首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The threat posed by exotic organisms to native systems has led to extensive research on exotic invaders, yet management of invasives has progressed relatively slowly. This is partly due to poor understanding of how exotic species management influences native organisms. To address this shortfall, we experimentally evaluated the efficacy of an invasives management tool for restoring native deer mouse (Peromyscus maniculatus) populations elevated by exotic species. The exotic insects, Urophora spp., were introduced in North America for biological control of the Eurasian invader, spotted knapweed (Centaurea maculosa), but instead of controlling C. maculosa, Urophora have become an important food resource that doubles P. maniculatus populations, with substantial indirect effects on other organisms. We hypothesized that herbicide suppression of Urophora's host plant would reduce the Urophora food resource and restore P. maniculatus populations to natural levels. Prior to treatment, mouse populations did not differ between controls and treatments, but following treatment, P. maniculatus were half as abundant where treatment reduced Urophora. Peromyscus maniculatus is insensitive to direct herbicide effects, and herbicide-induced habitat changes could not explain the P. maniculatus response. Treatment-induced reductions of the Urophora food resource offered the most parsimonious explanation for the mouse response: Multistate mark-recapture models indicated that P. maniculatus survival declined where Urophora were removed, and survival rates were more correlated with variation in population size than movement rates. Other demographic and reproductive parameters (sex ratios, reproductive status, pregnancy rates, and juvenile recruitment) were unaffected by treatment. These results suggest the Urophora biocontrol elevated P. maniculatus survival, and the herbicide treatment restored mouse populations by removing the exotic food and reducing survival. This work illustrates the importance of mechanistic understandings of community and population ecology for improving invasive species management.  相似文献   

2.
Bricker M  Maron J 《Ecology》2012,93(3):532-543
Loss of seeds to consumers is common in plant communities, but the degree to which these losses influence plant abundance or population growth is often unclear. This is particularly the case for postdispersal seed predation by rodents, as most studies of rodent seed predation have focused on the sources of spatiotemporal variation in seed loss but not quantified the population consequences of this loss. In previous work we showed that seed predation by deer mice (Peromyscus maniculatus) substantially reduced seedling recruitment and establishment of Lithospermum ruderale (Boraginaceae), a long-lived perennial forb. To shed light on how rodent seed predation and the near-term effects on plant recruitment might influence longer-term patterns of L. ruderale population growth, we combined experimental results with demographic data in stage-based population models. Model outputs revealed that rodent seed predation had a significant impact on L. ruderale population growth rate (lambda). With the removal of postdispersal seed predation, the projected population growth rates increased between 0.06 and 0.12, depending on site (mean deltalambda across sites = 0.08). Seed predation shifted the projected stable stage distribution of populations from one with a high proportion of young plants to one in which larger adult size classes dominate. Elasticities of vital rates also changed, with germination and growth of seedlings and young plants becoming more important with the removal of seed predation. Simulations varying the magnitude of seed predation pressure while holding other vital rates constant showed that seed predation could lower lambda even if only 40% of available seeds were consumed. These results demonstrate that rodent granivory can be a potent force limiting the abundance of a long-lived perennial forb.  相似文献   

3.
Introduced Birds and the Fate of Hawaiian Rainforests   总被引:3,自引:0,他引:3  
Abstract:  The Hawaiian Islands have lost nearly all their native seed dispersers, but have gained many frugivorous birds and fleshy-fruited plants through introductions. Introduced birds may not only aid invasions of exotic plants but also may be the sole dispersers of native plants. We assessed seed dispersal at the ecotone between native- and exotic-dominated forests and quantified bird diets, seed rain from defecated seeds, and plant distributions. Introduced birds were the primary dispersers of native seeds into exotic-dominated forests, which may have enabled six native understory plant species to become reestablished. Some native plant species are now as common in exotic forest understory as they are in native forest. Introduced birds also dispersed seeds of two exotic plants into native forest, but dispersal was localized or establishment minimal. Seed rain of bird-dispersed seeds was extensive in both forests, totaling 724 seeds of 9 native species and 2 exotics with over 85% of the seeds coming from native plants. Without suitable native dispersers, most common understory plants in Hawaiian rainforests now depend on introduced birds for dispersal, and these introduced species may actually facilitate perpetuation, and perhaps in some cases restoration, of native forests. We emphasize, however, that restoration of native forests by seed dispersal from introduced birds, as seen in this study, depends on the existence of native forests to provide a source of seeds and protection from the effects of ungulates. Our results further suggest that aggressive control of patches of non-native plants within otherwise native-dominated forests may be an important and effective conservation strategy.  相似文献   

