首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究流固耦合在岩石蠕变过程中的作用机制,利用MTS815. 02岩石力学试验系统,对巷道围岩(砂岩)开展蠕变试验,研究岩石在蠕变过程中的变形破坏特性,基于加速蠕变改进的蠕变模型来描述蠕变过程,采用最小二乘法识别蠕变参数,分析蠕变参数随应力和时间的变化过程;将自定义蠕变方程嵌入ANSYS有限元软件,数值模拟了饱和砂岩试样的流固耦合蠕变全过程。结果表明:该蠕变模型可以较好地描述岩石蠕变全过程;数值模拟结果与试验结果吻合,验证了该蠕变模型和蠕变参数随时间变化规律的正确性和合理性,可为深部工程的隧道围岩加固、灾害防治和支护设计提供依据。  相似文献   

2.
为了描述岩石加速蠕变阶段的非线性黏塑性变形特征,首先对Kachanov提出的损伤律公式进行积分,推导出损伤变量在加速蠕变阶段随应力和时间的演化方程;然后将理想黏塑性模型中的黏性参数用有效黏性参数来代替,从而建立黏塑性损伤体,将其与广义伯格斯模型中的六元件模型串联,得到一种新的岩石损伤蠕变模型;根据塑性力学推导该模型的三维蠕变方程,采用泊江海子煤矿中砂岩和砂质泥岩的三轴压缩蠕变试验数据验证模型的有效性。结果表明:新的损伤蠕变模型理论曲线与蠕变试验曲线吻合较好,用该损伤蠕变模型可以较好地描述这2种岩石的非线性加速蠕变特性。  相似文献   

3.
为了解花岗岩蠕变特性,采用全自动岩石三轴伺服仪对其开展试验研究,在常规三轴压缩试验基础上进行多级加载蠕变试验,系统分析花岗岩蠕变过程中整体蠕变规律和同围压不同应力水平下的轴向及环向蠕变变形量、蠕变速率随时间的变化规律。基于分数阶微积分算子及损伤力学理论,在Scott Blair黏壶基础上,考虑蠕变参数的非定常性,建立花岗岩黏弹塑性蠕变本构模型,并推导出其在恒应力情况下的三维黏弹塑性蠕变本构模型。结合花岗岩室内多级加载蠕变试验结果,采用Quasi Newton(BFGS)法对三维蠕变模型参数反演。结果表明,提出的模型与试验数据拟合较好并克服Nishihara模型不能描述蠕变非线性加速特征的不足,能够很好地反映花岗岩三阶段蠕变过程。  相似文献   

4.
为了探讨高温、高孔隙水压、高围压对岩石损伤破坏的影响,基于损伤力学基本理论,并结合应变等价性原理,建立热-水-力耦合作用下的损伤力学模型,构建表征岩石损伤演化的表达式,通过水-力耦合作用下热损伤花岗岩室内试验验证了该模型的合理性,并根据室内试验确定了模型参数。试验结果表明:提出的模型能较好地反映热-水-力耦合作用下岩石应力-应变过程,且能表征上述作用下岩石损伤演化规律;高温损伤会导致岩石由脆性逐渐向延性转变,而孔隙水压会进一步加剧岩石损伤演化。  相似文献   

5.
为解决急倾斜软底煤巷围岩蠕变量大、控制难的问题,以大安山矿为研究对象,采用室内压缩蠕变试验及数值模拟相结合的方法研究煤巷围岩蠕变规律。对底板泥质砂岩和顶板砂岩分别进行不同围压下分级增轴压的蠕变试验,根据曲线特征选取Cvisc蠕变模型、计算蠕变参数并反演。采用Flac3D中蠕变模块,对原支护和改进支护效果进行模拟对比分析。结果表明,围压从0 MPa增大到4 MPa时,泥质砂岩蠕变破坏强度从12 MPa提高到19.4 MPa;随着应力水平提高,不同岩样的瞬时变形、衰减蠕变持续时间和稳态蠕变速率均增大;泥质砂岩比砂岩蠕变变形明显;岩样蠕变特性可用Cvisc模型描述。煤层底板侧软岩强蠕变造成煤巷左帮大变形和底鼓;确定二次支护时机为一次支护后300~400 h;改进支护方式后,煤巷围岩变形得到有效控制。  相似文献   

