首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Comprehensive mitigation strategies for gaseous emissions from broiler operations requires knowledge of the litters' physical and chemical properties, gas evolution, bird effects, as well as broiler house management and structure. This research estimated broiler litter surface fluxes for ammonia (NH3), nitrous oxide (N2O), and carbon dioxide (CO2). Ancillary measurements of litter temperature, litter total N, ammonium (NH4+), total C content, moisture, and pH were also made. Grid sampling was imposed over the floor area of two commercial broiler houses at the beginning (Day 1), middle (Day 23), and end (Day 43) of a winter and subsequent summer flock housed on reused pine shavings litter. The grid was composed of 36 points, three locations across the width, and 12 locations down the length of the houses. To observe feeder and waterer (F/W) influences on the parameters, eight additional sample locations were added in a crisscross pattern among these automated supply lines. Color variograms illustrate the nature of parameter changes within each flock and between seasons. Overall trends for the NH3, N2O, and CO2 gas fluxes indicate an increase in magnitude with bird age during a flock for both summer and winter, but flux estimates were reduced in areas where compacted litter (i.e., caked litter or cake) formed at the end of the flocks (at F/W locations and in the fan area). End of flock gas fluxes were estimated at 1040 mg NH3 m(-2) h(-1), 20 mg N2O m(-2) h(-1), and 24,200 mg CO2 m(-2) h(-1) in winter; and 843 mg NH3 m(-2) h(-1), 18 mg N2O m(-2) h(-1)), and 27,200 mg CO2 m(-2) h(-1) in summer. The results of intensive sample efforts during winter and summer flocks, reported visually using contour plots, offer a resource to the poultry industry and researchers for creating new management strategies for improving production and controlling gas evolution. Particularly, efforts could focus on designing housing systems that minimize extremes in litter compaction. The extremes are undesirable with more friable litter prone to greater gas evolution and more compacted litter providing a slippery, disease-sustaining surface.  相似文献   

2.
Surface application of broiler litter to no-till cotton could lead to degradation of water quality. Incorporation of broiler litter into the top surface soil (0.05 m) could alleviate this risk. A 2-yr field study was conducted on a silt loam upland soil to determine the effect of incorporation of broiler litter into the soil surface on nutrient and bacterial transport in runoff. The experimental design was a randomized complete block with four treatments and three replications. Treatments were (i) unfertilized control; (ii) surface-appliedbroiler litter at 7.8 Mg ha(-1) without incorporation; (iii) surface-applied broiler litter at 7.8 Mg ha(-1) with immediate incorporation; and (iv) inorganic fertilizer N (urea ammonium nitrate, 32% N) and inorganic fertilizer P (triple superphosphate) at the recommended rate. Phosphorus was surface appliedat 25 kg ha(-1) and N was injected at 101 kg ha(-1) into the soil using a commercial liquid fertilizer applicator. Runoff was collected from small runoff plots (2.4 m by 1.6 m) established at the bottom side of main plots (13.7 m by 6.0 m). Incorporation of broiler litter reduced total N (TN), NO3-N, water soluble P (WSP), and total P (TP) concentrations in runoffby 35, 25, 61, and 64%, respectively, and litter-associated bacteria by two to three orders of magnitude compared with unincorporated treatment. No significant difference in total suspended solids (TSS) in runoffwas obtained between incorporated and unincorporated treatments. Incorporation of broiler litter into the surface soil in the no-till system immediately after application minimized the potential risk for surface nutrient losses and bacteria transport in runoff.  相似文献   

3.
Poultry litter applications to land have been based on crop N requirements, resulting in application of P in excess of plant requirements, which may cause degradation of water quality in the Chesapeake Bay watershed. The effect of litter source (the Delmarva Peninsula and Moorefield, West Virginia) and composting of poultry litter on N mineralization and availability of P in two soil types (sandy loam and silt loam) was determined in a controlled environment for 120 d. Nitrogen mineralization (percent total organic N converted to inorganic nitrogen) rates were higher for fresh litter (range of 42 to 64%) than composted litter (range of 1 to 9%). The N mineralization rate of fresh litter from the Delmarva Peninsula was consistently lower than the fresh litter from Moorefield, WV. The N mineralization rate of composted litter from either source was not significantly different for each soil type (7 to 9% in sandy loam and 1 to 5% in silt loam) even though composting conditions were completely different at the two composting facilities. Litter source had a large effect on N mineralization rates of fresh but not composted poultry litter. Composting yielded a more predictable and reliable source of mineralizable N than fresh litter. Water-extractable phosphorus (WEP) was similar in soils amended with composted litter from WV and fresh litter from both sources (approximately 10 to 25 and 2 to 14 mg P kg(-1) for sandy loam and silt loam, respectively). Mehlich 1-extractable phosphorus (MEP) was similar in soils amended with WV fresh litter and composted litter from both sources (approximately 100 to 140 and 60 to 90 mg P kg(-1) for sandy loam and silt loam, respectively). These results suggest that the composting process did not consistently reduce WEP and MEP, and P can be as available in composted poultry litter as in fresh poultry litter.  相似文献   