4.
Habitat-specific impacts of multiple consumers on plant population dynamics   总被引:2,自引:0,他引:2  
Maron JL  Kauffman MJ 《Ecology》2006,87(1):113-124
Multiple consumers often attack seeds, seedlings, and adult plants, but their population-level consequences remain uncertain. We examined how insect and small mammal consumers influenced the demography and abundance of the perennial shrub, bush lupine (Lupinus arboreus). In grassland and dune habitats we established replicate experimental lupine populations in 81-m2 plots that were either protected from, or exposed to, herbivorous voles and granivorous mice (via fencing) and/or root feeding insects (via insecticide treatment). Populations were initiated with transplanted seedlings in 1999 and 2000. We followed the demography of these cohorts, subsequent generations, and the seed bank for 5.5 years. Voles and insects killed many seedlings in dune (1999 only) and grassland (1999 and 2000) habitats. After 2000, insects and voles had minimal effects on seedling or adult survival. Seed predation by granivorous mice, however, greatly depressed seedling recruitment, resulting in lower adult lupine abundance in control plots vs. those protected from rodents. In grasslands, initial effects of voles and insects on seedling survival produced large differences among treatments in adult plant density and the cumulative number of seeds produced throughout the experiment. Differences among grassland populations in seed rain, however, had little influence on the magnitude of seedling recruitment into this habitat. Instead, recruitment out of a preexisting seed bank compensated for the lack of seed production in populations exposed to consumers. Shading by dense adults in plots protected from consumers limited seedling establishment within these populations. Although differences among populations in cumulative seed rain did not influence adult establishment, populations protected from consumers accumulated substantially larger seed banks than controls. These results illustrate how density dependence, habitat-specific seed dynamics, and particular demographic impacts of consumers interact to shape plant population responses to consumers.  相似文献   

5.
Kittelson P  Maron J  Marler M 《Ecology》2008,89(5):1344-1351
Little is known about how exotics influence the ecophysiology of co-occurring native plants or how invader impact on plant physiology may be mediated by community diversity or resource levels. We measured the effect of the widespread invasive forb spotted knapweed (Centaurea maculosa) on leaf traits (leaf dry matter content, specific leaf area, leaf nitrogen percentage, leaf C:N ratios, and delta13C as a proxy for water use efficiency) of two co-occurring native perennial grassland species, Monarda fistulosa (bee balm) and Koeleria macrantha (Junegrass). The impact of spotted knapweed was assessed across plots that varied in functional diversity and that either experienced ambient rainfall or received supplemental water. Impact was determined by comparing leaf traits between identical knapweed-invaded and noninvaded assemblages. Virtually all M. fistulosa leaf traits were affected by spotted knapweed. Knapweed impact, however, did not scale with its abundance; the impact of knapweed on M. fistulosa was similar across heavily invaded low-diversity assemblages and lightly invaded high-diversity assemblages. In uninvaded assemblages, M. fistulosa delta13C, leaf nitrogen, and C:N ratios were unaffected by native functional group richness, whereas leaf dry matter content significantly increased and specific leaf area significantly decreased across the diversity gradient. The effects of spotted knapweed on K. macrantha were weak; instead native functional group richness strongly affected K. macrantha leaf C:N ratio, delta13C, and specific leaf area, but not leaf dry matter content. Leaf traits for both species changed in response to spotted knapweed or functional richness, and in a manner that may promote slower biomass accumulation and efficient conservation of resources. Taken together, our results show that an invader can alter native plant physiology, but that these effects are not a simple function of how many invaders exist in the community.  相似文献   

