首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Effects of periodic hypoxia on distribution of demersal fish and crustaceans   总被引:12,自引:0,他引:12  
Effects of periodic hypoxia (O2 < 2 mg l–1) on distribution of three demersal fish species, spot (Leiostomus xanthurus), hogchoker (Trinectes maculatus) and croaker (Micropogonias undulatus), and of two crustacean species, mantis shrimp (Squilla empusa) and blue crab (Callinectes sapidus), were investigated in the lower York River, Chesapeake Bay, USA. Trawl collections were made in four depth strata (5 to 10, 10 to 14, 14 to 20 and > 20 m) during normoxia and hypoxia from 26 June to 20 October 1989. Three periods with hypoxia in the bottom water (below 10 m depth) occurred in mid-July, early August and early September, each with a duration of 6 to 14 d. The demersal fish and crustaceans studied were all affected by hypoxia, and a general migration from deeper to shallower water took place during July and August. However, when oxygen conditions improved after a hypoxic event all species, exceptS. empusa, returned to the deeper areas. The degree of vertical migration was related to levels of oxygen concentration and varied for the different species.M. undulatus was the most sensitive species to low oxygen, followed byL. xanthurus andC. sapidus. T. maculatus andS. empusa were more tolerant and survived in 14 to 25% oxygen saturation by increasing ventilation rate and, forS. empusa, by also increasing blood pigment (haemocyanin) concentration. Periodic hypoxia driven by the spring-neap tidal cycle may represent a natural phenomenon with which the fishes and crustaceans are in a delicate balance. Areas experiencing periodic short-lived hypoxia may be good nursery grounds for fisheries species, and there is no indication that the habitat value in the study area of lower York River is lessened. However, if eutrophication lengthens the time of hypoxia or brings the system closer to anoxia the system may change and become characteristically stressed. The migratory and physiological responses of these species to hypoxia are good indicators of the severity of oxygen stress and could be used as part of an early warning monitoring system for changes in environmental quality.Contribution of the Virginia Institute of Marine Science  相似文献   

2.
We investigated feeding by the hogchoker, Trinectes maculatus (Bloch and Schneider), in freshwater, oligohaline, mesohaline, and polyhaline regions of Chesapeake Bay, USA, and examined prey selection in relation to food availability. Otter trawling for fish and Van Veen grab sampling for benthic macrofauna occurred in July and August 1992 and August and September 1993. Hogchokers exhibited both opportunistic and selective feeding patterns along the estuarine salinity gradient in four tributaries (Potomac, Rappahannock, York, and James Rivers) and in the mainstem Chesapeake Bay. Major prey taxa included annelids, arthropods, and tellinid siphons. In polyhaline habitat, polychaetes dominated both the benthos and gut contents numerically and gravimetrically. On the other hand, oligochaetes were numerically dominant in freshwater/oligohaline areas but were rarely eaten, perhaps because of their burial depth. Arthropods (mostly amphipods) occurred at most salinities, were common in gut contents in low-salinity areas, and were replaced as prey by larger proportions of polychaetes in polyhaline regimes. Although hogchokers ate tellinid siphons, they rarely consumed whole bivalves or gastropods. These diet patterns (and especially the importance of siphon nipping) are similar to those of juvenile or small flatfish elsewhere in Europe, Africa, and North America. A size–salinity relationship for hogchokers occurred along the summer salinity gradient, with smaller fish predominating upstream and larger fish downstream. It was not clear from our data if variation in diet composition reflected changes in prey composition along the salinity gradient rather than changes in fish size. Received: 14 June 1997 / Accepted: 27 June 1997  相似文献   

3.
Predation uponAurelia aurita byPhacellophora camtschatica was studied by SCUBA divers in a fjord in British Columbia between July and September 1986. The behavior and size ofP. camtschatica affected their foraging success. Larger predators captured more and larger prey. The size and behavior of the prey also affected the probability of capture. Predators were found at densities which can affect both the size composition and the overall numbers of the prey population.  相似文献   