4.
Land application of animal manures and fertilizers has resulted in an increased potential for excessive P losses in runoff to nutrient-sensitive surface waters. The purpose of this research was to measure P losses in runoff from a bare Piedmont soil in the southeastern United States receiving broiler litter or inorganic P fertilizer either incorporated or surface-applied at varying P application rates (inorganic P, 0-110 kg P ha(-1); broiler litter, 0-82 kg P ha(-1)). Rainfall simulation was applied at a rate of 76 mm h(-1). Runoff samples were collected at 5-min intervals for 30 min and analyzed for reactive phosphorus (RP), algal-available phosphorus (AAP), and total phosphorus (TP). Incorporation of both P sources resulted in P losses not significantly different than the unfertilized control at all application rates. Incorporation of broiler litter decreased flow-weighted concentration of RP in runoff by 97% and mass loss of TP in runoff by 88% compared with surface application. Surface application of broiler litter resulted in runoff containing between 2.3 and 21.8 mg RP L(-1) for application rates of 8 to 82 kg P ha(-1), respectively. Mass loss of TP in runoff from surface-applied broiler litter ranged from 1.3 to 8.5 kg P ha(-1) over the same application rates. Flow-weighted concentrations of RP and mass losses of TP in runoff were not related to application rate when inorganic P fertilizer was applied to the soil surface. Results for this study can be used by P loss assessment tools to fine-tune P source, application rate, and application method site factors, and to estimate extreme-case P loss from cropland receiving broiler litter and inorganic P fertilizers.  相似文献   

5.
Influence of biochar on nitrogen fractions in a coastal plain soil   总被引:3,自引:0,他引:3  
Interest in the use of biochar from pyrolysis of biomass to sequester C and improve soil productivity has increased; however, variability in physical and chemical characteristics raises concerns about effects on soil processes. Of particular concern is the effect of biochar on soil N dynamics. The effect of biochar on N dynamics was evaluated in a Norfolk loamy sand with and without NHNO. High-temperature (HT) (≥500°C) and low-temperature (LT) (≤400°C) biochars from peanut hull ( L.), pecan shell ( Wangenh. K. Koch), poultry litter (), and switchgrass ( L.) and a fast pyrolysis hardwood biochar (450-600°C) were evaluated. Changes in inorganic, mineralizable, resistant, and recalcitrant N fractions were determined after a 127-d incubation that included four leaching events. After 127 d, little evidence of increased inorganic N retention was found for any biochar treatments. The mineralizable N fraction did not increase, indicating that biochar addition did not stimulate microbial biomass. Decreases in the resistant N fraction were associated with the high pH and high ash biochars. Unidentified losses of N were observed with HT pecan shell, HT peanut hull, and HT and LT poultry litter biochars that had high pH and ash contents. Volatilization of N as NH in the presence of these biochars was confirmed in a separate short-term laboratory experiment. The observed responses to different biochars illustrate the need to characterize biochar quality and match it to soil type and land use.  相似文献   

6.
Land application of broiler litter is a common disposal method due to its value as a fertiliser substitute, but presents potential environmental problems because of nutrient runoff. Composting has been suggested as an alternative due to the formation of more stable organic components. The land application of fresh and composted broiler litter are compared as alternative disposal methods. The costs of land application of broiler litter are dominated by spreading because of low nutrient densities relative to commercial fertilisers. Composting broiler litter before land application appears to be substantially less economically attractive than land application of fresh broiler litter because of high costs of production and higher spreading costs due to even lower nutrient density. However, when environmental constraints are placed on the phosphorus concentration from hayfield runoff, composting becomes a more attractive alternative. Composting becomes more viable as the land base for application becomes smaller relative to broiler production; as alternative disposal costs for litter become higher; and as environmental constraints become stricter.  相似文献   