6.
Orrock JL  Witter MS  Reichman OJ 《Ecology》2008,89(4):1168-1174
Biological invasions can change ecosystem function, have tremendous economic costs, and impact human health; understanding the forces that cause and maintain biological invasions is thus of immediate importance. A mechanism by which exotic plants might displace native plants is by increasing the pressure of native consumers on native plants, a form of indirect interaction termed "apparent competition." Using experimental exclosures, seed addition, and monitoring of small mammals in a California grassland, we examined whether exotic Brassica nigra increases the pressure of native consumers on a native bunchgrass, Nassella pulchra. Experimental plots were weeded to focus entirely on indirect effects via consumers. We demonstrate that B. nigra alters the activity of native small-mammal consumers, creating a gradient of consumption that dramatically reduces N. pulchra establishment. Previous work has shown that N. pulchra is a strong competitor, but that it is heavily seed limited. By demonstrating that consumer pressure is sufficient to curtail establishment, our work provides a mechanism for this seed limitation and suggests that, despite being a good competitor, N. pulchra cannot reestablish close to B. nigra within its old habitats because exotic-mediated consumption preempts direct competitive exclusion. Moreover, we find that apparent competition has a spatial extent, suggesting that consumers may dictate the rate of invasion and the area available for restoration, and that nonspatial studies of apparent competition may miss important dynamics.  相似文献   

7.
The intentional introduction of specialist insect herbivores for biological control of exotic weeds provides ideal but understudied systems for evaluating important ecological concepts related to top-down control, plant compensatory responses, indirect effects, and the influence of environmental context on these processes. Centaurea stoebe (spotted knapweed) is a notorious rangeland weed that exhibited regional declines in the early 2000s, attributed to drought by some and to successful biocontrol by others. We initiated an experiment to quantify the effects of the biocontrol agent, Cyphocleonus achates, on Ce. stoebe and its interaction with a dominant native grass competitor, Pseudoroegneria spicata, under contrasting precipitation conditions. Plots containing monocultures of each plant species or equal mixtures of the two received factorial combinations of Cy. achates herbivory (exclusion or addition) and precipitation (May-June drought or "normal," defined by the 50-year average) for three years. Cy. achates herbivory reduced survival of adult Ce. stoebe plants by 9% overall, but this effect was stronger under normal precipitation compared to drought conditions, and stronger in mixed-species plots compared to monocultures. Herbivory had no effect on Ce. stoebe per capita seed production or on recruitment of seedlings or juveniles. In normal-precipitation plots of mixed composition, greater adult mortality due to Cy. achates herbivory resulted in increased recruitment of new adult Ce. stoebe. Due to this compensatory response to adult mortality, final Ce. stoebe densities did not differ between herbivory treatments regardless of context. Experimental drought reduced adult Ce. stoebe survival in mixed-species plots but did not impede recruitment of new adults or reduce final Ce. stoebe densities, perhaps due to the limited duration of the treatment. Ce. stoebe strongly depressed P. spicata reproduction and recruitment, but these impacts were not substantively alleviated by herbivory on Ce. stoebe. Population-level compensation by dominant plants may be an important factor inhibiting top-down effects in herbivore-driven and predator-driven cascades.  相似文献   

