首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Surfactants and cosolvents are useful for enhancing the apparent solubility of dense nonaqueous‐phase liquid (DNAPL) compounds during surfactant‐enhanced aquifer remediation (SEAR). In situ chemical oxidation (ISCO) with permanganate, persulfate, and catalyzed hydrogen peroxide has proven to be a cost‐effective and viable remediation technology for the treatment of a wide range of organic contaminants. Coupling compatible remedial technologies either concurrently or sequentially in a treatment train is an emerging concept for more effective cleanup of DNAPL‐contaminated sites. Surfactants are effective for DNAPL mass removal but not useful for dissolved plume treatment. ISCO is effective for plume control and treatment but can be less effective in areas where large masses of DNAPL are present. Therefore, coupling SEAR with ISCO is a logical next step for source‐zone treatment. This article provides a critical review of peer‐reviewed scientific literature, nonreviewed professional journals, and conference proceedings where surfactants/cosolvents and oxidants have been utilized, either concurrently or sequentially, for DNAPL mass removal. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
In situ chemical oxidation (ISCO) with permanganate has been widely used for soil and groundwater treatment in the saturated zone. Due to the challenges associated with achieving effective distribution and retention in the unsaturated zone, there is a great interest in developing alternative injection technologies that increase the success of vadose‐zone treatment. The subject site is an active dry cleaner located in Topeka, Kansas. A relatively small area of residual contamination adjacent to the active facility building has been identified as the source of a large sitewide groundwater contamination plume with off‐site receptors. The Kansas Department of Health and Environment (KDHE) currently manages site remedial efforts and chose to pilot‐test ISCO with permanganate for the reduction of perchloroethene (PCE) soil concentrations within the source area. KDHE subsequently contracted Burns & McDonnell to design and implement an ISCO pilot test. A treatability study was performed by Carus Corporation to determine permanganate‐soil‐oxidant‐demand (PSOD) and the required oxidant dosing for the site. The pilot‐test design included an ISCO injection approach that consisted of injecting aqueous sodium permanganate using direct‐push technology with a sealed borehole. During the pilot test, approximately 12,500 pounds of sodium permanganate were injected at a concentration of approximately 3 percent (by weight) using the methods described above. Confirmation soil sampling conducted after the injection event indicated PCE reductions ranging from approximately 79 to more than 99 percent. A follow‐up treatment, consisting of the injection of an additional 6,200 pounds of sodium permanganate, was implemented to address residual soil impacts remaining in the soil source zone. Confirmation soil sampling conducted after the treatment indicated a PCE reduction of greater than 90 percent at the most heavily impacted sample location and additional reductions in four of the six samples collected. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
It is difficult to quantify the range in source strength reduction (MdR) that may be attainable from in situ remediation of a dense nonaqueous‐phase liquid (DNAPL) site given that available studies typically report only the median MdR without providing insights into site complexity, which is often a governing factor. An empirical study of the performance of in situ remediation at a wide range of DNAPL‐contaminated sites determined MdRs for in situ bioremediation (EISB), in situ chemical oxidation (ISCO), and thermal treatment remedies. Median MdR, geometric mean MdR, and lower/upper 95 percent confidence interval for the mean were: 49x, 105x, 20x/556x, respectively, for EISB; 9x, 21x, and 4x/110x for ISCO; and 19x, 31x, and 6x/150x for thermal treatment. Lower MdR values were determined for large, complex sites and for sites with DNAPL pool‐dominated source zones. A feasibility analysis of partial DNAPL depletion is described for a pool‐dominated source zone. Back‐diffusion from low‐hydraulic conductivity units within a pool‐dominated source zone is shown to potentially sustain a secondary source for more than 1,000 years, indicating that aggressive source treatment may not reduce the remediation timeframe. Estimated plume response demonstrates there may be no reduction in cost associated with aggressive treatment, and little difference in risk reduction associated with the various alternatives. Monitored natural attenuation (MNA) for the source zone is shown to be a reasonable alternative for the pool‐dominated source zone considered in this example. It is demonstrated that pool‐dominated source zones with a large range in initial DNAPL mass (250 to 1,500 kg) may correspond to a narrow range in source strength (20 to 30 kg/year). This demonstrates that measured source strength is nonunique with respect to DNAPL mass in the subsurface and, thus, source strength should not be used as the sole basis for predicting how much DNAPL mass remains or must be removed to achieve a target goal. If aggressive source zone treatment is to be implemented due to regulatory requirements, strategic pump‐and‐treat is shown to be most cost effective. These remedial decisions are shown to be insensitive to a range of possible DNAPL pool conditions. At sites with an existing pump‐and‐treat system, a significant increase in mass removal and source strength reduction may be achieved for a low incremental cost by strategic placement of extraction wells and pumping rate selection. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
