首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A saponification extraction method with gas chromatography pseudo-MRM (pMRM) mass spectrometry detection was developed for the determination of 50 total polycyclic aromatic hydrocarbons (TPAH50, a combination of parent and alkylated homologues) in biota. The method was aimed at monitoring and identification of potential TPAH contaminants in bitumen impacted environments. Alkylated PAHs were determined by multi-level, quantitative calibration using parent PAHs. The developed and thoroughly validated method required only one injection for TPAH50 analysis which represents significant saving of time and expensive authentic alkylated standards. The current method was tested with certified reference mussel tissue NIST 1974c and performed well. In a comparison study, the method reached a limit of quantitation (LOQ) for the TPAH50 between 0.1 and 0.2?ng g?1, while the QuEChERs enhanced matrix removal – lipid (EMR) kit produced by Agilent showed an LOQ of 5–10?ng g?1. The current method relied on response factors (RF) for the quantitation of alkylated PAHs determined against parent PAHs. These RFs were shown to be stable and consistent over the course of 1 year, during which over 200 routine environmental biota monitoring samples were analyzed. The environmental biota monitoring samples analyzed include muscle, carcass and liver, with an average total PAH50 concentration of 13, 90 and 135?ng g?1, respectively. Results show significant differences in the distributions of 1 ringed, 2 ringed, 3 ringed, 4 ringed, and 5+ ringed TPAHs between the types of biota samples.  相似文献   

2.
Thirteen PAHs, five nitro-PAHs and two hydroxy-PAHs were determined in 55 vapor-phase samples collected in a suburban area of a large city (Madrid, Spain), from January 2008 to February 2009. The data obtained revealed correlations between the concentrations of these compounds and a series of meteorological factors (e.g., temperature, atmospheric pressure) and physical–chemical factors (e.g., nitrogen and sulfur oxides). As a consequence, seasonal trends were observed in the atmospheric pollutants. A “mean sample” for the 14-month period would contain a total PAH concentration of 13 835 ± 1625 pg m−3 and 122 ± 17 pg m−3 of nitro-PAHs. When the data were stratified by season, it emerged that a representative sample of the coldest months would contain 18 900 ± 2140 pg m−3 of PAHs and 150 ± 97 pg m−3 of nitro-PAHs, while in an average sample collected in the warmest months, these values drop to 9293 ± 1178 pg m−3 for the PAHs and to 97 ± 13 pg m−3 for the nitro-PAHs. Total vapor phase concentrations of PAHs were one order of magnitude higher than concentrations detected in atmospheric aerosol samples collected on the same dates. Total nitro-PAH concentrations were comparable to their aerosol concentrations whereas vapor phase OH-PAHs were below their limits of the detection, indicating these were trapped in airborne particles.  相似文献   

3.
The gas phase polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs in the atmosphere of five European countries (Austria, the Czech Republic, Poland, Slovakia and Sweden) were measured simultaneously during two 21-day passive sampling campaigns using semipermeable membrane devices (SPMDs). SPMD samplers, consisting of a pair of SPMDs covered by a metal umbrella, were deployed at 40 locations ranging from remote and rural to urban and industrial, at a similar time during each of the two sampling campaigns (autumn 1999, except in Poland, winter 1999, and summer 2000). The total amounts of PAHs and nitro-PAHs found in the SPMDs ranged between 5.0–1.2×103 and 1.1×10−3–4.0 ng SPMD−1 day−1, respectively. The measured environmental sampling conditions were similar between sites and, thus, the variations in the SPMD data reflected the spatial differences in gas phase concentrations of nitro-PAHs and PAHs within and between countries. The gas phase concentrations of nitro-PAHs and PAHs found in East Europe (Slovakia, the Czech Republic and Poland 1999) were 10 times higher than those measured in Sweden, Austria and Poland in 2000. In each country, the levels of PAHs and nitro-PAHs differed by one–three orders of magnitudes amongst sampling sites. The highest within-country spatial differences were found in Poland where levels of PAHs and nitro-PAHs were about one and two orders of magnitudes, respectively, higher in winter 1999 than in summer 2000, probably due to increasing emissions of coal combustion for residential heating. Differences in PAH-patterns between sites were visualized by the multivariate projection method, principal component analysis (PCA). However, no specific source patterns were found, probably since imissions rather than emissions were measured, so the PAHs detected at many sites originated from multiple sources.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) are suspected to be carcinogenic and mutagenic. This study describes the presence of PAHs in light, medium and dark roasted coffee including instant and decaffeinated brands. Total PAHs concentration was related to the degree of roasting with light roasted coffee showing the least and dark roasted coffee showing the highest level. Both instant and decaffeinated coffee brand showed lower levels of PAHs. Naphthalene, acenaphthylene, pyrene and chrysene were the most abundant individual isomers. The concentrations ranged from 0 to 561 ng g?1 for naphthalene, 0 to 512 ng g?1 for acenaphthylene, 60 to 459 ng g?1 for pyrene and 56 to 371 ng g?1 for chrysene. Thus, roasting conditions should be controlled to avoid the formation of PAHs due to their suspected carcinogenic and mutagenic properties.  相似文献   