8.
Pearson DE  Callaway RM  Maron JL 《Ecology》2011,92(9):1748-1757
Escape from specialist natural enemies is frequently invoked to explain exotic plant invasions, but little attention has been paid to how generalist consumers in the recipient range may influence invasion. We examined how seed preferences of the widespread generalist granivore Peromyscus maniculatus related to recruitment of the strongly invasive exotic Centaurea stoebe and several weakly invasive exotics and natives by conducting laboratory feeding trials and seed addition experiments in the field. Laboratory feeding trials showed that P. maniculatus avoided consuming seeds of C. stoebe relative to the 12 other species tested, even when seeds of alternative species were 53-94% smaller than those of C. stoebe. Seed addition experiments conducted in and out of rodent exclosures revealed that weakly invasive exotics experienced relatively greater release from seed predation than C. stoebe, although this was not the case for natives. Seed mass explained 81% of the variation in recruitment associated with rodent exclusion for natives and weak invaders, with larger-seeded species benefiting most from protection from granivores. However, recruitment of C. stoebe was unaffected by rodent exclusion, even though the regression model predicted seeds of correspondingly large mass should experience substantial predation. These combined laboratory and field results suggest that generalist granivores can be an important biological filter in plant communities and that species-specific seed attributes that determine seed predation may help to explain variation in native plant recruitment and the success of exotic species invasions.  相似文献   

9.
Brandt AJ  Seabloom EW 《Ecology》2012,93(6):1451-1462
The effects of exotic species invasions on biodiversity vary with spatial scale, and documentation of local-scale changes in biodiversity following invasion is generally lacking. Coupling long-term observations of local community dynamics with experiments to determine the role played by exotic species in recruitment limitation of native species would inform both our understanding of exotic impacts on natives at local scales and regional-scale management efforts to promote native persistence. We used field experimentation to quantify propagule and establishment limitation in a suite of native annual forbs in a California reserve, and compared these findings to species abundance trends within the same sites over the past 48 years. Observations at 11 paired sites (inside and outside the reserve) indicated that exotic annual plants have continued to increase in abundance over the past 48 years. This trend suggests the system has not reached equilibrium > 250 years after exotic species began to spread, and 70 years after livestock grazing ceased within the reserve. Long-term monitoring observations also indicated that six native annual forb species went extinct from more local populations than were colonized. To determine the potential role of exotic species in these native plant declines, we added seed of these species into plots adjacent to monitoring sites where plant litter and live grass competition were removed. Experimental results suggest both propagule and establishment limitation have contributed to local declines observed for these native forbs. Recruitment was highest at sites that had current or historical occurrences of the seeded species, and in plots where litter was removed. Grazing history (i.e., location within or outside the reserve) interacted with exotic competition removal, such that removal of live grass competition increased recruitment in more recently grazed sites. Abundance of forbs was positively related to recruitment, while abundance of exotic forbs was negatively related. Thus, exotic competition is likely only one factor contributing to local declines of native species in invaded ecosystems, with a combination of propagule limitation, site quality, and land use history also playing important and interactive roles in native plant recruitment.  相似文献   

10.
The conservation of rare plant species hinges on our ability to identify the underlying mechanisms that limit rare plant populations. Theory on rarity suggests that both predispersal seed predation and competition can be important mechanisms influencing abundance and/or distribution of rare plant populations. Yet few studies have tested these interactions, and those that have evaluated each mechanism independently. Astragalus sinuatus Piper (Whited's milkvetch) is a narrow endemic plant species restricted to eight populations within a 10-km2 area in eastern Washington. We used experimental and observational methods to test the effects of native insect predispersal seed predators and an invasive grass (Bromus tectorum L. [cheatgrass]) on seed set and population density of A. sinuatus. We quantified per capita seed production and pod predation rates across four sites and among four years. Seed predation rates were high across four sites (66-82%) and all years (65-82%). Experimental reduction of predispersal seed predators significantly increased per capita seed set of A. sinuatus (164-345%) at two experimental sites. Concurrently, two seed addition experiments demonstrated the effect of seed loss and presence of B. tectorum on seedling recruitment and establishment of A. sinuatus over four growing seasons. In the first seed addition experiment, we found no difference in recruitment and establishment between low (40) and high (120) seed addition levels. In the second addition experiment (one level of addition; 40 seeds), we found that recruitment and survivorship increased 200% in plots where B. tectorum was removed compared to plots where B. tectorum was present. Thus, seed addition had no impact in the presence of B. tectorum; conversely, in the absence of B. tectorum, seed addition was highly effective at increasing population numbers. Results suggest that, in areas where B. tectorum is present, recruitment is site limited, and it is seed limited when B. tectorum is absent. We recommend that managers reduce B. tectorum in an effort to increase population growth of A. sinuatus; in areas where B. tectorum is absent, short-term reduction of insect predators should be considered as a strategy to increase population growth of this rare species.  相似文献   