With the successful implementation of in situ chemical oxidation (ISCO) programs to remediate contaminated soil and groundwater aquifers worldwide, ISCO has become established as a traditional remediation technique. On the basis of historical success, expanded ISCO practices are now routinely applied to increasingly difficult geologic environments, including formerly problem locations such as those containing nonaqueous‐phase liquid, fractured bedrock, low‐conductivity media, and highly layered and/or heterogeneous aquifers. Effective delivery of amendment, however, remains the single most important aspect of successful remediation, particularly given the range of potentially applicable delivery methods and site complexities. Selecting the most appropriate technique for any specific site depends upon a clear understanding of the variety of site constraints, including factors such as site conditions, underlying geology, contaminant distribution, technology limitations, and other project‐specific factors. Because the injection program is often the largest cost associated with implementation of an ISCO project, it is critical to develop a cost‐effective injection method for each site. Constant head injection provides a cost‐effective alternative for sites with low‐conductivity lithology(ies). Constant head injection employs a continuous low‐pressure application method to deliver ISCO agents over a long period of time. This synergistic method complements the existing site conditions and heterogeneity, working with the natural conditions, rather than trying to overcome or destroy the site geology using highly aggressive delivery techniques. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
This article presents a review of in situ technologies for the remediation of soils contaminated with lead, zinc, and/or cadmium. The objective of this review is to assess the developmental status of the available in situ technologies and provide a general summary of typical applications and limitations of these technologies. The literature review identified seven in situ remediation technologies—solidification/stabilization, vitrification, electrokinetic remediation, soil flushing, phytoextraction, phytostabilization, and chemical stabilization. These technologies were considered for their ability to meet a specific set of remediation objectives under a range of conditions. Each of these technologies has both strengths and weaknesses for addressing particular remedial situations discussed in the article for each of the technologies. A general summary of which technologies are most applicable to common remedial scenarios is also provided. © 2004 Wiley Periodicals, Inc.  相似文献   

6.
In situ chemical oxidation (ISCO) has found widespread remedial application at sites that lack nonaqueous‐phase liquid (NAPL) or have a relatively small amount of contaminant mass. Historically, its use has been limited at sites with large amounts of NAPL, primarily because of cost considerations. Proper application of ISCO can expand its use at sites with substantial amounts of NAPL—particularly where it is being used to selectively remediate higher toxicity fractions or reduce the mobility of the NAPL itself through artificial weathering. Alone or in conjunction with conventional technologies, chemical oxidation provides a means for reducing the risk associated with NAPL and potentially closing impacted sites without completely removing NAPL. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
The effects of in situ chemical oxidation (ISCO) on biological processes, as reported in the literature, were researched to determine if coupling ISCO with in situ bioremediation could be achieved in field and laboratory experiments. Literature was compiled concerning the effect of ISCO on microbial communities following addition of a chemical oxidant at a range of concentrations designed to treat a variety of subsurface contaminants. The results indicate that although microbial communities may potentially be adversely affected by chemical oxidation in the short term, a rebound of microbial biomass and/or bioremediation activity can be expected. Successfully coupling ISCO with bioremediation in field applications may be a cost‐effective method of achieving risk‐based site remediation goals. © 2006 Wiley Periodicals, Inc.  相似文献   

8.