7.
Mediterranean riparian zones can experience severe drought periods that lead to low soil moisture content, which dramatically affects their performance as nitrate removal systems. In the Mediterranean riparian zone of this study, we determined that N2O emission was practically nil. To understand the role of forest floor processes in nitrogen retention of a Mediterranean riparian area, we studied leaf litter dynamics of two tree species, London planetree [Platanus x acerifolia (Aiton) Willd.] and alder [Alnus glutinosa (L.) Gaertn.], for two years, along with soil nitrogen mineralization rates. Annual leaf litter fall equaled 562.6 +/- 10.1 (standard error) g dry wt. m(-2), 68% of which was planetree and 32% of which was alder. The temporal distribution of litterfall showed a two-peak annual cycle, one occurring in midsummer, the other in autumn. Planetree provided the major input of organic nitrogen to the forest floor, and the amount of planetree leaves remaining on the forest floor was equivalent to approximately four years of stock. Leaf litter decomposition was three times higher for alder (decay coefficient [k] = 1.13 yr(-1)) than for planetree (k = 0.365 yr(-1)). Mineralization rates showed a seasonal pattern, with the maximum rate in summer (1.92 mg N kg(-1) d(-1)). Although the forest floor was an important sink for nitrogen due to planetree leaf accumulation, 7.5% of this leaf litter was scoured to the streambed by wind. This loss was irrelevant for alder leaves. Due to the litter quality, the forest floor of this Mediterranean riparian forest acts as a nitrogen sink.  相似文献   

8.
Application of broiler (Gallus gallus domesticus) litter to grasslands can increase ammonium (NH4-N) and dissolved reactive phosphorus (DRP) concentrations in surface runoff, but it is not known for how long after a broiler litter application that these concentrations remain elevated. This long-term study was conducted to measure NH4-N and DRP in surface runoff from grasslands fertilized with broiler litter. Six 0.75-ha, fescue (Festuca arundinacea Schreb.-)bermudagrass [Cynodon dactylon (L.) Pers.] paddocks received broiler litter applications in the spring and fall of 1995-1996 and only inorganic fertilizer N in the spring of 1997-1998. Surface runoff from each paddock was measured and analyzed for NH4-N and DRP. Broiler litter increased flow-weighted NH4-N and DRP concentrations from background values of 0.5 and 0.4 mg L(-1), respectively, to values > 18 mg L(-1) in a runoff event that took place immediately after the third application. Ammonium concentrations decreased rapidly after an application and were not strongly related to time after application or runoff volume. In contrast, DRP concentrations tended to decrease more slowly, reaching values near 1 mg L(-1) by 19 mo after the last application. Dissolved reactive P concentrations decreased linearly with the natural logarithm of days after application (p<0.03), and increased linearly with the natural logarithm of runoff volume (p<0.0001).  相似文献   

9.
Broiler litter, a mixture of poultry excreta and bedding material, is commonly used to fertilize grasslands in the southeastern USA. Previous work has shown that under certain situations, application of broiler (Gallus gallus domesticus) litter to grasslands may lead to elevated levels of phosphorus (P) in surface runoff. The EPIC simulation model may be a useful tool to identify those situations. This work was conducted to evaluate EPIC's ability to simulate event and annual runoff volume and losses of dissolved reactive phosphorus (DRP) from tall fescue (Festuca arundinacea Schreb.)-bermudagrass [Cynodon dactylon (L.) Pers.] paddocks fertilized with broiler litter. The EPIC simulations of event runoff volume showed a trend toward underestimation, particularly for runoff events >30 mm. On an annual basis, EPIC also tended to underestimate runoff, especially at runoff volumes > 100 mm. Both event and annual runoff estimations were strongly associated with observed values, indicating that model calibration could improve the simulation of surface runoff volume. The relationship between simulated and observed values of DRP loss was relatively poor on an event basis (r=0.65), but was stronger (r=0.75) on an annual basis. In general, EPIC tended to underestimate annual DRP losses. This underestimation was apparently caused by the lack of an explicit mechanism to model broiler litter on the soil surface. These results suggested that additional work on the EPIC P submodel would be warranted to improve its simulation of surface application of broiler litter to grasslands.  相似文献   

