐1,2‐DCE) was seen in the microcosms that had received CL‐OUT®. After 11 weeks, a marked decrease in TCE levels was observed in the microcosms that had received CL‐OUT®. No significant TCE decrease was observed in any of the other microcosms. These data suggest that organisms capable of aerobic TCE degradation were not present at the site; however, the addition of an inoculum containing such organisms enabled aerobic degradation to occur. © 2008 Wiley Periodicals, Inc.  相似文献   

    7.
    The combination of electrokinetic and zero‐valent iron (ZVI) treatments were used to treat soils contaminated with chlorinated solvents, including dense nonaqueous phase liquid (DNAPL), at an active industrial site in Ohio. The remediation systems were installed in tight clay soils under truck lots and entrances to loading docks without interruption to facility production. The electrokinetic system, called LasagnaTM, uses a direct current electrical field to mobilize contaminant via electroosmosis and soil heating. The contaminants are intercepted and reduced in situ using treatment zones containing ZVI. In moderately contaminated soils around the LasagnaTM‐treated source areas, a grid of ZVI filled boreholes were emplaced to passively treat residual contamination in decades instead of centuries. The remediation systems were installed below grade and did not interfere with truck traffic during the installation and three years of operation. The LasagnaTM systems removed 80 percent of the trichloroethylene (TCE) mass while the passive ZVI borings system has reduced the TCE by 40 percent. The remediation goals have been met and the site is now in monitoring‐only mode as natural attenuation takes over. © 2014 Wiley Periodicals, Inc.  相似文献   

    8.
    EOS, or emulsified oil substrate, was used to stimulate anaerobic biodegradation of trichloroethene (TCE) and tetrachloroethene (PCE) at a former Army‐owned manufacturing facility located in the Piedmont area of North Carolina. Previous use of chlorinated solvents at the facility resulted in soil and groundwater impacts. Ten years of active remediation utilizing soil vacuum extraction and air sparging (SVE/AS) were largely ineffective in reducing the TCE/PCE plume. In 2002, the Army authorized preparation of an amended Remedial Action Plan (RAP) to evaluate in situ bioremediation methods to remediate TCE in groundwater. The RAP evaluated eight groundwater remediation technologies and recommended EOS as the preferred bioremediation alternative for the site. Eight wells were drilled within the 100 × 100 feet area believed to be the primary source area for the TCE plume. In a first injection phase, dilute EOS emulsion was injected into half of the wells. Distribution of the carbon substrate through the treatment zone was enhanced by pumping the four wells that were not injected and recirculating the extracted water through the injection wells. The process was repeated in a second phase that reversed the injection/extraction well pairs. Overall, 18,480 pounds of EOS were injected and 163,000 gallons of water were recirculated through the source area. Anaerobic groundwater conditions were observed shortly after injection with a corresponding decrease in both PCE and TCE concentrations. Dissolved oxygen, oxidation‐reduction potential, and sulfate concentrations also decreased after injection, while TCE‐degradation products, ferrous iron, and methane concentrations increased. The reduction in TCE allowed the Army to meet the groundwater remediation goals for the site. Approximately 18 months after injection, eight wells were innoculated with a commercially prepared dechlorinating culture (KB‐1) in an attempt to address lingering cis‐1,2‐dichloroethene (cis‐DCE) and vinyl chloride (VC) that continued to be observed in some wells. Dehalococcoides populations increased slightly post‐bioaugmentation. Both cis‐DCE and VC continue to slowly decrease. © 2007 Wiley Periodicals, Inc.  相似文献   

    9.
    A pilot study was completed at a fractured crystalline bedrock site using a combination of soil vapor extraction (SVE) and in‐situ chemical oxidation (ISCO) with Fenton's Reagent. This system was designed to destroy 1,1,1‐trichloroethane (TCA) and its daughter products, 1,1‐dichloroethene (DCE) and 1,1‐dichloroethane (DCA). Approximately 150 pounds of volatile organic compounds (VOCs) were oxidized in‐situ or removed from the aquifer as vapor during the pilot study. Largely as a result of chemical oxidation, TCA concentrations in groundwater located within a local groundwater mound decreased by 69 to 95 percent. No significant rebound in VOC concentration was observed in these wells. Wells located outside of the groundwater mound showed less dramatic decreases in VOC concentration, and the data show that vapor stripping and short‐term groundwater migration following the oxidant injection were the key processes at these wells. Although the porosity of the aquifer at the site is on the order of 2 percent or less, the pilot study showed that SVE could be an effective remedial process in fractured crystalline rock. © 2002 Wiley Periodicals, Inc.  相似文献   