11.
Kitzberger T  Chaneton EJ  Caccia F 《Ecology》2007,88(10):2541-2554
Resource pulses often involve extraordinary increases in prey availability that "swamp" consumers and reverberate through indirect interactions affecting other community members. We developed a model that predicts predator-mediated indirect effects induced by an epidemic prey on co-occurring prey types differing in relative profitability/preference and validated our model by examining current-season and delayed effects of a bamboo mass seeding event on seed survival of canopy tree species in mixed Patagonian forests. The model shows that predator foraging behavior, prey profitability, and the scale of prey swamping influence the character and strength of short-term indirect effects on various alternative prey. When in large prey-swamped patches, nonselective predators decrease predation on all prey types. Selective predators, instead, only benefit prey of similar quality to the swamping species, while very low or high preference prey remain unaffected. Negative indirect effects (apparent competition) may override such positive effects (apparent mutualism), especially for highly preferred prey, when prey-swamped patches are small enough to allow predator aggregation and/or predators show a reproductive numerical response to elevated food supply. Seed predation patterns during bamboo (Chusquea culeou) masting were consistent with predicted short-term indirect effects mediated by a selective predator foraging in large prey-swamped patches. Bamboo seeds and similarly-sized Austrocedrus chilensis (ciprés) and Nothofagus obliqua (roble) seeds suffered lower predation in bamboo flowered than nonflowered patches. Predation rates on the small-seeded Nothofagus dombeyi (coihue) and the large-seeded Nothofagus alpina (rauli) were independent of bamboo flowering. Indirect positive effects were transient; three months after bamboo seeding, granivores preyed heavily upon all seed types, irrespective of patch flowering condition. Moreover, one year after bamboo seeding, predation rates on the most preferred seed (rauli) was higher in flowered than in nonflowered patches. Despite rapid predator numerical responses, short-term positive effects can still influence community recruitment dynamics because surviving seeds may find refuge beneath the litter produced by bamboo dieback. Together, our theoretical analysis and experiments indicate that indirect effects experienced by alternative prey during and after prey-swamping episodes need not be universal but can change across a prey quality spectrum, and they critically depend on predator-foraging rules and the spatial scale of swamping.  相似文献   

12.
13.
Paine CE  Beck H 《Ecology》2007,88(12):3076-3087
Seed dispersal and seedling recruitment (the transition of seeds to seedlings) set the spatiotemporal distribution of new individuals in plant communities. Many terrestrial rain forest mammals consume post-dispersal seeds and seedlings, often inflicting density-dependent mortality. In part because of density-dependent mortality, diversity often increases during seedling recruitment, making it a critical stage for species coexistence. We determined how mammalian predators, adult tree abundance, and seed mass interact to affect seedling recruitment in a western Amazonian rain forest. We used exclosures that were selectively permeable to three size classes of mammals: mice and spiny rats (weighing <1 kg), medium-sized rodents (1-12 kg), and large mammals (20-200 kg). Into each exclosure, we placed seeds of 13 tree species and one canopy liana, which varied by an order of magnitude in adult abundance and seed mass. We followed the fates of the seeds and resulting seedlings for at least 17 months. We assessed the effect of each mammalian size class on seed survival, seedling survival and growth, and the density and diversity of the seedlings that survived to the end of the experiment. Surprisingly, large mammals had no detectable effect at any stage of seedling recruitment. In contrast, small- and medium-sized mammals significantly reduced seed survival, seedling survival, and seedling density. Furthermore, predation by small mammals increased species richness on a per-stem basis. This increase in diversity resulted from their disproportionately intense predation on common species and large-seeded species. Small mammals thereby generated a rare-species advantage in seedling recruitment, the critical ingredient for frequency dependence. Predation by small (and to a lesser extent, medium-sized) mammals on seeds and seedlings significantly increases tree species diversity in tropical forests. This is the first long-term study to dissect the effects of various mammalian predators on the recruitment of a diverse set of tree species.  相似文献   