10.
Pasture management and broiler litter application rate are critical factors influencing the magnitude of nutrients being transported by runoff from fields. We investigated the impact of pasture management and broiler litter application rate on nutrient runoff from bermudagrass (Cynodon dactylon) pastures. The experiment was conducted on a Ruston fine sandy loam with a factorial arrangement on 21 large paddocks. Runoff water was collected from natural rainfall events from 2001 to 2003. Runoff water and soil samples were analyzed for nutrients and sediments. Runoff was generally greater (29%) from grazed than hayed pastures regardless of the litter application rate. There was greater inorganic N in the runoff from grazed paddocks when litter rate was based on N rather than P. The mean total P loss per runoff event for all treatments ranged from 7 to 45 g ha(-1) and the grazed treatment with litter applied on N basis had the greatest total P loss. Total dissolved P was the dominant P fraction in the runoff, ranging from 85% to 93% of the total P. The soluble reactive P was greater for treatments with litter applied on N basis regardless of pasture management. Runoff total sediments were greater for N-based litter application compared to those which received litter on P basis. Our results indicate that litter may be applied on N basis if the pasture is hayed and the soil P is low. In contrast, litter rates should be based on a P-basis if pasture is grazed.  相似文献   

11.
Analytically, poultry litter contains nearly all essential micronutrients but the extent of phytoavailability of these nutrients and whether cotton (Gossypium hirsutum L.) and other crop plants can receive adequate amounts of these nutrients from litter is not fully known. The objective of this research was to determine whether cotton receives sufficient amounts of Fe, Cu, Mn, and Zn from litter and estimate the efficiency of cotton in extracting these metal nutrients from litter in the absence of any other source of the micronutrients. The greenhouse research used plastic pots filled with approximately 11 kg of a 2:1 (v/v) sand to vermiculite growing mix. Cotton (cv. Stoneville 474) was grown in the pots fertilized with broiler litter at rates of 30, 60, 90, or 120 g pot(-1) in a factorial combination with four supplemental nutrient solution (NS) treatments. The nutrient solutions consisted of full Hoagland's nutrient solution (NS-full); a solution of the macronutrients N, P, K, Ca, and Mg (NS-macro); a solution of the micronutrients Fe, Zn, Mn, Cu, B, and Mo (NS-micro); and water (NS-none). Based on tissue nutrient analysis, a one-time broiler litter application supplied adequate amounts of Fe, Cu, and Mn to bring the concentration of these nutrients in upper leaves within published sufficiency ranges. Zinc, with <17 mg kg(-1) concentration in the upper leaves, was the only micronutrient below the established sufficiency range regardless of the rate of applied litter. Cotton extracted Fe and Mn more efficiently than Cu or Zn, removing as much as 8.8% of Fe and 7.2% of Mn supplied by 30 g litter pot(-1). In contrast, the extraction efficiency was 1.7% for Cu and 1.9% for Zn. Roots accumulated 58% of the total absorbed Fe and 64% of Cu, and leaves accumulated 32% of the Fe and only 13% of the Cu supplied by litter. In contrast, only 16% of the total absorbed Mn and 23% of Zn accumulated in roots while leaves accumulated 64% of the total Mn and 37% of Zn. These results demonstrate that broiler litter is a valuable source of the metal nutrients supplying Fe, Cu, and Mn in full and Zn in part, but a very large fraction of the litter-supplied metal nutrients remained in the growing mix.  相似文献   

12.
Poultry litter is known to be an excellent organic fertilizer, but the common practice of spreading litter on the surface of pastures has raised serious water-quality concerns and may limit potential benefits of litter applications. Because surface-applied litter is completely exposed to the atmosphere, runoff can transport nutrients into nearby streams and lakes, and much of the ammonium nitrogen volatilizes before it can enter the soil. Our previous research showed that a manual knifing technique to apply dry litter under a perennial pasture surface effectively prevented about 90% of nutrient loss with runoff from surface-applied litter, and tended to increase forage yield. However, this technique (known as subsurface banding) cannot become a practical management option for producers until it is mechanized. To begin that process, we tested an experimental single-shank, tractor-drawn implement designed to apply poultry litter in subsurface bands. Our objective was to compare this mechanized subsurface-banding method against conventional surface application to determine effects on nutrient loss with runoff from a perennial grassland treated with dry poultry litter. Early in the growing season, broiler litter was applied (6.7 dry-weight Mg ha−1) to each plot (except three control plots) using one of two application methods: surface broadcast manually or subsurface banded using the tractor-drawn implement. Simulated rainfall (5 cm h−1) generated 20 min of runoff from each plot for volume and analytical measurements. Results showed that subsurface-banded litter increased forage yield while decreasing nutrient (e.g. N and P) loss in runoff by at least 90% compared to surface-broadcast litter.  相似文献   