    10.
    Chlorinated solvents such as tetrachloroethene (perchloroethene, PCE) and trichloroethene (TCE) have been extensively used in various industrial applications for many years. Because neither are typically consumed through their various uses, they are often released to the environment through industrial application or disposal. Once released, PCE and TCE tend to migrate downward into groundwater, where they persist. In the current case study, cheese whey was used as a groundwater amendment to facilitate the reductive dechlorination of a chlorinated solvent plume underlying an auto dealer/repair shop in Harris County, Texas. From September 2010 to January 2014, over 32,000 gallons of cheese whey were injected into the subsurface resulting in a marked reduction in oxidation–reduction potential (ORP) and nitrate concentrations, coupled with an increase in ferrous iron concentrations. Statistical trend analyses indicate the primary contaminants, PCE and TCE, as well as the daughter product cis‐1,2‐dichloroethene (cDCE), all exhibited a positive response, as evidenced by statistically decreasing trends, and/or reversal in concentration trends, subsequent to cheese whey injections. Maximum concentrations of PCE and TCE in key test wells decreased by as much as 98.97 percent and 99.17 percent, respectively. In addition, the bacterial genus Dehalococcoides, capable of complete reduction of PCE to non‐toxic ethene, was found to be more abundant in the treatment area, as compared to background concentrations. Because cheese whey is a by‐product of the cheese making process, the cost of the product is essentially limited to transport. This study demonstrates cheese whey to be an effective groundwater amendment at a cost which is orders of magnitude lower than popular industry alternatives.  相似文献   

    11.
    This study has been conducted at the University of Connecticut (UCONN) in connection with the USEPA Superfund Innovative Technology Evaluation (SITE) program to evaluate a chemical oxidation technology (sodium persulfate) developed at UCONN. A protocol to assess the efficacy of oxidation technologies has been used. This protocol, which consists of obtaining data from a treatability study, tested two in-situ chemical oxidation technologies that can be used on soil and groundwater at a site in Vernon, Connecticut. Based on the treatability report results and additional field data collected at the site, the design for the field implementation of the chemical oxidation remediation was completed. The results indicate that both sodium persulfate and potassium permanganate were able to effectively degrade the target VOCs (i.e., PCE, TCE and cis-DCE) in groundwater and soil-groundwater matrices. In the sodium persulfate tests (120 hrs), the extent of destruction of target VOCs was 74% for PCE, 86% for TCE and 84% for cis-DCE by Na2S2O8 alone and 68% for PCE, 76% for TCE, and 69% for cis-DCE by Fe(II)-catalyzed Na2S2O8. The results demonstrate the sodium persulfate's ability to degrade PCE, TCE and cis-DCE. It is expected that given sufficient dose and treatment time, a higher destruction rate of the dissolved phase contamination can be achieved. The data also indicates that the catalytic effect of the iron chelate on persulfate chemistry was much less pronounced in the soil-groundwater matrix. This indicates an interaction between the iron chelate solution and the soil, which may have resulted in a lower availability of the chelated iron for catalysis. The study showed that the remediation of the VOCs-contaminated soil and groundwater by in-situ chemical oxidation using sodium persulfate is feasible at the Roosevelt Mills site. As a result, the USEPA SITE program will evaluate this technology at this site.  相似文献   