4.
Information about foraging speeds is particularly valuable when the impact of a predator species upon a community of prey has to be defined, as in the case of great cormorants. We measured the swim speed of 12 (six males and six females) free-ranging great cormorants Phalacrocorax carbo, foraging off the Greenland coast during the summer of 2003, using miniaturized data-loggers. Although mean body mass of males was 27% greater than that of females, and mean swim speed of males were 29–57% higher than that of females during foraging phases (but not descent phases) of dives, these differences in speeds were not significant due to high variances. Birds descended to the mean maximum depth of 4.7 m at an average speed of 1.6±0.5 m s−1, a speed similar to that measured in captive cormorants in previous studies. Although bursts of up to 4 m s−1 were recorded, speed usually decreased during the deepest (foraging) phase of dives, being on average 0.8±0.6 m s−1. Speeds measured here should be taken with caution, because the large propeller loggers used to measure speed directly decreased descent speeds by up to 0.5 m s−1 when compared to smaller depth-only loggers. Cormorants in Greenland seem to combine two searching strategies, one requiring low speed to scan the water column or benthos, and one requiring high speed to pursue prey. These two strategies depend on the two main habitats of their prey: pelagic or demersal.  相似文献   

5.
The mechanisms leading to ontogenetic shifts in prey selectivity are examined for the temperate microcarnivore Cheilodactylus spectabilis (Cheilodactylidae) in north-eastern New Zealand. These fish prey on invertebrates associated with benthic turf and foliose algae, using a suctorial feeding mode combined with oral sorting. All sizes of fish feed in the same shallow-water habitat using the same feeding mode. Dietary analysis revealed that while all sizes of fish consumed similar taxa, the relative proportion of taxa consumed reflected fish size. Juveniles consumed mainly gammarid amphipods while large adults targeted ophiuroids, with an abrupt shift from feeding predominantly on amphipods at 250 mm standard length. This dietary shift loosely coincided with the onset of sexual maturity and a change in growth trajectory, although dietary trends did not differ between sexes. Both juveniles and adults were found to select particular taxa from the available turf micro-fauna, with juveniles consuming smaller sizes of amphipods than adults. Microhabitat use was also found to change ontogenetically. Detailed observations on feeding mechanics suggested that size-related changes in suctorial force allowed the exploitation of a broader range of microhabitats with increasing fish size. Received: 20 June 1997 / Accepted: 1 April 1998  相似文献   

6.
Diets of the demersal fishes on the shelf off Iwate,northern Japan   总被引:2,自引:0,他引:2  
Diets of demersal fishes were determined on the shelf (ca. 130 m deep) off Iwate, Japan. Samples were taken in three different types of habitat, an artificial reef (AR) site, a natural reef (NR) site, and sandymud bottom (SB) site, from May 1987 to September 1991, mostly every two months. A total of 67 prey items were recognized in the stomachs of 45 predator fish species. The most important preys were the pelagic fishes Sardinops melanostictus and Engraulis japonicus, which comprised 37% wet wt of the overall stomach contents. The percentage of pelagic fishes was highest at AR site, where fish density was highest. The dominant ten species could be divided into five feeding types. The pelagic fish feeders Physiculus maximowiczi and Gadus macrocephalus fed mainly on S. melanostictus. The dietary breadth of P. maximowiczi was wide, while that of Gadus macrocephalus was narrow. The pelagic crustacean feeder Theragra chalcogramma mostly consumed Themisto japonica and euphausiids and showed the least dietary overlap with other fishes. Benthic fish feeders were Hemitripterus villosus and Liparis tanakai. The benthic crustacean feeders Alcichthys alcicornis and Hexagrammos otakii consumed benthic crustaceans as well as pelagic and benthic fishes and showed the largest dietary breadth. The benthic invertebrate feeders Gymnocanthus intermedius, Dexistes rikuzenius and Tanakius kitaharai fed mainly on polychaetes and benthic crustaceans. But Gymnocanthus intermedius consumed a significant proportion of pelagic fishes. Ontogenetic dietary shift was recognized for these fishes. Pelagic fishes were consumed more intensively by larger individuals, especially true of A. alcicornis, Theragra chalcogramma and Gadus macrocephalus. Predominancy of the two most adundant species, P. maximowiczi and A. alcicornis, may be supported by their wide dietary breadth and the significant proportion of pelagic fish in their diets. Interspecific dietary overlap was low in most cases suggesting that food resources were well partitioned, although some high overlap was observed among the pelagic fish feeders, A. alcicornis, and Gymnocanthus intermedius, and among the benthic invertebrate feeders. Interspecific competition seemed more likely in the benthic invertebrate feeders than in the pelagic fish feeders partly because of superabundance of the pelagic prey S. melanostictus.  相似文献   