5.
Abstract

A simple, very efficient method is presented for routine analysis of herbicide Krovar I? (active components bromacil and diuron) in water and soil samples. Water samples were extracted by liquid–liquid extraction with dichloromethane (DCM) as extraction solvent. For soil samples two different extraction techniques were compared: microwave-assisted solvent extraction and a shaking technique using a platform shaker. Extracts were analyzed by high performance liquid chromatography using a water:methanol gradient. Liquid chromatography was coupled with atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS) for quantification of bromacil and diuron. Optimization of the APCI-MS was done by using standards in the flow injection analysis mode (FIA). Method detection limit for liquid samples for bromacil is 0.04 µg L?1 and for diuron 0.03 µg L?1. Method detection limit for soil samples is 0.01 µg g?1 dry weight for both compounds. Results of analysis of field samples of water and soil are also presented.  相似文献   

6.
The aim of the study was to determine centimeter-scale spatial variation in mineralization potential in diffusely polluted soil. To this end we employed a 96-well microplate method to measure the mineralization of 14C-labeled organic compounds in deep-well microplates and thereby compile mineralization curves for 348 soil samples of 0.2-cm3. Centimeter-scale spatial variation in organic matter and the mineralization of glucose, benzoic acid, and PAHs (phenanthrene and pyrene) was determined for urban road-side soil sampled as arrays (7 × 11 cm) of 96 subsamples. The spatial variation in mineralization was visualized by means of 2-D contour maps and quantified by means of semivariograms. The geostatistical analysis showed that the easily degradable compounds (glucose and benzoic acid) exhibited little spatial variation in mineralization potential, whereas the mineralization was highly heterogeneous for the PAH compounds that require specialized degraders. The spatial heterogeneity should be taken into account when estimating natural attenuation rates.  相似文献   

7.
Wei X  Huang Y  Wong MH  Giesy JP  Wong CK 《Chemosphere》2011,85(1):122-128
Bisphenol A (BPA) is a high production-volume chemical used in the manufacture of a wide variety of consumer products. However it is also a ubiquitous contaminant that can interfere with endocrine systems of wildlife and humans. China is the “world factory” and the Pearl River Delta is the major manufacturing center and is consequently polluted. Concentrations of BPA in meats of marketable fish had not been previously reported for this region. In the study upon which we report here concentrations of BPA were determined in 20 common species of freshwater and marine fish, collected from markets in Hong Kong, SAR, China. A comprehensive analytical method based on SPE extraction and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was developed, validated and applied. The method limit of detection (LOD) and limit of quantification (LOQ) were 0.5 and 1.25 ng g−1 dw, respectively. BPA was detected in 19 species of fish at concentrations, ranging from 0.5 to 2.0 ng g−1 ww. Average daily BPA intake per person ranged from 1.1 × 102 ng d−1 for marine fish and 2.2 × 102 ng d−1 for freshwater fish. Concentrations of BPA in fish from Hong Kong markets unlikely would be causing adverse population-level effects in humans.  相似文献   