14.
Previous research suggests that in highly fragmented forest landscapes ecological succession can be arrested by lack of seeds, but that seed deposition abundance and diversity of bird-dispersed plants can be enhanced by bird-attracting structures such as snags. Consequently, bird perches remain a potential tool for accelerating ecological succession and reforesting disturbed land. Consequently, in order to determine the effectiveness of bird perches in reclaiming forested landscapes, seed dispersal, seedbank storage, and recruitment of bird-dispersed plants was studied on a central Florida mined site with clay-rich soil undergoing primary succession over a seven-year period. Data collection included 20 continuous months of seed dispersal data, an analysis of the total and germinable seedbanks, and plant recruitment at one and two years after a fire destroyed perches and burnt vegetation. Seed dispersal to perches reached a peak seedfall by weight in August, which was attributable to nonmigratory birds. Myrica cerifera, the most abundant species dispersed to the sites, was the only species dispersed during the winter and spring months, and it may be a keystone species for the frugivorous bird guild in central Florida. Seedfall beneath perches had a higher diversity of seed genera, and seed numbers (340 seeds m−2 yr−1) were 150 times greater than in sites without perches. Seeds of bird-dispersed plants in the seedbank under perches numbered 77 ± 33 (m−2) in total and 17 ± 5 for the viable seedbank. The population density of bird-dispersed plants was 1.4 and 2.0 plants m−2 at one and two years afler the fire. Less than 0.06% of the dispersed seeds survived to become seedlings. Species composition shifted from seedfall to seedlings, with small-seeded, early-successional (r-selected) shrubs and herbs becoming relatively more common than the desired large-seeded, late-successional (K-selected) tree species. Perches attracted birds and associated seeds, but the physically harsh conditions created by primary succession and/or high predation on seeds appeared to reduce the success of the desired late-successional plant species. Nonetheless, there was a higher abundance and diversity of bird-dispersed plants under perches, suggesting that perch structures have a limited ability to enhance plant diversity under conditions of primary succession.  相似文献   

15.
Spatial and temporal patterns of predation on seeds of the seagrass Phyllospadix torreyi S. Watson were quantified at four sites near Santa Barbara, California, USA. Over a period of four flowering seasons during 1995 to 1998, monthly patterns of seed fall and intensity of seed predation were similar among sites, but were temporally quite variable. Abundance of dispersed seeds varied greatly both among seasons and years. Within any one year, seeds were present in the environment every month, but they peaked in abundance during the fall months following the annual flowering period. Seeds were more abundant during the earlier years of the study. The intensity of predation steadily increased throughout the study period, from a low of ≤10% seeds consumed during 1995 to ∼50% consumption by 1997, and it was not correlated with abundance of seeds in the environment. Pre-dispersal seed loss also was estimated in two flowering seasons by counting the numbers of seeds consumed prior to release from the plant, and was relatively low (<15%). No differences were detected among the four study sites in patterns of pre-dispersal loss. Field surveys were done at two sites to identify potential seed predators. Three of the most abundant species identified in these surveys were tested in the laboratory to determine size-specific patterns of feeding activity and to assess which early life stages of P. torreyi (fruits within spadices, dehisced fruits, seedlings) were most vulnerable to predation. All three of the early life stages were consumed. The crabs Pugettiaproducta (Randall) and Pachygrapsus crassipes Randall were much more voracious predators than the isopod Idotea resecata Stimpson. Received: 8 June 1999 / Accepted: 2 February 2000  相似文献   