7.
We investigated ontogenetic, temporal and spatial patterns in the composition and size of prey in the diet of crested terns, Sterna bergii. Diet analyses indicated that crested terns are a generalist predator on surface-schooling clupeids (Australian anchovy Engraulis australis, sardine Sardinops sagax and blue sprat Spratelloides robustus), Degens leatherjacket Thamnaconus degeni, southern sea garfish Hyporhamphus melanochir, Australian herring Arripis georgianus, slender bullseye Parapriacanthus elongatus and barracouta Thyrsites atun. Ontogenetic differences in prey size indicated that adults are constrained in their foraging behaviour during the early chick-provisioning period by the need to self feed and select smaller prey that can be ingested by their chicks. Chicks consumed significantly higher proportions of clupeids than adults, which consumed mainly Degens leatherjackets and barracouta, suggesting that adults may select higher quality prey for their chicks compared to what they consume themselves. Spatial differences in prey composition were driven by differing proportions of sardine, Australian anchovy and Degens leatherjacket and could reflect local differences in the abundances of these prey. The size of prey taxa consumed by adults also reflected a North–South gradient in prey size. The large component of juvenile sardine in the diet of crested terns suggests future dietary measures may inform fisheries managers about changes in local juvenile sardine abundance. These data could assist in highlighting any fishery-related decreases in sardine recruitment and help ensure commercial fishing practices address principals of Ecologically Sustainable Development developed for Australian fisheries.  相似文献   

8.
T. Madurell  J.E. Cartes 《Marine Biology》2006,148(6):1325-1338
Daily and seasonal changes in dietary habits, resource partitioning and daily food consumption of Coelorhynchus coelorhynchus, Hymenocephalus italicus and Nezumia sclerorhynchus, the three dominant macrourids coexisting at mid-slope depths (between 473 and 603 m) in the eastern Ionian Sea, were analysed. The three species showed very diverse diets, based mainly on suprabenthic prey and infauna. Day–night changes in the diet and feeding intensity were more apparent in H. italicus and N. sclerorhynchus, preying mainly on mobile prey (suprabenthos), than for C. coelorhynchus that preyed largely on infauna. Dietary overlap was very low among species. The highest daily ration (DR) obtained for N. sclerorhynchus (in April) coincided with maximum concentration of its preferred prey (i.e. Boreomysis arctica). H. italicus, displaying a more pelagic diet than N. sclerorhynchus, showed higher DR (between 1.47–1.51%wetW and 0.47–0.71%wetW, respectively) probably due to higher metabolic activity because it may swim up in the water column to eat. C. coelorhynchus, having the most benthic diet, showed the highest DR (between 2.92 and 2.53%wetW). This rather unexpected high DR would be attributable to a continuous feeding on more uniformly distributed prey (benthos) and to a high rooting activity on the sediment in search of infauna. The influence of the type of resources exploited in the overall trends obtained in the diet of macrourids is discussed and compared with those of other deep-sea species. As a general conclusion, results suggest that food consumption of bathyal fish are probably influenced by or coupled with the type of resources exploited.  相似文献   