6.
为定量分析水分含量和孔隙压力变化对煤层气渗流特征的影响,采用ASAP2020型比表面微孔分析仪进行低温液氮吸附试验,并通过等温吸附装置和三轴伺服渗流装置进行不同含水率条件下的煤岩吸附和渗流试验.在此基础上,建立考虑煤岩水分含量影响的吸附模型和煤层气渗透率模型,采用试验数据验证其合理性.结果 表明:在液氮吸附试验中,当相对压力较小时,煤岩吸附作用主要依靠范德华力;当相对压力较大时,其吸附作用则主要为毛细凝聚.在相对压力变化过程中,氮吸附量随相对压力的增大呈增大趋势,同时在相对压力较小时液氮脱附曲线与吸附曲线重合,且存在显著的吸附滞后现象.当煤岩中水分含量相同时,煤层气吸附量随孔隙压力的增大先增大后趋向于平缓,而当孔隙压力恒定时,煤层气吸附量随水分含量的增大呈减小趋势.在吸附作用的影响下,煤岩表面吸附变形量与煤层气吸附量的变化趋势一致.在水分与吸附作用综合作用下,煤岩渗透率随孔隙压力的增大呈先减小后趋于平缓的趋势.当孔隙压力恒定时,煤岩渗透率随水分含量的增大显著减小.基于吸附理论,建立考虑水分影响的煤岩吸附模型及吸附变形表达式.综合考虑水膜及其分离压的影响,进一步构建考虑煤层气吸附-水分耦合作用的煤岩渗透率模型.模型计算值与试验数据具有一致性,可较好地表征煤岩在不同含水量条件下的渗流规律.  相似文献   

7.
由于环保及土地资源保护的迫切需要,泥质岩类软岩开挖粗粒土广泛应用于填方体工程,其蠕变及湿化变形是导致填筑体土工结构安全隐患的主要原因,已成为影响山区机场、土石坝及道路铁路路基等设施长期变形及稳定性问题的重要因素.为揭示粗粒土在干燥及浸水环境下的时效变形特性及其影响因素,以四川红层开挖土石料配置成不同缩尺的粗颗粒土,在模拟竖向加载及侧向约束下,对粗颗粒土干燥与浸水湿化蠕变特性进行了试验.结果表明:不同缩尺下的粗粒土具有不同的级配曲线,等量替代法缩尺模型粗颗粒质量占比最大,混合法缩尺模型粗颗粒质量占比居中,相似级配法缩尺模型粗颗粒质量占比最小;粗粒土干燥蠕变与浸水湿化蠕变特性差别较大,干燥蠕变主要因受力颗粒骨架时效变形引起,浸水湿化蠕变主要因颗粒软化破碎及结构重新排列引起;粗粒土干燥及浸水下时效变形特征与颗粒级配和细颗粒含量等密切相关;粗粒土干燥阶段的变形可采用分三部分的变形模型进行拟合,而浸水阶段的变形可采用广义凯尔文模型拟合,拟合效果良好.  相似文献   

8.
为研究渗透压力作用下岩石承载过程中的变形特性,采用GDS-VIS三轴流变仪对红砂岩开展渗透压力作用下的三轴压缩试验,研究各渗透压力作用下偏应力加载过程中岩石轴向应变、径向应变和变形模量的变化规律。结果表明:随渗压增大,岩石峰值应力减小,岩石破坏时对应的轴向应变的变化幅度较小,而径向应变的变化幅度则较大;随渗压增加,岩石对应的各承载阶段的变形模量相对减小,最大变形模量也出现不同程度的降低,同时最大变形模量对应的轴向应变有后移趋势;随偏应力增加,变形模量逐渐增大,并在弹性变形阶段后期出现最大值,整个过程中轴向应变逐渐增加,径向应变则在变形模量最大值出现后才明显增大,说明与轴向应变相比径向应变更能够反映出岩石承载过程变形模量的减小和强度的降低。研究结果为探讨类似岩石渗透压力作用下的变形和强度特性提供参考。  相似文献   