16.
Abstract:  In an earlier paper ( Pergams & Nyberg 2001 ) we found that the proportion of the prairie deer mouse ( Peromyscus maniculatus bairdii ), among all local Peromyscus museum specimens collected in the Chicago region, had significantly declined over time. This proportion changed from about 50% before 1900 to <10% in the last 25 years. Based on this proportion a regression model predicted the local extinction of the prairie deer mouse in 2009. To evaluate that prediction, we estimated current deer mouse abundance by live trapping small mammals at 15 preserves in Cook and Lake counties, Illinois (USA) at which prairie deer mice had previously been caught or that still contained their preferred open habitat. In 1900 trap nights, 477 mammals were caught, including 251 white-footed mice ( P. leucopus ), but only one prairie deer mouse. The observed proportion of Peromyscus that were prairie deer mice, 0.4%, was even lower than the 4.5% predicted for 2000. Here we also introduce a simple, new community proportions model, which for any given geographic region compares the proportions of species recently caught with the proportions of species in museums. We compared proportions of seven species collected in Cook and Lake counties and examined by Hoffmeister (1989) with proportions of these species that we caught. Ten percent of the museum community was prairie deer mice, but only 0.2% of our catch was. The current local scarcity of the prairie deer mouse is consistent with the regression-based prediction of its eminent local extinction. More conservation attention should be paid to changes in relative abundance of once-common species.  相似文献   

17.
Although indirect effects are important structuring forces in ecological communities, they are seldom considered in the design of pest control operations. However, such effects may cause unpredicted and deleterious changes in other populations that could reduce or even negate the benefit to endangered species for which control is undertaken. Furthermore, the complexity and nonlinearities inherent in interacting ecological communities may cause thresholds in the strength of pest control, on either side of which indirect effects could vary greatly in their magnitude and desirability. We constructed a four-species simulation model for a common pest community in New Zealand beech (Nothofagus spp.) forests: house mice, ship rats, stoats, and brushtail possums. When the model was perturbed to simulate common control techniques, marked increases in the abundance of nontarget pest species were observed at the next forest mast. Higher mouse numbers were observed following both toxin (1080) application and rat kill-trapping, and higher rat numbers were observed following stoat kill-trapping, due to a release from predation in all cases. In comparison, a marked decrease in stoat abundance at the next forest mast was observed following simultaneous control of rats and mice, due to the effects of decreased prey abundance on the stoat population. For rat control, the size of the indirect effect on mouse numbers increased monotonically with control strength. Because the curvature of the relationship is slight, the relationship between the direct benefits of control and the indirect costs incurred would remain relatively unchanged regardless of the strength of control employed. For simultaneous mouse and rat control, however, high levels of control (as initially simulated) were predicted to cause decreased peak stoat abundance at the next mast event, whereas intermediate and low levels of control were predicted to cause increased stoat abundance. Hence, this study demonstrates two points of concern for pest managers. First, indirect effects of control operations do have the potential to reduce the planned-for benefit. Second, thresholds in the strength of control employed can potentially occur, across which indirect effects switch from being of conservation benefit to being of conservation concern.  相似文献   