A laboratory study was conducted for the selection of appropriate remedial technologies for a partially anaerobic aquifer contaminated with chlorinated volatile organics (VOCs). Evaluation of in situ bioremediation demonstrated that the addition of electron donors to anaerobic microcosms enhanced biological reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA) with half‐lives of 20, 22, and 41 days, respectively. Nearly complete reductions of PCE, TCE, 1,1,1‐TCA, and the derivative cis‐dichloroethene were accompanied by a corresponding increase in chloride concentrations. Accumulation of vinyl chloride, ethene, and ethane was not observed; however, elevated levels of 14CO2 (from 14C‐TCE spiked) were recovered, indicating the occurrence of anaerobic oxidation. In contrast, very little degradation of 1,2‐dichloropropane (1,2‐DCP) and 1,1‐dichlorethane (1,1‐DCA) was observed in the anaerobic microcosms, but nutrient addition enhanced their degradation in the aerobic biotic microcosms. The aerobic degradation half‐lives for 1,2‐DCP and 1,1‐DCA were 63 and 56 days, respectively. Evaluation of in situ chemical oxidation (ISCO) demonstrated that chelate‐modified Fenton's reagent was effective in degrading aqueous‐phase PCE, TCE, 1,1,1‐TCA, 1,2‐DCP, etc.; however, this approach had minimal effects on solid‐phase contaminants. The observed oxidant demand was 16 g‐H2O2/L‐groundwater. The oxidation reaction rates were not highly sensitive to the molar ratio of H2O2:Fe2+:citrate. A ratio of 60:1:1 resulted in slightly faster removal of chemicals of concern (COCs) than those of 12:1:1 and 300:1:1. This treatment resulted in increases in dissolved metals (Ca, Cr, Mg, K, and Mn) and a minor increase of vinyl chloride. Treatment with zero‐valent iron (ZVI) resulted in complete dechlorination of PCE, and TCE to ethene and ethane. ZVI treatment reduced 1,1,1‐TCA only to 1,1‐DCA and chloroethane (CA) but had little effect on reducing the levels of 1,2‐DCP, 1,1‐DCA, and CA. The longevity test showed that one gram of 325‐mesh iron powder was exhausted in reaction with > 22 mL of groundwater. The short life of ZVI may be a barrier to implementation. The ZVI surface reaction rates (ksa) were 1.2 × 10?2 Lm?2h?1, 2 × 10?3 Lm?2h?1, and 1.2 × 10?3 Lm?2h?1 for 1,1,1‐TCA, TCE, and PCE, respectively. Based upon the results of this study, in situ bioremediation appeared to be more suitable than ISCO and ZVI for effectively treating the groundwater contamination at the site. © 2004 Wiley Periodicals, Inc.  相似文献   

9.