13.
Tailoring nitrogen (N) fertilizer applications to cotton (Gossypium hirsutum L.) in response to leaf N status may optimize N use efficiency and reduce off-site effects of excessive fertilizer use. This study compared leaf and canopy reflectance within the 350 to 950 nm range in order to identify reflectance ratios sensitive to leaf chlorophyll (Chl), and hence N status, in cotton. Plants were grown outdoors in large pots using half-strength Hoagland's (control) solution until some three-row plots received a restricted supply of N. Treatments comprised control, 20% of control N at first flower bud (square) onward; 0 and 20% of control N at first flower onward; and 0% of control N at fruit-filling onward. Despite leaf N values ranging from 51 to 19 g kg-1 across treatments and sampling dates, a weak correlation was obtained between Chl and N (r2 = 0.32, df = 70). In general, N stress led to increased reflectance at 695 +/- 2.5 nm (R695) and decreased reflectance at R410, and changes in leaf N were best correlated with either R695 or R755 in leaves and either R410 or R700 in canopies. The strongest associations between leaf constituent and canopy reflectance ratio were Chl vs. R415/R695 (r2 = 0.72), carotenoids vs. R415/R685 (r2 = 0.79), and N vs. R415/R710 (r2 = 0.70). The R415 measure appears to be a more stable spectral feature under N stress, as compared with more pronounced changes along the reflectance red edge (690-730 nm). Multiple regression identified a three-waveband canopy reflectance model that explained 80% of the variability in leaf N. Results indicate that remote sensing of N status in cotton is feasible using narrow-waveband reflectance ratios that involve the violet or blue region of the spectrum (400 to 450 nm) and the more commonly featured red-edge region.  相似文献   

14.
We measured NH? emissions from litter in broiler houses, during storage, and after land application and conducted a mass balance of N in poultry houses. Four state-of-the-art tunnel-ventilated broiler houses in northwest Arkansas were equipped with NH? sensors, anemometers, and data loggers to continuously record NH? concentrations and ventilation for 1 yr. Gaseous fluxes of NH?, N?O, CH?, and CO? from litter were measured. Nitrogen (N) inputs and outputs were quantified. Ammonia emissions during storage and after land application were measured. Ammonia emissions during the flock averaged approximately 15.2 kg per day-house (equivalent to 28.3 g NH?per bird marketed). Emissions between flocks equaled 9.09 g NH? per bird. Hence, in-house NH? emissions were 37.5 g NH? per bird, or 14.5 g kg(-1) bird marketed (50-d-old birds). The mass balance study showed N inputs for the year to the four houses totaled 71,340 kg N, with inputs from bedding, chicks, and feed equal to 303, 602, and 70,435 kg, respectively (equivalent to 0.60, 1.19, and 139.56 g N per bird). Nitrogen outputs totaled 70,396 kg N. Annual N output from birds marketed, NH? emissions, litter or cake, mortality, and NO? emissions was 39,485, 15,571, 14,464, 635, and 241 kg N, respectively (equivalent to 78.2, 30.8, 28.7, 1.3, and 0.5 g N per bird). The percent N recovery for the N mass balance study was 98.8%. Ammonia emissions from stacked litter during a 16-d storage period were 172 g Mg(-1) litter, which is equivalent to 0.18 g NH? per bird. Ammonia losses from poultry litter broadcast to pastures were 34 kg N ha (equivalent to 15% of total N applied or 7.91 g NH? per bird). When the litter was incorporated into the pasture using a new knifing technique, NH? losses were virtually zero. The total NH? emission factor for broilers measured in this study, which includes losses in-house, during storage, and after land application, was 45.6 g NH? per bird marketed.  相似文献   