    12.
    Tetrachloroethene (PCE)‐ and trichloroethene (TCE)‐impacted sites pose significant challenges even when site characterization activities indicate that biodegradation has occurred naturally. Although site‐specific, regulatory, and economic factors play roles in the remedy‐selection process, the application of molecular biological tools to the bioremediation field has streamlined the assessment of remedial alternatives and allowed for detailed evaluation of the chosen remedial technology. The case study described here was performed at a PCE‐impacted site at which reductive dechlorination of PCE and TCE had led to accumulation of cis‐dichlorethene (cis‐DCE) with concentrations ranging from approximately 10 to 100 mg/L. Bio‐Trap® samplers and quantitative polymerase chain reaction (qPCR) enumeration of Dehalococcoides spp. were used to evaluate three remedial options: monitored natural attenuation, biostimulation with HRC®, and biostimulation with HRC‐S®. Dehalococcoides populations in HRC‐S‐amended Bio‐Traps deployed in impacted wells were on the order of 103 to 104 cells/bead but were below detection limits in most unamended and HRC‐amended Bio‐Traps. Thus the in situ Bio‐Trap study identified biostimulation with HRC‐S as the recommended approach, which was further evaluated with a pilot study. After the pilot HRC‐S injection, Dehalococcoides populations increased to 106 to 107 cells/bead, and concentrations of cis‐DCE and vinyl chloride decreased with concurrent ethene production. Based on these results, a full‐scale HRC‐S injection was designed and implemented at the site. As with the pilot study, full‐scale HRC‐S injection promoted growth of Dehalococcoides spp. and stimulated reductive dechlorination of the daughter products cis‐DCE and vinyl chloride. © 2008 Wiley Periodicals, Inc.  相似文献   

    13.
    Chlorinated solvents were released to the surficial groundwater underneath a former dry cleaning building, resulting in a groundwater plume consisting of high concentrations of trichloroethene (TCE) and cis‐1,2‐dichloroethene (cis‐1,2‐DCE) and low concentrations of tetrachloroethene (PCE) and vinyl chloride. The initial remedial action included chemical oxidation via injection of 14,400 gallons of Fenton's Reagent in March 2002, and an additional 14,760 gallons in April 2002. A sharp reduction of contaminant concentrations in groundwater was observed the following month; however, rebound of contaminant concentrations was evident as early as October 2002. A source area of PCE‐impacted soils was excavated in June 2004. Following the excavation, Golder Associates Inc. (2007) implemented a biostimulation plan by injecting 55 gallons of potassium lactate (PURASAL® HiPure P) in September 2005, and again in February 2006. Comparing the preinjection and postinjection site conditions, the potassium lactate treatments were successful in accomplishing a 40 to 70 percent reduction in mass within four months following the second injection. Elevated vinyl chloride concentrations have persisted through both injection events; however, significant vinyl chloride reduction has been observed in one well with the highest total organic carbon (TOC) concentrations following each injection. © 2008 Wiley Periodicals, Inc.  相似文献   

    14.
    This article presents field tests comparing two methods of treatment of chlorinated solvents undertaken at the same site. The site is an automobile factory where two chlorinated solvents (CS) plumes were identified. At the first source, in situ chemical reduction (ISCR) was applied, while at the second one, enhanced natural attenuation (ENA) was used. A set of specific multilevel sampling wells were installed approximately 20 m downgradient of the sources to estimate the efficiency of the treatments. The presence of a low‐permeability layer (source 1) or a thick oil lens (source 2) in the top part of the aquifer prevented the CS from reaching the bottom of the aquifer. These layers led to difficulties treating the contamination. At the ISCR and ENA treatment zones, the concentrations of tetrachloroethene (PCE) and trichloroethene (TCE) did not change significantly, while the concentration of metabolites (cis‐1,2‐DCE, vinyl chloride, and ethene) significantly increased 50 to 150 days after treatment. Due to high concentration of CS in the source zone, a mass balance calculation, including chlorine, was possible. It showed that around 1 to 2 percent of the injected products were used to reduce the CS. A detailed analysis and 1D analytical modeling of CS concentrations showed that the treatment led to a large (two to three times) increase in dissolution of the organic phase. This explains why, despite an efficient treatment, the PCE and TCE concentrations remained virtually unchanged. Degradation rates also increased due to the treatment. Due to some differences in the source‐zone chemistry, it was not possible to differentiate between the ISCR and ENA efficiencies. © 2013 Wiley Periodicals, Inc.  相似文献   