18.
Lach L 《Ecology》2007,88(8):1994-2004
The loss of biodiversity and associated ecosystem services are major threats posed by the spread of alien invasive species. Invasive ants are frequently associated with declines in the diversity of ground-dwelling arthropods but also may affect plants through their attraction to floral nectar and tending of hemipterans. Protea nitida is a tree native to the South African fynbos that hosts a native membracid, Beaufortiana sp., which is tended by ants. Here I compare Argentine ants (Linepithema humile) to native ants in their attraction to P. nitida inflorescences in the presence and absence of the membracid, and their effects on other floral arthropod visitors, seed set, and ovule predation. Argentine ant discovery of inflorescences increased at least 13-fold when membracids were present on the branch, whereas native ant discovery of inflorescences was only doubled by membracid presence at one site in one study year and was unaffected in the other three site-years. Excluding Argentine ants from inflorescences resulted in an increase in several arthropod taxa and potential pollinators; native ant exclusion had no positive effects. Thus the mutualism between Argentine ants and the membracid is facilitating pollinator deterrence by the ants. Though Argentine ants were not associated with a decline in P. nitida seed set or ovule predation, declines in generalist insect pollinators may have ramifications for the 83% of fynbos plants that are insect pollinated. Pitfall traps showed that Argentine ants were not more abundant than native ants in non-invaded sites. Focusing only on abundance on the ground and displacement of ground-dwelling arthropod fauna may lead to an underestimate of the effects of invasive ants on their adopted communities.  相似文献   

19.
Competitive outcomes among plants can vary in different abiotic and biotic conditions. Here we tested the effects of two phylotypes of Alternaria endophytes on the growth, competitive effects, and competitive responses of the exotic invasive forb Centaurea stoebe. Centaurea stoebe was a better competitor against North American grass species than grasses from its European home range in the absence of endophytes. However, one endophyte both increased the biomass of C. stoebe and reduced the competitive effect of North American grasses on C. stoebe. The competitive effects of C. stoebe on grass species native to North America were enhanced by both fungal endophytes, but not for native European grasses. We do not know the mechanism by which endophytes increased C. stoebe's competitive ability, and particularly against biogeographically new neighbors, but one endophyte increased the competitive ability of C. stoebe without increasing its size, suggesting mechanisms unrelated to increased growth. We tested only a fraction of the different endophytic fungi that have been found in C. stoebe, only scratching the surface of understanding their indirect effects. However, our results are the first to demonstrate such effects of a fungal endophyte infecting an invasive forb, and one of the few to show that endophyte effects on competition do not have to be mediated through herbivory.  相似文献   

20.
Nonindigenous invasive plants pose a major threat to natural communities worldwide. Biological control of weeds via selected introduction of their natural enemies can affect control over large spatial areas but also risk nontarget effects. To maximize effectiveness while minimizing risk, weed biocontrol programs should introduce the minimum number of host-specific natural enemies necessary to control an invasive nonindigenous plant. We used elasticity analysis of a matrix model to help inform biocontrol agent selection for garlic mustard (Alliaria petiolata (M. Bieb.) Cavara and Grande). The Eurasian biennial A. petiolata is considered one of the most problematic invaders of temperate forests in North America. Four weevil species in the genus Ceutorhynchus (Coleoptera: Curculionidae) are currently considered potential biocontrol agents. These species attack rosettes (C. scrobicollis), stems (C. roberti, C. alliariae), and seeds (C. constrictus) of A. petiolata. Elasticity analyses using A. petiolata demographic parameters from North America indicated that changes in the rosette-to-flowering-plant transition and changes in fecundity consistently had the greatest impact on population growth rate. These results suggest that attack by the rosette-feeder C. scrobicollis, which reduces overwintering survival, and seed or stem feeders that reduce seed output should be particularly effective. Model outcomes differed greatly as A. petiolata demographic parameters were varied within ranges observed in North America, indicating that successful control of A. petiolata populations may occur under some, but not all, conditions. Using these a priori analyses we predict: (1) rosette mortality and reduction of seed output will be the most important factors determining A. petiolata demography; (2) the root-crown feeder C. scrobicollis will have the most significant impact on A. petiolata demography; (3) releases of single control agents are unlikely to control A. petiolata across its full range of demographic variability; (4) combinations of agents that simultaneously reduce rosette survival and seed production will be required to suppress the most vigorous A. petiolata populations. These predictions can be tested using established long-term monitoring sites coupled with a designed release program. If demographic models can successfully predict biocontrol agent impact on invasive plant populations, a continued dialogue and collaboration between empirical and theoretical approaches may be the key to the development of successful biocontrol tactics for plant invaders in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号