9.
煤矿软岩巷道支护问题是制约煤矿安全高效生产的技术难题之一,在不同形式的地下水影响下,巷道支护难度急剧增加。为了研究水岩耦合作用对软岩巷道变形的影响规律,基于FLAC3D数值模拟方法对变孔隙水压力作用下软岩巷道围岩位移场和应力场演化规律进行了仿真研究。结果表明,孔隙水压力对软岩巷道的稳定性具有显著影响,且孔隙水压力的演化趋势与应力场演化特征具有同步性。在巷道围岩均布孔隙水压力的条件下,孔隙水压力对两帮的影响范围大于顶底板,圆拱形巷道弧顶正上方1.435~4.21 m范围内应力集中程度可达到原孔隙水压力的3.09~4.03倍,逐渐向外围扩展为扇形面的孔隙压力等值区域,在巷道的下方孔隙水压力呈"W"形分界面。  相似文献   

10.
深部巷道围岩破碎、注浆模式复杂、流变特性显著。探索破碎岩体胶结模式及蠕变控制模型,将利于深部巷道围岩稳定。通过对大理岩和粗砂岩进行取样—劈裂—蠕变—胶结4个步骤的制样,在RLW-2000型三轴流变仪上,对大理岩和粗砂岩2组试样进行损伤胶结强化蠕变试验,分析损伤岩石劈裂胶结强化后的基本蠕变特性,确定劈裂岩石胶结基本模式,推导基本劈裂岩石胶结强化的蠕变本构模型,并进行反演对比分析。结果表明:随着蠕变应力水平提高,大理岩蠕变应变呈缓慢增加—加速增加—急速增加过程,而粗砂岩蠕变应变呈减小—稳定—增加过程,均表现为试样裂隙的持续压密、扩展与贯通失稳;胶结岩石的胶结形态分为紧缝胶结与厚度胶结2种模式,紧缝胶结优于厚度胶结;厚度胶结的胶结厚度越大,胶结岩石体强度越大,但增幅呈衰减趋势;推导M-K-B本构模型符合胶结岩石蠕变基本特性;在同一蠕变应力水平下,随着胶结系数提高,胶结岩石蠕变应变减小,但减幅变小。  相似文献   

11.
为研究硫酸盐腐蚀后膏体充填材料的蠕变特性,采用饱和的Na2SO4溶液对充填体进行腐蚀试验,并对各个腐蚀时间不同的充填体采用TAW2000型岩石三轴试验机进行三轴蠕变试验。根据试验数据建立膏体充填材料的蠕变本构模型,将一个应变触发的非线性粘壶串联到Burgers模型上,建立满足充填体蠕变特性的改进Burgers模型,并推导其一维和三维蠕变本构方程。研究结果表明:在硫酸盐腐蚀作用下,充填体的蠕变变形在腐蚀6d时出现了一定的减少,但随着腐蚀时间的推移蠕变变形明显加大,在应力较大时出现了加速蠕变并导致试件破坏,硫酸盐腐蚀作用严重影响了充填效果;建立的改进的Burgers模型与试验数据基本吻合,能够反映腐蚀后充填体蠕变规律。  相似文献   

12.
淹没状态下高压水射流破岩效率分析   总被引:1,自引:0,他引:1  
为研究淹没状态下射流参数对射流破岩效率和安全性的影响,基于流体力学、弹塑性力学及岩石力学,通过流固耦合罚函数算法建立淹没状态下水射流冲击岩石数值计算模型。通过理论分析和实际试验对比验证所建模型。对不同工况下淹没射流冲击岩石进行数值模拟,探讨不同射流参数对破岩效率的影响。结果表明:随着射流速度的增大,破岩效率先后经历线性增长阶段和平稳增长阶段,岩石冲蚀深度变化具有一定相似性;岩石的冲蚀深度随靶距的增大而迅速减小,冲蚀孔径随靶距的增加而增大,冲蚀体积呈先增大后减小的变化趋势;射流直径对破岩效率的影响主要表现在冲蚀孔径上,对冲蚀深度几乎没有影响。基于正交设计试验,得到不同射流参数敏感性大小依次为:射流速度,靶距,射流直径。  相似文献   