9.
Increasing dietary specialization is an inherently risky strategy because it increases a species’ vulnerability to resource depletion. However, risks associated with dietary specialization may be offset by increased performance when feeding on preferred prey. Although rarely demonstrated, highly specialized species are expected to outperform generalists when feeding on their preferred prey, whereas generalists are predicted to have more similar performance across a range of different prey. To test this theory, we compared the growth rates of two obligate coral-feeding butterflyfishes (Chaetodon trifascialis and Chaetodon plebeius) maintained on exclusive diets of preferred vs nonpreferred prey. In the field, C. trifascialis was the most specialized species, feeding almost exclusively on just one coral species, Acropora hyacinthus. C. plebeius meanwhile, was much less specialized, but fed predominantly on Pocillopora damicornis. During growth experiments, C. trifascialis grew fastest when feeding on A. hyacinthus and did not grow at all when feeding on less preferred prey (P. damicornis and Porites cylindrica). C. plebeius performed equally well on both A. hyacinthus and P. damicornis (its preferred prey), but performed poorly when feeding on P. cylindrica. Both butterflyfishes select coral species that maximize juvenile growth, but contrary to expectations, the more specialized species (C. trifascialis) did not outperform the generalist species (C. plebeius) when both consumed their preferred prey. Increased dietary specialization, therefore, appears to be a questionable strategy, as there was no evidence of any increased benefits to offset increases in susceptibility to disturbance.  相似文献   

10.
Stomach contents of 687 orange roughy [Hoplostethus atlanticus (Collett, 1889)] from the Challenger Plateau, sampled in March, July and November 1984, were examined. The relative importance of different components of the diet was assessed using three feeding indices which combine, in different ways, percentage frequency of occurrence, percentage number, and percentage weight of prey categories. For both sexes, for all size classes and at any time of the year, the most frequent and abundant components of the diet were prawns, followed by fish, squid, amphipods and mysids. The main natant decapod families were Oplophoridae, Pasiphaeidae, and Sergestidae. Fish, mainly Chauliodontidae and Myctophidae, were the most important prey by weight. Most prey species were benthopelagic and mesopelagic organisms which move towards the surface at night. However, H. atlanticus can be caught by bottom trawl (between 750 and 1 200 m) during any 24 h period, and there was no evidence of vertical migration in search of their prey. When the fish grow in length, there is a transition in the diet from prawns, mysids, and fish, to prawns, fish and squid. Squid were not found in the stomach contents of fish smaller than 20 cm. These dietary changes may be linked to modifications in morphology with growth. The relative proportions of the main dietary items, and in particular the natant decapod families, varied with time of the year. Also, the stomach data seem to indicate an increasing importance of fish and squid in the diet in deeper water. H. atlanticus appears to be an opportunistic predator, consuming a wide variety of invertebrates and fishes. Our results provide evidence to support the notion that benthopelagic predators which consume vertically migrating mesopelagic fish, have an important role in the transfer of energy to the benthos.  相似文献   

11.
Although both chronic and episodic hypoxia (O2<2 mg l–1) alter the distribution and abundance patterns of mobile animals within estuaries, recent evidence suggests that some animals may be more likely to remain within hypoxic or anoxic water than others, due to differences in physiological tolerance and movement responses to the dynamics of hypoxia. Determining avoidance responses to hypoxia is important for identifying the species most susceptible to the direct and indirect impacts of these events. A trawl survey was used to examine the avoidance responses of blue crabs (Callinectes sapidus) and several fish [pinfish (Lagodon rhomboides), spot (Leiostomus xanthurus), Atlantic croaker (Micropogonias undulatus), bay anchovy (Anchoa mitchilli), and paralichthid flounders (Paralichthys dentatus and Paralichthys lethostigma)] to chronic hypoxia and episodic hypoxic upwelling events in the Neuse River Estuary, North Carolina, USA. Trawl collections were made in three depth strata (3.0–4.6 m, 1.7–3.0 m, and 0.9–1.7 m depth) to quantify changes in the depth-specific distribution and abundance patterns of the six most common estuarine taxa during three dissolved oxygen conditions: normoxia, chronic hypoxia, and episodic hypoxic upwelling events. Pinfish, anchovies, blue crabs, and paralichthid flounder abundance increased with increasing dissolved oxygen concentrations. The two taxa most closely associated with the bottom (blue crabs and flounder) showed the strongest avoidance response to hypoxia. All taxa showed a stronger avoidance response to chronic hypoxia as compared to episodic hypoxic upwelling events. This difference is attributed to a reduced ability to avoid the rapid intrusions of hypoxic water during episodic events, or to increased risks of injury and predation in shallow refuge habitats, which may force some individuals back into hypoxic water.Communicated by J.P. Grassle, New Brunswick  相似文献   