15.
The Delphi technique is a means of aggregating the judgement of a panel of experts in order to improve the quality of decision-making. This paper provides a case study of the technique by undertaking a three-round Delphi study to determine a package of best available techniques to reduce nitrogen emissions from a poultry unit under the Integrated Pollution Prevention and Control Directive (IPPC). Forms of nitrogen addressed included ammonia (NH3), nitrous oxide (N2O) nitrogen oxides (NOx), dusts and nitrate (NO3-), with the study providing a means to prioritise the pollution concerns on different spatial scales. The priority pollutant issues were the contribution of NH3 to eutrophication, the global cooling effect of NH4+ aerosol, the role of NH4+ as a vector for atmospheric transport of NOx and SO2, the contribution of N2O to global warming, and NO3- leaching. Reduced nitrogen (NHx) was rated as a priority on all scales, while N2O and NO3- were rated as priorities only on global and local scales, respectively. The study indicated the need for abatement techniques at each stage of poultry rearing and waste management, with particular attention to reduce NH3 emissions, reflecting the priority pollutant concerns. Measures identified by the panel include maintenance of dry litter, low emission removal of litter from housing and storage of litter under cover. Once the litter has left the farm, this should either be used as a biofuel for electricity generation or rapidly incorporated into agricultural soils. The amounts and timing of manure application should be tuned to crop needs. Uncertainties in the Delphi technique limit its suitability as a stand-alone decision making tool. However, the Delphi technique proved useful in identifying priority pollutant issues, areas of agreement, disagreement and where information is lacking. This demonstrates its use when dealing with the complex issues of prioritising pollution issues and abatement approaches.  相似文献   

16.
Research has shown that aluminum sulfate (alum) and phosphoric acid greatly reduce ammonia (NH3) volatilization from poultry litter; however, no studies have yet reported the effects of these amendments on field-scale composting of poultry litter. The objectives of this study were to (i) evaluate NH3 volatilization from composting litter by measuring both NH3 volatilization and changes in total nitrogen (N) in the litter and (ii) evaluate potential methods of reducing NH3 losses from composting poultry litter. Poultry litter was composted for 68 d the first year and 92 d the second year. Eleven treatments were screened in Year 1, which included an unamended control, a microbial mixture, a microbial mixture with 5% alum incorporated into the litter, 5 and 10% alum rates either surface-applied or incorporated, and 1 and 2% phosphoric acid rates either surface-applied or incorporated. Treatments in Year 2 included an unamended control, a microbial mixture, alum (7% by fresh wt.), and phosphoric acid (1.5% by fresh wt.). Alum and phosphoric acid reduced NH3 volatilization from composting poultry litter by as much as 76 and 54%, respectively. The highest NH3 emission rates were from microbial treatments each year. Compost treated with chemical amendments retained more initial N than all other treatments. Due to the cost and N loss associated with composting poultry litter, composting is not economical from an agronomic perspective compared with the use of fresh poultry litter.  相似文献   

17.
In a field study, soils of four conventional free-range and organic broiler runs were analyzed for N and P concentrations in the years 2000 and 2001. Zones of different use intensity by broilers were identified on the free runs and mean zonal nutrient contents were compared with each other. Intensity of use by birds and spatial distribution of soil nutrient concentrations were found to be related to each other. Fecal N input by broilers resulted in accumulation of soil mineral nitrogen (N(min)) contents down to a 90-cm sampling depth. In highly frequented "hot spots," plant requirement as defined by the German "N-Basis-Sollwert" (110 kg/ha N(min)) for grassland was exceeded in all four cases. This implies an increased environmental risk of ammonia volatilization and nitrate leaching. Fecal P input by broilers resulted in accumulation of plant-available and thus mobile soil P (phosphorus extracted with calcium-acetate-lactate [P(CAL)] and phosphorus extracted with water [P(w)]) in the most intensely used zones. In these areas, soil P contents exceeded 90 mg/kg P(CAL) (upper limit of soil test P defined in Germany for optimum plant yield) by as much as 217 mg/kg, which indicates an enhanced risk of P loss from the soil via runoff or leaching. The conclusion might be drawn that, with regard to nutrient loss from free-run soils, intensive indoor production in a closed system may be more environmentally neutral than conventional free-range or organic production. However, to put this into perspective, the scope of the environmental risk connected with spatially limited point accumulation of nutrients should be considered. Furthermore, an environmental evaluation must also account for the fate and environmental effects of the broiler litter produced inside the broiler house.  相似文献   