Given the relatively rapid rate of dense nonaqueous‐phase liquid (DNAPL) ganglia depletion, source zones are generally dominated by horizontal layers of DNAPL after a release to the saturated zone. Estimating the time required to attain specific source strength reduction targets resulting from partial DNAPL source depletion is challenging due to a lack of available screening models, and because little has been done to synthesize available empirical data. Analytical and semi‐analytical models are used to study general DNAPL pool dissolution dynamics. The half‐life for the decline in DNAPL source strength (i.e., aqueous mass discharge) is demonstrated as proportional to the square root of the pool length, the thickness of the pool, and the solubility for single component DNAPLs. The through‐pool discharge is shown to be potentially significant for thin pools or in upper regions of thicker pools. An empirical analysis is used to evaluate average concentration decline rates for 13 in situ chemical oxidation (ISCO) and 16 enhanced in situ bioremediation (EISB) sites. Mean apparent decline rates, based on the time required to achieve the observed source strength reduction, are calculated for the ISCO and EISB sites (half‐lives of 0.39 year and 0.29 year, respectively). The empirical study sites are shown to have faster decline rates than for a large, complex study site where ISCO was implemented (half‐life of 2.5 years), and for a conceptual pool‐dominated trichloroethene source zone where EISB was simulated (half‐life of 2.5 years). Guidance is provided on using these findings in estimating timeframes for partial DNAPL depletion goals. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Although known to be one of the most effective oxidants for treatment of organic contaminants, catalyzed hydrogen peroxide (CHP) is typically not used for soil mixing applications because of health and safety concerns related to vapor generation and very rapid rates of reaction in open excavations. In likely the first large‐scale in situ CHP soil mixing application, an enhanced CHP, modified Fenton's reagent (MFR), was applied during soil mixing at the Kearsarge Metallurgical Superfund Site in New Hampshire. An innovative rotating dual‐axis blender (DAB) technology was used to safely mix the MFR into low‐plasticity silt and clay soils to remediate residual 1,1,1‐trichloroethane (111TCA); 1,1‐dichloroethene (11DCE); and 1,4‐dioxane (14D). It was expected that the aggressive treatment approach using relatively “greener” hydrogen peroxide (HP) chemistry would effectively treat Site contaminants without significant byproduct impacts to groundwater or the adjacent pond. The remediation program was designed to treat approximately 3,000 cubic yards of residual source area soil in situ by aggressively mixing MFR into the soils. The subsurface interval treated was from 7 to 15 feet below ground surface. To accurately track the soil mixing process and MFR addition, the Site was divided into 109 10‐foot square treatment cells that were precisely located, dosed, and mixed using the DAB equipped with an on‐board GPS system. The use of stabilizing agents along with careful calculation of the peroxide dose helped to ensure vapor‐free conditions in the vicinity of the soil mixing operation. Real‐time sampling and monitoring were critical in identifying any posttreatment exceedences of the cleanup goals. This allowed retreatment and supplemental testing to occur without impacting the soil mixing/in situ chemical oxidation (ISCO) schedule. Posttreatment 24‐hr soil samples were collected from 56 random locations after ensuring that the HP had been completely consumed. The posttreatment test results showed that 111TCA and 11DCE concentrations were reduced to nondetect (ND) or below the cleanup goals of 150 μg/kg for 111TCA and 60 μg/kg for 11DCE. Supplemental posttreatment soil samples, collected six months after treatment, showed 100 percent compliance with the soil treatment goals. Groundwater samples collected one year after the MFR soil mixing treatment program showed either ND or low concentrations for 111TCA, 11DCE, and 14D. Successful stabilization and site restoration was performed after overcoming considerable challenges associated with loss of soil structure, high liquid content, and reduced bearing capacity of the blended soils.  相似文献   

11.