12.
T. Penczak 《Marine Biology》1985,89(3):235-243
The ontogenetic and seasonal dietary shifts of the mummichog Fundulus heteroclitus (L.), from eelgrass (Zostera marina L.) beds off the shore of Halifax County, Nova Scotia, Canada were examined over a 5 mo period in 1980. Switches to abundant, stationary, or high-calorie prey types were observed in the foraging period. Smaller fish generally took less diverse prey. The indices of foregut fullness varied according to body length and season. The successive 10 mm total-length classes of the mummichog (14 to 101 mm TL) consumed whole prey of increasing size. In comparison with populations living further south, the Nova Scotia fish had a shorter spawning period, lower fecundity, and smaller eggs.  相似文献   

13.
The vertical distribution of seven sternoptychid species was examined from RMT 1+8 samples collected aboard R. V. Meteor in March-April 1979 and from Royal Research Ship R.R.S. Discovery in July 1974 in the central equatorial Atlantic. During daytime sternoptychids occupied depths between 200 and 1250 m, with Sternoptyx pseudobscura living deepest, centering between 800 and 900 m, and Argyropelecus sladeni most shallow, aggregating predominantly at 300 and 400 m. They are all considered limited or partial migrants, ascending only some 100 and 200 m towards the surface at night. Only A. sladeni was observed to enter the epipelagic zone (0 and 200 m).-Feeding patterns were investigated from stomach content analyses of Sternoptyx diaphana, S. pseudobscura, Argyropelecus sladeni and A. affinis. Additional stomach contents were analysed from samples of S. diaphana, A. hemigymnus and A. olfersi collected in June 1985 from F.R.V. Walther Herwig in the temperate NE Atlantic at 46°N, 17°W by means of the Engel Trawl. The food spectrum of the six species is generally described, and additional dietary evidence regarding calanoid copepod prey is provided for four of these taxa. All sternoptychid species investigated were planktivorous, feeding predominantly on copepods and ostracods, except for the largest size class, which preyed heavily on euphausiids and amphipods. The relationship of predator size towards prey type and prey size is analysed for both Sternoptyx species. Of these, S. pseudobscura in particular exhibits taxonomic selectivity towards polychaete prey. The diet of both species of Sternoptyx included a number of epipelagic or even neustonic calanoid copepod species which contributed more than 50% of the total copepod population by numbers. So far it is not known how the predators find access to prey organisms of the upper 200 m, as netfeeding is considered unlikely. Cyclopoid copepods of the genus Sapphirina were observed as dietary component particular of S. diaphana.  相似文献   

14.
Investigating predator–prey relationships is an important component for identifying and understanding the factors that influence the structure and function of ecosystems. Mesopredators, defined as mid-level predators, have a profound effect on ecosystem structure by contributing an important link between apex predators and lower trophic levels. The diet of two elasmobranch mesopredators, Squalus acanthias and Mustelus antarcticus, was investigated in three locations in south-east Tasmania. Squalus acanthias consumed predominantly pelagic teleosts and cephalopods, while M. antarcticus predominantly consumed benthic crustaceans. As a result, there was low dietary and niche overlap between the two species. There was however evidence of intra-specific dietary variations between locations for both the species. This study has contributed to a better understanding of the top-down dynamics of the food web in coastal Tasmania, by providing important dietary information of two abundant mesopredators. In addition, the similar dietary patterns for S. acanthias and other Mustelus species over much of their global range suggest they may be consistent in their trophic roles across systems, with limited competition between these two sympatric mesopredators to be expected.  相似文献   