    15.
    Chlorinated ethenes such as trichloroethene (TCE), cis‐1,2‐dichloroethene (cis‐1,2‐DCE), and vinyl chloride along with per‐ and polyfluoroalkyl substances (PFAS) have been identified as chemicals of concern in groundwater; with many of the compounds being confirmed as being carcinogens or suspected carcinogens. While there are a variety of demonstrated in‐situ technologies for the treatment of chlorinated ethenes, there are limited technologies available to treat PFAS in groundwater. At a former industrial site shallow groundwater was impacted with TCE, cis‐1,2‐DCE, and vinyl chloride at concentrations up to 985, 258, and 54 µg/L, respectively. The groundwater also contained maximum concentrations of the following PFAS: 12,800 ng/L of perfluoropentanoic acid, 3,240 ng/L of perfluorohexanoic acid, 795 ng/L of perfluorobutanoic acid, 950 ng/L of perfluorooctanoic acid, and 2,140 ng/L of perfluorooctanesulfonic acid. Using a combination of adsorption, biotic, and abiotic degradation in situ remedial approaches, the chemicals of concern were targeted for removal from the groundwater with adsorption being utilized for PFAS whereas adsorption, chemical reduction, and anaerobic biodegradation were used for the chlorinated ethenes. Sampling of the groundwater over a 24‐month period indicated that the detected PFAS were treated to either their detection, or below the analytical detection limit over the monitoring period. Postinjection results for TCE, cis‐1,2‐DCE, and vinyl chloride indicated that the concentrations of the three compounds decreased by an order of magnitude within 4 months of injection, with TCE decreasing to below the analytical detection limit over the 24‐month monitoring period. Cis‐1,2‐DCE, and vinyl chloride concentrations decreased by over 99% within 8 months of injections, remaining at or below these concentrations during the 24‐month monitoring period. Analyses of Dehalococcoides, ethene, and acetylene over time suggest that microbiological and reductive dechlorination were occurring in conjunction with adsorption to attenuate the chlorinated ethenes and PFAS within the aquifer. Analysis of soil cores collected pre‐ and post‐injection, indicated that the distribution of the colloidal activated carbon was influenced by small scale heterogeneities within the aquifer. However, all aquifer samples collected within the targeted injection zone contained total organic carbon at concentrations at least one order of magnitude greater than the preinjection total organic carbon concentrations.  相似文献   

    16.
    Contaminants from dry‐cleaning sites, primarily tetrachloroethene (PCE), trichloroethene (TCE), cis‐dichloroethene (cis‐DCE), and vinyl chloride (VC), have become a major concern because of the limited funds and regulatory programs to address them. Thus, natural attenuation and its effectiveness for these sites needs to be evaluated as it might provide a less costly alternative to other remediation methods. In this research, data from a site in Texas were analyzed and modeled using the Biochlor analytical model to evaluate remediation times using natural attenuation. It was determined that while biodegradation and source decay were occurring at the site, the resulting attenuation rates were not adequate to achieve cleanup in a reasonable time frame without additional source remediation or control strategies. Cleanup times exceeded 100 years for all constituents at the site boundary and 800 years at the source for PCE, assuming cleanup levels of 0.005 mg/L for PCE and TCE and 0.07 mg/L and 0.002 mg/L for cis‐DCE and VC, respectively. © 2005 Wiley Periodicals, Inc.  相似文献   