13.
为了研究黏土在不同应力水平下的蠕变规律,基于软黏土流变模型及已有的黏土蠕变试验结果,分析3种常用的经验蠕变模型对软土蠕变研究适用性,提出幂函数非线性元件,在传统西原模型的基础上引入非线性黏塑性体(NVPB)构成改进的西原模型。研究结果表明:幂函数描述黏土在低应力和高应力条件下所表现的变形特点都有着较高的准确度,改进西原模型能够较好地描述黏土蠕变的非线性问题以及黏土在高应力水平下的加速蠕变变形。利用自定义本构程序开发接口UMAT对该模型进行二次开发并对模型进行验证。改进的西原模型对比经典西原模型能够更好地描述在不同应力水平下软土的的蠕变变形特征。研究结果可为软土地区沉降预测提供理论参考。  相似文献   

14.
为解决穿层钻孔封孔难度大、瓦斯抽采效率低的问题,视煤岩体为弹塑性介质,在考虑蠕变效应下建立巷道围岩力学模型;根据Dracy定律,推导浆液流动控制方程,以渗透率变化为桥梁,构建巷道围岩变形与浆液流动的耦合模型;利用COMSOL软件解算该理论模型。数值模拟结果表明:巷道围岩塑性软化区范围由初始时刻4.69 m不断扩大,在100天时稳定于15.19 m;浆液扩展半径随注浆压力的增加而持续增大,当注浆压力高于2.8 MPa后,浆液扩展半径变化较小,逐渐趋于稳定。试验钻孔平均瓦斯体积分数为56.49%,是传统工艺下钻孔平均瓦斯体积分数的3.46倍,在抽采后期仍能维持较高的抽采水平。  相似文献   

15.
受采动应力和水-岩耦合作用,松散含水层下薄基岩煤层采场易发生出水压架致灾事故,而巷采充填方法是解决此类问题的有效途径之一。为了研究巷道充填后上覆岩层的运移规律,首先采用流变仪对充填岩体进行了流变力学试验,其次采用FLAC模拟软件建立了巷采充填的数值计算模型,分析了充填开采时煤柱与充填体的应力、位移变化规律及基岩面的运移规律。研究表明:破碎岩体的压实过程由三部分组成:颗粒的重排、颗粒的破碎和孔隙的填充、颗粒的压缩变形;蠕变状态下,当时间t≥1天,轴向位移基本趋于稳定,破碎岩体达到了一定的强度;随着充填体变形模量的增加,充填体能够有效抑制高位承载岩层的下沉量,从而减小工作面发生压架突水灾害的几率  相似文献   

16.
为了研究水力冲孔周围煤体瓦斯运移规律,研究了水力冲孔周围煤体的应力、体积应变和孔径变化规律,建立了蠕变-渗流耦合作用下的水力冲孔周围煤体渗透率动态演化模型,揭示了水力冲孔周围煤体渗透率的时空演化规律,阐明了蠕变变形和基质收缩对渗透率的控制作用机理。研究结果表明:水力冲孔措施可以大幅度提高钻孔周围煤体的渗透率,在空间上煤体渗透率随距离呈负幂函数关系迅速降低(K=2×10-16 r -2.4);在时间上煤体渗透率随抽采时间的延长而逐渐增大,但是增加梯度会逐渐降低;水力冲孔周围煤体渗透率的增加主要受到煤的蠕变变形控制,基质收缩效应虽然有利于渗透率的增加,但对渗透率的贡献远小于煤体的蠕变变形;钻孔由于蠕变变形会产生缩孔现象,很容易堵塞抽采通道,此时即使渗透率大幅度的提高,也很难保证抽采效果,因此迫切需要制定相应的防堵孔措施。  相似文献   