15.
Benthic feeding on macrofauna was studied in juveniles of the sparids Lithognathus lithognathus and Rhabdosargus holubi in the upper reaches of the Gamtoos Estuary, South Africa. Fish and benthic macrofauna were sampled simultaneously, and the selection of invertebrate prey assessed. Both fish species strongly selected for corophioid amphipods and consumed other benthic taxa in low numbers. R. holubi also exploited aquatic autotrophs, while L. lithognathus had a narrow prey-spectrum, feeding almost exclusively on the tube-dwelling amphipod Grandidierella lignorum. G. lignorum was the most abundant prey species, both in the benthos and the fish's diet. This species also showed prominent behavioural differences between the sexes; males were markedly more active on the sediment surface than females, who rarely left their tubes during the day. Males switched from an infaunal to epifaunal microhabitat in search of receptive females, concurrently increasing their exposure to fish predators. Consequently, L. lithognathus selected significantly more males than female amphipods, causing a marked bias towards females in the sex ratio and age-structure of the amphipod population. Juvenile amphipods were less preyed upon, presumably as a result of lower prey-detection or capture efficiency by the predators. Accepting current notions about predation as an important structuring element for benthic communities, our data also stress the prominence of size-and sex-selective predation in structuring individual prey populations.  相似文献   

16.
17.
E. Sandberg 《Marine Biology》1997,129(3):499-504
The functional response of the predatory isopod Saduria entomon to the prey amphipod Bathyporeia pilosa was measured in normoxia (95% O2 saturation), moderate hypoxia (45% O2 saturation) and hypoxia (35% O2 saturation) in aquarium experiments. The prey densities tested ranged from 400 to 8000 ind m−2. Prey density influenced consumption rates of S. entomon in normoxia and 45% O2 saturation, but there was no difference between consumption rates at these two oxygen levels. Nevertheless the form of functional response differed. In normoxia S. entomon showed a positively density-dependent functional response to B. pilosa, indicating a potentially stabilizing effect on the prey population. In moderate hypoxia the variance in consumption increased, decreasing the statistical power to distinguish between response models. The functional response of S. entomon in moderate hypoxia was best described with a density-independent response, characterized as destabilizing for the prey population. In hypoxia (35% O2) predation by S. entomon did not respond to increasing prey density, as almost no amphipods were eaten at this oxygen level. The results are discussed in terms of the usability of theoretical models to examine predator–prey relationships in stressful environments. Received: 26 April 1997 / Accepted: 20 May 1997  相似文献   

18.
Increasing concerns about the ecological impacts of ongoing and possibly worsening blooms of the toxic, carcinogenic cyanobacteria Lyngbya majuscula in Moreton Bay, Australia, led us to assess differences in meiofaunal prey assemblages between bloom and non-bloom substrates and the potential dietary impacts of dense L. majuscula blooms on the omnivorous benthivore, the Eastern Long-finned Goby, Favonigobius lentiginosus and the obligate meiobenthivorous juveniles of Trumpeter Whiting, Sillago maculata. Marked differences in invertebrate communities were found between sandy and L. majuscula bloom foraging substrates, with copepods significantly more abundant (18.49% vs. 70.44% numerical abundance) and nematodes significantly less abundant (55.91% vs. 1.21% numerical abundance) within bloom material. Gut analyses showed that bentho-planktivorous fishes exposed to L. majuscula in captivity had consumed a significantly greater quantity of prey by both total number (P < 0.0019) and volume (P < 0.0006) than fish exposed to sand treatments. Thus, it is likely for such fishes that L. majuscula blooms increase rates of prey encounter and consumption, with consequent changes in trophic relationships through shifts in predator–prey interactions between small benthivorous fishes and their meiofaunal prey.  相似文献   