18.
While the poultry industry is a major economic benefit to several areas in the USA, land application of poultry litter to recycle nutrients can lead to impaired surface and ground water quality. Amending poultry litter with alum [Al3(SO4)2 x 14H2O] has received considerable attention as a method of economically reducing ammonia volatilization in the poultry house and soluble phosphorus in runoff waters. The objective of this study was to characterize the effect of alum on broiler litter decomposition and N dynamics under laboratory conditions. Litter that had been amended with alum in the poultry house after each of the first four of five flock cycles (Experiment I) and litter that had been amended with alum after removal from a poultry house after the third flock cycle (Experiment II) were compared with unamended litter in separate studies. The litters in Experiment I were surface-applied to simulate application to grasslands, while the litters in Experiment II were incorporated to simulate application to conventionally tilled crops. The only statistically significant differences in decomposition due to alum occurred early in Experiment II and the differences were small. The only statistically significant differences in net N mineralization, soil inorganic N, and soil NH4+-N in either experiment was found in Experiment I after 70 d of incubation where soil inorganic N was significantly greater for the alum treatment. Thus, alum had little effect on decomposition or N dynamics. Results of many of the studies on litter not amended with alum should be applicable to litters amended with alum to reduce P availability.  相似文献   

19.
Rapid and nondestructive methods such as diffuse reflectance infrared spectroscopy provide potentially useful alternatives to time-consuming chemical methods of soil metal analysis. To assess the utility of near-infrared reflectance spectroscopy (NIRS) and diffuse mid-infrared reflectance spectroscopy (DRIFTS) for soil metal determination, 70 soil samples from the metal mining region of Tarnowskie Gory (Upper Silesia, Poland) were analyzed by both chemical and spectroscopic methods. Soils represented a wide range of pH (4.0-8.0), total carbon (5.1-73.2 g kg(-1)), and textural classes (from sand to silty clay loam). Soils had various contents of metals (14-4500 mg kg(-1) for Zn, 18-6530 mg kg(-1) for Pb, and 0.17-34 mg kg(-1) for Cd), ranging from natural background levels to high contents indicative of industrial contamination in the region. Soil samples were scanned at the wavelengths from 400 to 2498 nm (near-infrared region) and from 2500 to 25000 nm (mid-infrared region). Calibrations were developed using the one-out validation procedure under partial least squares (PLS) regression. Mid-infrared spectroscopy markedly outperformed NIRS. Iron, Cd, Cu, Ni, and Zn were successfully predicted using DRIFTS. The coefficients of determination (R(2)) between actual and predicted contents were 0.97, 0.94, 0.80, 0.99, and 0.96 for those metals, respectively. Only Pb content was predicted poorly. Calibrations using NIRS were less accurate. Root mean squared deviation (RMSD) values were from 1.27 (Pb) to 3.3 (Ni) times higher for NIRS than for DRIFTS. Results indicate that DRIFTS may be useful for accurate predictions of metals if samples originate from one region.  相似文献   

20.
Field trials were established to compare alum-treated poultry litter (ATPL), normal poultry litter (NPL), and triple superphosphate (TSP) as fertilizer sources for corn (Zea mays L.) when applied at rates based on current litter management strategies in Virginia. Trials were established in the Costal Plain and Piedmont physiographic regions near Painter and Orange, VA, respectively. Nitrogen-based applications of ATPL or NPL applied at rates estimated to supply 173 kg of plant-available nitrogen (PAN) ha(-1) resulted in significantly lower grain yields than treatments receiving commercial fertilizer at the same rate in 2000 and 2001 at Painter. These decreases in grain yield at the N-based application rates were attributed to inadequate N availability, resulting from overestimates of PAN as demonstrated by tissue N concentrations. However, at Orange no treatment effects on grain yield were observed. Applications of ATPL did not affect Al concentrations in corn ear-leaves at either location. Exchangeable soil Al concentrations were most elevated in treatments receiving only NH4NO3 as an N source. At N-based application rates, the ATPL resulted in lower Mehlich 1-extractable P (M1-P) and water-extractable soil phosphorus (H2O-P) concentrations compared to the application of NPL. A portion of this reduction could be attributed to lower rates of P applied in the N-based ATPL treatments. Runoff collected from treatments which received ATPL 2 d before conducting rainfall simulations contained 61 to 71% less dissolved reactive phosphorus (DRP) than treatments receiving NPL. These results show that ATPL may be used as a nutrient source for corn production without significant management alterations. Alum-treated poultry litter can also reduce the environmental impact of litter applications, primarily through minimizing the P status of soils receiving long-term applications of litter and reductions in runoff DRP losses shortly after application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号