17.
为研究煤层气抽采过程中支撑剂和应力耦合作用下的渗透率演化机制,利用吸附理论建立煤岩吸附变形方程,进一步构建考虑支撑剂和应力影响的渗透率模型,并通过试验数据验证其合理性。结果表明:煤岩吸附量与孔隙压力呈正相关的关系,其吸附变形也具有相同变化趋势;嵌入支撑剂的煤岩渗透率远大于常规储层,其中单层砂的增透效果最佳;随有效应力增大,煤岩渗透率呈指数函数形式减小;随孔隙压力的增大,煤岩渗透率呈先减小后趋于平缓的趋势;利用改进的理论模型拟合曲线,其中实测值与模型计算值基本吻合。  相似文献   

18.
为模拟页岩气抽采过程中孔隙压力对其吸附特性和渗透特性的影响,通过吸附及多孔弹性理论,建立考虑过剩吸附量的吸附模型,并进一步建立考虑气体传输影响的页岩表观渗透率模型,通过试验数据验证其合理性。结果表明,1)随孔隙压力逐渐升高,页岩过剩吸附量呈先快速增加后趋于平缓的变化趋势;随温度升高,其吸附量呈降低趋势。考虑过剩吸附量和温度修正的吸附模型计算结果与试验所测结果吻合较好,且能较好地反映不同温度下页岩过剩吸附量与孔隙压力的关系。2)页岩气体吸附过程中产生的基质膨胀变形量随孔隙压力升高而升高,且温度较低时的气体吸附变形量大于温度较高时的变形量。3)在有效应力恒定的条件下,CH4和He的表观渗透率随努森数增大而减小。相同孔隙压力条件下,随有效应力升高CH4和He的表观渗透率均呈降低的趋势,且页岩表观渗透率对有效应力的敏感程度随孔隙压力升高而降低。相同有效应力条件下,充入He的页岩表观渗透率均大于充入CH4的页岩表观渗透率。4)构建考虑气体传输和应力耦合作用的页岩表观渗透率模型,模型计算的渗透率与实测值具有良好的一致性,能较好地表征不同外应力条件下的页岩表观渗透率演化规律。  相似文献   

19.
为探究不同尺寸煤样吸附瓦斯特性的差异,以漳村矿3#煤为研究对象,利用自主研制的多功能煤吸附/解吸瓦斯参数测定试验装置,开展粒状煤和块状煤的等温吸附试验,测定不同吸附压力下的吸附量和变形量。试验结果表明:在相同的吸附平衡压力下,吸附量随煤样粒径的增大而减小;粒状煤吸附瓦斯的能力大于块状煤,原因是粒状煤的有效比表面比块状煤大,增加的微孔吸附瓦斯使得煤吸附瓦斯量增加。块状煤的变形量随吸附平衡压力而增大,但增加量逐渐减小。经讨论分析可知:煤体吸附膨胀变形是煤基质吸附膨胀和气体压力压缩共同作用的结果;粒状煤测定的吸附常数应用到煤层数值模拟中会引起一定的误差。  相似文献   

20.
为探究不同尺寸煤样吸附瓦斯特性的差异,以漳村矿3#煤为研究对象,利用自主研制的多功能煤吸附/解吸瓦斯参数测定试验装置,开展粒状煤和块状煤的等温吸附试验,测定不同吸附压力下的吸附量和变形量。试验结果表明:在相同的吸附平衡压力下,吸附量随煤样粒径的增大而减小;粒状煤吸附瓦斯的能力大于块状煤,原因是粒状煤的有效比表面比块状煤大,增加的微孔吸附瓦斯使得煤吸附瓦斯量增加。块状煤的变形量随吸附平衡压力而增大,但增加量逐渐减小。经讨论分析可知:煤体吸附膨胀变形是煤基质吸附膨胀和气体压力压缩共同作用的结果;粒状煤测定的吸附常数应用到煤层数值模拟中会引起一定的误差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号