19.
This study documented the range of corals, and other prey types, consumed by 20 species of butterflyfishes, which co-occur at Lizard Island, northern Great Barrier Reef, Australia. Six species (Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. plebius, C. rainfordi and C. trifascialis) fed almost exclusively on scleractinian corals, and a further eight species (C. citrinellus, C. kleinii, C. lunula, C. melannotus, C. rafflesi, C. speculum, C. ulietensis, and C. unimaculatus) took a significant proportion of their bites from corals. The other six species (C. auriga, C. ephippium, C. lineolatus, C. semeion, C. vagabundus, and Chelmon rostratus) rarely consumed coral, but fed on small discrete prey items from non-coral substrates. Coral-feeding butterflyfishes consumed a wide range of corals. Chaetodon lunulatus, for example, consumed 51 coral species from 24 different genera. However, there was up to 72% dietary overlap between coral-feeding butterflyfishes, with 11/14 species feeding predominantly on Acropora hyacinthus or Pocillopora damicornis. The most specialised corallivore, C. trifascialis, took 88% of bites from A. hyacinthus. Chaetodon trifascialis defend territories encompassing one or more colonies of A. hyacinthus, and may have prevented other species such as C. lunulatus from feeding even more extensively on this coral. This study has shown that coexistence of coral-feeding butterflyfishes occurs despite an apparent lack of partitioning of prey resources. While different coral-feeding butterflyfishes were more or less selective in their use of different coral prey, virtually all species fed predominantly on A. hyacinthus or P. damicornis.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

20.
Diets of 15 species of demersal and pelagic fishes on the upper continental slope (420 to 550 m) were determined, based on samples taken every two months over 13 mo (April 1984 to April 1985) off eastern Tasmania. The calorific contribution of each prey item to the diets was determined. The fish could be divided into four trophic categories: pelagic piscivores, epibenthic piscivores, epibenthic invertebrate feeders and benthopelagic omnivores. Dietary overlap between the groups was low. The pelagic piscivores Apogonops anomalus, Trachurus declivis, Brama brama, Lepidopus caudatus and Macruronus novaezelandiae primarily consume the shelf-break myctophid Lampanyctodes hectoris; their diet is narrow, with a large overlap between species. The epibenthic piscivores Deania calcea and Genypterus blacodes both take a greater variety of prey, but have little dietary overlap. The fish feeding on epibenthic invertebrates, Coelorinchus sp. 2 and Centriscops humerosus, obtain most of their energy from benthic Crustacea and Ophiuroidea, supplemented with Lampanyctodes hectoris; the diet is broad, with little overlap. Among the benthopelagic omnivores (Cyttus traversi, Coelorinchus sp. 4, Lepidorhynchus denticulatus, Neocyttus rhomboidalis, Helicolenus percoides, Epigonus denticulatus and E. lenimen), most diets are broad and show slight overlap. All but E. denticulatus consume significant quantities of Lampanyctodes hectoris as well as Crustacea, particularly Polychaeta, Euphausiacea and Pyrosoma atlanticum. Seasonal changes in diet occurred in G. blacodes, T. declivis, Lepidopus caudatus, Coelorinchus sp. 4, Lepidorhynchus denticulatus, H. percoides, E. denticulatus and E. lenimen; these were related to changes in abundance of particular prey species, not to alterations in feeding habits. Only three species, Lepidopus caudatus, Coelorinchus sp. 2 and H. percoides, showed significant diel feeding periodicity. Ontogenetic dietary changes were evident in Cyttus traversi, Coelorinchus sp. 2, Lepidorhynchus denticulatus and H. percoides. Cyttus traversi and H. percoides progressively changed from crustaceans to fish as their size increased. The diets of size classes within species showed little overlap, except for Lepidorhynchus denticulatus, which eats chiefly euphausiids and Lampanyctodes hectoris at all sizes. In addition to describing the diets and trophic relationships of 90% of the fish biomass, the results emphasize the importance to the entire fish community of mesopelagic food resources, particularly Lampanyctodes hectoris. Many benthopelagic species undertake extensive vertical migrations in search of prey, thus playing a major role in the transport of energy from midwater regions to the benthos of the continental slope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号