Bio‐Trap®–based in situ microcosm studies were conducted to evaluate EHC‐M® stimulated degradation of mono‐, di‐, and trichlorobenzenes in anaerobic groundwater at a site in Michigan. The data show that the EHC‐M® amendment stimulated an overall increase in microbial activity and a shift in the microbial community structure, indicating more reduced conditions. Stable isotope probing with 13C6‐chlorobenzene demonstrated attenuation of chlorobenzene and subsequent separation and characterization of the 12C‐ and 13C‐deoxyribonucleic acid (DNA) fractions were used to identify the attenuating microbes. These data clearly show the participation of an obligate aerobe in the chlorobenzene biodegradation process. Decreases in concentrations of trichlorobenzenes were also observed in comparison to a control. Due to the thermodynamically favorable reducing conditions stimulated by EHC‐M®, the mechanism of degradation of the trichlorobenzenes is presumed to be reductive dehalogenation. However, on the strength of the DNA‐based analysis of microbial community structure, concurrent microaerophilic degradation of chlorobenzene or its metabolites was definitively demonstrated and cannot be ruled out for the other chlorobenzenes. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Sustained treatment is an emerging concept used to describe enhancements in attenuation capacity after the conclusion of the active treatment period for a given source‐depletion technology. The term includes mechanisms that lead to contaminant transformation or destruction over extended periods of time, such as endogenous biomass decay, slow diffusion of remedial amendments from low‐permeability zones, and the formation of reactive mineral species. This “value‐added” treatment continues after the end of capital expenditures at a site, and it provides additional insight in determining if monitored natural attenuation is a viable long‐term option for a site. This article identifies several sustained treatment mechanisms, examines technology‐specific factors that contribute to sustained treatment, and explores the potential timescales of sustained treatment relative to active treatment. As demonstrated in post‐treatment site data obtained during a comprehensive source‐depletion technology performance survey, enhanced bioremediation is the most promising in promoting sustained treatment, and this beneficial effect can extend for several years due to factors such as slow biomass decay. There is little evidence that other commonly used technologies (thermal treatment, in situ chemical oxidation, surfactant‐enhanced remediation, or cosolvent flushing) result in any significant sustained treatment. An exception would be a cosolvent flushing project where large quantities of biodegradable cosolvent are left in the subsurface at the end of the project, which could result in sustained long‐term dechlorination activity. In the case of in situ chemical oxidation, factors that contribute to a higher incidence of concentration rebound mask any potential sustained treatment effects. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
An in‐well sediment incubator (ISI) was developed to investigate the stability and dynamics of sediment‐associated microbial communities to prevailing subsurface oxidizing or reducing conditions. Herein we describe the use of these devices at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site. During a seven‐month period in which oxidized Rifle Aquifer background sediment (RABS) were deployed in previously biostimulated wells under iron‐reducing conditions, cell densities of known iron‐reducing bacteria, including Geobacteraceae, increased significantly, showing the microbial community response to local subsurface conditions. Phospholipid fatty acid (PLFA) profiles of RABS following in situ deployment were strikingly similar to those of adjacent sediment cores, suggesting ISI results could be extrapolated to the native material of the test plots. Results for ISI deployment with laboratory‐reduced sediments showed only slight changes in community composition and pointed toward the ability of the ISI to monitor microbial community stability and response to subsurface conditions. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
Groundwater contaminated with hexavalent chromium (Cr+6) and chlorinated volatile organic compounds (cVOCs) presents unique in situ remedial challenges in an oxygen‐rich environment. On one hand, chemical oxidation would be effective in treating the cVOCs; however, it would not be appropriate to treat Cr+6. Biological treatment may be appropriate to treat the Cr+6; however, the cVOC degradation pathway within these mixed plumes is currently following an abiotic pathway with little to no daughter‐product production. Thus, a blended approach was needed to treat both constituents in situ in an effort to avoid a long‐term, costly pump‐and‐treat solution. This article evaluates an in situ biogeochemical stabilization/reduction strategy by injecting an inorganic carbon‐based remedial additive into the geologic and hydrogeologic environment to decrease concentrations within the commingled Cr+6 and cVOC plume. The concept involves creating favorable redox reducing conditions to shift the groundwater geochemical equilibrium from the more toxic Cr+6 to the less toxic trivalent chromium (Cr+3), with the final outcome being a conversion to chrome oxide that molecularly fixes to the soil grains. In addition, reducing conditions developed for chromium reduction should result in an increase in the available natural formation iron that should further enhance the natural abiotic reduction of cVOCs. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