    17.
    Soil contamination with persistent pesticides such as dichloro‐diphenyl‐trichloroethane (DDT) is a major issue at many brownfield sites. A technology that can be used to treat DDT‐contaminated soil using surfactants is to enhance the migration of the contaminants from the soil phase to the liquid phase, followed by the dechlorinating of the mobilized DDT in the liquid phase using zero‐valent iron (ZVI). The DDT degradation using ZVI occurs under anaerobic conditions via reductive reactions. The effect of the iron concentration on the dechlorination rate is assessed in the range of 1 to 40 percent (weight to volume) for remediation of a DDT‐contaminated site in Ontario, Canada. The optimum percentage of iron is found to be 20 percent at which the dechlorination rates of DDT and 1,1‐dichloro‐2,2‐bis(p‐chlorophenyl)ethane (DDD) were 4.5 and 0.6 mg/L/day, respectively. While mixing of the reaction solution is shown to be important in providing the iron surface available for the dechlorination reaction throughout the reaction solution, there is no significant difference between batch and fed‐batch mode of adding iron to the dechlorination process. Low pH values (pH = 3) increased the dechlorination rates of DDT and DDD to 6.03 and 0.75 mg/L/day, respectively at a 20 percent iron concentration, indicating increased dechlorination rates in acidic conditions. © 2010 Wiley Periodicals, Inc.  相似文献   

    18.
    A first‐of‐its‐kind wetland restoration project was completed in October 2000 to treat trichloroethene‐(TCE‐)impacted groundwater from a former manufacturing facility prior to discharge into a highly valued recreational surface water body in the upper Midwest. This article summarizes the design, construction, operation, and effectiveness of the restored wetland. The groundwater‐surface water discharge zone at the site was restored as a wetland to improve the natural degradation of TCE and subsequent degradation by‐products. For the past 11 years, the treatment wetland performance was evaluated by monitoring the wetland vegetation, wetland hydraulics, and water chemistry. Water quality data have been used to assess the wetland geochemistry, TCE and TCE‐degradation by‐product concentrations within the wetland, and the surface water quality immediately downgradient of the wetland. The treatment wetland has been performing according to design, with TCE and TCE‐degradation by‐products not exceeding surface water criteria. The monitoring results show that TCE and TCE‐degradation by‐products are entering the treatment wetland via natural hydraulic gradients and that the geochemistry of the wetland supports both reductive dechlorination (anaerobic degradation) and cometabolic degradation (aerobic degradation) of TCE and TCE‐degradation by‐products: cis‐ and trans‐1,2‐dichloroethene and vinyl chloride. © 2013 Wiley Periodicals, Inc.  相似文献   

    19.
    This article describes the application of in-situ bioremediation for the treatment of an aquifer contaminated with 1,2-dichloroethane (DCA). The first step in the process was to properly delineate the contamination and to contain the contaminated groundwater using a pumping well. The second step was to isolate in the groundwater microorganisms able to degrade DCA and to demonstrate the possibility of increasing their efficiency by injecting in-situ nutrients and hydrogen peroxide (H2O2) solution. In the third step, after the characterization of the hydrogeology of the aquifer with tracing experiments, the in-situ bioremediation of the groundwater was conducted. The analyses show that 95 percent of DCA was destroyed by this treatment, leading to a DCA concentration around the pumping well of about 0.2 mg/l.  相似文献   

    20.
    An in situ bioremediation (ISB) pilot study, using whey powder as an electron donor, is being performed at Site 19, Edwards Air Force Base, California, to treat groundwater contaminated with trichloroethene (TCE) via anaerobic reductive dechlorination. Challenging site features include a fractured granitic aquifer, complex geochemistry, and limited biological capacity for reductive dechlorination. ISB was conducted in two phases with Phase I including one‐and‐a‐half years of biostimulation only using whey powder and Phase II including biostimulation with buffered whey powder and bioaugmentation. Results of Phase I demonstrated effective distribution of whey during injections resulting in depletion of high concentrations of sulfate and methanogenesis, but acid production due to whey fermentation and limited buffering capacity of the aquifer resulted in undesirable impacts to pH. In addition, cis‐1,2‐dichloroethene (cis‐1,2‐DCE) stall was observed, which correlated to the unsuccessful growth of native Dehalococcoides populations. Therefore, Phase II included the successful buffering of whey powder using bicarbonate, which mitigated negative pH effects. In addition, bioaugmentation resulted in successful transport of Dehalococcoides populations to greater than 50 feet away from the injection point four months after inoculation. A concomitant depletion of accumulated cis‐1,2‐DCE was observed at all wells affected by bioaugmented Dehalococcoides. © 2008 Wiley Periodicals, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号