A series of laboratory microcosm experiments and a field pilot test were performed to evaluate the potential for in situ chemical oxidation (ISCO) of aromatic hydrocarbons and methyl tertiary butyl ether (MTBE), a common oxygenate additive in gasoline, in saline, high temperature (more than 30 °C) groundwater. Groundwater samples from a site in Saudi Arabia were amended in the laboratory portion of the study with the chemical oxidants, sodium persulfate (Na2S2O8) and sodium percarbonate (Na2(CO3)2), to evaluate the changes in select hydrocarbon and MTBE concentrations with time. Almost complete degradation of the aromatic hydrocarbons, naphthalene and trimethylbenzenes (TMBs), was found in the groundwater sample amended with persulfate, whereas the percarbonate‐amended sample showed little to no degradation of the target hydrocarbon compounds in the laboratory. Isotopic analyses of the persulfate‐amended samples suggested that C‐isotope fractionation for xylenes occurred after approximately 30 percent reduction in concentration with a decline of about 1 percent in the δ13C values of xylenes. Based on the laboratory results, pilot‐scale testing at the Saudi Arabian field site was carried out to evaluate the effectiveness of chemical oxidation using nonactivated persulfate on a high temperature, saline petroleum hydrocarbon plume. Approximately 1,750 kg of Na2S2O8 was delivered to the subsurface using a series of injection wells over three injection events. Results obtained from the pilot test indicated that all the target compounds decreased with removal percentages varying between 86 percent for naphthalene and more than 99 percent for the MTBE and TMBs. The benzene, toluene, ethylbenzene, and xylene compounds decreased to 98 percent on average. Examination of the microbial population upgradient and downgradient of the ISCO reactive zone suggested that a bacteria population was present following the ISCO injections with sulfate‐reducing bacteria (SRB) being the dominant bacteria present. Measurements of inorganic parameters during injection and postinjection indicated that the pH of the groundwater remained neutral following injections, whereas the oxidation–reduction potential remained anaerobic throughout the injection zone with time. Nitrate concentrations decreased within the injection zone, suggesting that the nitrate may have been consumed by denitrification reactions, whereas sulfate concentrations increased as expected within the reactive zone, suggesting that the persulfate produced sulfate. Overall, the injection of the oxidant persulfate was shown to be an effective approach to treat dissolved aromatic and associated hydrocarbons within the groundwater. In addition, the generation of sulfate as a byproduct was an added benefit, as the sulfate could be utilized by SRBs present within the subsurface to further biodegrade any remaining hydrocarbons. ©2015 Wiley Periodicals, Inc.  相似文献   

16.
Residual tetrachloroethene (PCE) contamination at the former Springvilla Dry Cleaners site in Springfield, Oregon, posed a potential risk through the vapor intrusion, direct contact, and off‐site beneficial groundwater uses. The Oregon Department of Environmental Quality utilized the State Dry Cleaner Program funds to help mitigate the risks posed by residual contamination. After delineation activities were complete, the source‐area soils were excavated and treated on‐site with ex situ vapor extraction to reduce disposal costs. Residual source‐area contamination was then chemically oxidized using sodium permanganate. Dissolved‐phase contamination was subsequently addressed with in situ enhanced reductive dechlorination (ERD). ERD achieved treatment goals across more than 4 million gallons of aquifer impacted with PCE concentrations up to 7,800 micrograms per liter prior to remedial activities. The ERD remedy introduced electron donors and nutrient amendments through groundwater recirculation and slug injection across two aquifers over the course of 24 months. Adaptive and mass‐targeted strategies reduced total remedy costs to approximately $18 per ton within the treatment areas. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Field sampling and testing were used to investigate the relationship between baseline geochemical and microbial community data and in situ reductive dechlorination rates at a site contaminated with trichloroethene (TCE) and carbon tetrachloride (CTET). Ten monitoring wells were selected to represent conditions along groundwater flow paths from the contaminant source zone to a wetlands groundwater discharge zone. Groundwater samples were analyzed for a suite of geochemical and microbial parameters; then push‐pull tests with fluorinated reactive tracers were conducted in each well to measure in situ reductive dechlorination rates. No exogenous electron donors were added in these tests, as the goal was to assess in situ reductive dechlorination rates under natural attenuation conditions. Geochemical data provided preliminary evidence that reductive dechlorination of TCE and CTET was occurring at the site, and microbial data confirmed the presence of known dechlorinating organisms in groundwater. Push‐pull tests were conducted using trichlorofluoroethene (TCFE) as a reactive tracer for TCE and, in one well, trichlorofluoromethane (TCFM) as a reactive tracer for CTET. Injected TCFE was transformed to cis‐ and trans‐dichlorofluoroethene and chlorofluoroethene, and, in one test, injected TCFE was completely dechlorinated to fluoroethene (FE). In situ TCFE transformation rates ranged from less than 0.005 to 0.004/day. In the single well tested, injected TCFM was transformed in situ to dichlorofluoromethane and chlorofluoromethane; the TCFM transformation rate was estimated as 0.001/day. The results indicate that it is possible to use push‐pull tests with reactive tracers to directly detect and quantify reductive dechlorination of chlorinated ethenes and ethanes under monitored natural attenuation conditions, which has not previously been demonstrated. Transformation rate estimates obtained with these techniques should improve the accuracy of contaminant transport modeling. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
CDISCO, a Microsoft Excel spreadsheet–based model, can be used to assist with the design of in situ chemical oxidation (ISCO) systems using permanganate (MnO4?). The model inputs are the aquifer characteristics (porosity, hydraulic conductivity, effective aquifer thickness, natural oxidant demand, kinetic parameters, contaminant concentrations, etc.), injection conditions (permanganate injection concentration, flow rate, and duration), and unit costs for reagent, drilling, and labor. MnO4? transport in the aquifer is simulated and used to estimate the effective radius of influence (ROI) and required injection point spacing. CDISCO then provides a preliminary cost estimate for the selected design conditions. The user can perform multiple runs of CDISCO to optimize the cost of the ISCO design. Comparisons with analytical and numerical models of nonreactive and reactive transport demonstrate that CDISCO accurately simulates MnO4? transport and consumption. Comparison of CDISCO results with the three‐dimensional heterogeneous simulations show that aquifer volume contact efficiency and contaminant mass treatment efficiency are closely correlated with the ROI overlap factor. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
In situ chemical fixation represents a promising and potentially cost‐effective treatment alternative for metal‐contaminated soils. This article presents the findings of the use of iron‐bearing soil amendments to reduce the leachability and bioaccessibility of arsenic in soils impacted by stack fallout from a zinc smelter. The focus of this investigation was to reduce the lead bioaccessibility of the soils through addition with phosphorus‐bearing amendments. However, as phosphorus addition was expected to increase arsenic mobility, the fixation strategy also incorporated use of iron‐bearing amendments to offset or reverse these effects. The findings of this investigation demonstrated that inclusion of iron‐bearing chemicals in the amendment formulation reduced arsenic leachability and bioaccessibility without compromising amendment effectiveness for reducing lead bioaccessibility. These results suggest that in situ chemical fixation has the potential to be an effective strategy for treatment of the impacted soils. © 2003 Wiley Periodicals, Inc.  相似文献   

20.
Two pilot tests of an aerobic in situ bioreactor (ISBR) have been conducted at field sites contaminated with petroleum hydrocarbons. The two sites differed with respect to hydrocarbon concentrations. At one site, concentrations were low but persistent, and at the other site concentrations were high enough to be inhibitory to biodegradation. The ISBR unit is designed to enhance biodegradation of hydrocarbons by stimulating indigenous microorganisms. This approach builds on existing Bio‐Sep® bead technology, which provides a matrix that can be rapidly colonized by the active members of the microbial community and serves to concentrate indigenous degraders. Oxygen and nutrients are delivered to the bioreactor to maintain conditions favorable for growth and reproduction, and contaminated groundwater is treated as it is circulated through the bed of Bio‐Sep® beads. Groundwater moving through the system also transports degraders released from Bio‐Sep® beads away from the bioreactor, potentially increasing biodegradation rates throughout the aquifer. Groundwater sampling, Bio‐Traps, and molecular biological tools were used to assess ISBR performance during the two pilot tests. Groundwater monitoring indicated that contaminant concentrations decreased at both sites, and the microbial data suggested that these decreases were due to degradation by indigenous microorganisms rather than dilution or dispersion mechanisms. Taken together, these lines of evidence showed that the ISBR system effectively increased the number and activity of indigenous microbial degraders and enhanced bioremediation at the test sites. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号