8.
Particulate matter having an aerodynamic diameter less than 2.5 μm (PM2.5) is thought to be implicated in a number of medical conditions, including cancer, rheumatoid arthritis, heart attack, and aging. However, very little chemical speciation data is available for the organic fraction of ambient aerosols. A new direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed for the analysis of the organic fraction of PM2.5. Samples were collected in Golden, British Columbia, over a 15-month period. n-Alkanes constituted 33–98% by mass of the organic compounds identified. PAHs accounted for 1–65% and biomarkers (hopanes and steranes) 1–8% of the organic mass. Annual mean concentrations were: n-alkanes (0.07–1.55 ng m−3), 16 PAHs (0.02–1.83 ng m−3), and biomarkers (0.02–0.18 ng m−3). Daily levels of these organics were 4.89–74.38 ng m−3, 0.27–100.24 ng m−3, 0.14–4.39 ng m−3, respectively. Ratios of organic carbon to elemental carbon (OC/EC) and trends over time were similar to those observed for PM2.5. There was no clear seasonal variation in the distribution of petroleum biomarkers, but elevated levels of other organic species were observed during the winter. Strong correlations between PAHs and EC, and between petroleum biomarkers and EC, suggest a common emission source – most likely motor vehicles and space heating.  相似文献   

9.
Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added 13C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass.  相似文献   

10.
A batch experiment was conducted to assess the impact of chemical oxidation using modified Fenton reaction on PAH content and on physico-chemical and biological parameters of an industrial PAH contaminated soil in unsaturated condition. Two levels of oxidant (H2O2, 6 and 65 g kg−1) and FeSO4 were applied. Agronomic parameters, bacterial and fungal density, microbial activity, seed germination and ryegrass growth were assessed. Partial removal of PAHs (14% and 22%) was obtained with the addition of oxidant. The impact of chemical oxidation on PAH removal and soil physico-chemical and biological parameters differed depending on the level of reagent. The treatment with the highest concentration of oxidant decreased soil pH, cation exchange capacity and extractable phosphorus content. Bacterial, fungal, and PAH degrading bacteria densities were also lower in oxidized soil. However a rebound of microbial populations and an increased microbial activity in oxidized soil were measured after 5 weeks of incubation. Plant growth on soil treated by the highest level of oxidant was negatively affected.  相似文献   

11.
Goal, Scope and Background Biosolids, i.e., treated sewage sludge, are commonly used as a fertilizer and amendment to improve soil productivity. Application of biosolids to meet the nitrogen (N) requirements of crops can lead to accumulation of phosphorus (P) in soils, which may result in P loss to water bodies. Since 1996, biosolids have been applied to a Pinus radiata D. Don plantation near Nelson City, New Zealand, in an N-deficient sandy soil. To investigate sustainability of the biosolids application programme, a long-term research trial was established in 1997, and biosolids were applied every three years, at three application rates, including control (no biosolids), standard and high treatments, based on total N loading. The objective of this study was to evaluate the effect of repeated application of biosolids on P mobility in the sandy soil. Materials and Methods Soil samples were collected in August 2004 from the trial site at depths of 0–10, 10–25, 25–50, 50–75, and 75–100 cm. The soil samples were analysed for total P (TP), plant-available P (Olsen P and Mehlich 3 P), and various P fractions (water-soluble, bioavailable, Fe and Al-bound, Ca-bound, and residual) using a sequential P fractionation procedure. Results and Discussion Soil TP and Olsen P in the high biosolids treatment (equivalent to 600 kg N ha−1 applied every three years) had increased significantly (P<0.05) in both 0–10 cm and 10–25 cm layers. Mehlich 3 P in soil of the high treatment had increased significantly only at 0–10 cm. Olsen P appeared to be more sensitive than Mehlich 3 P as an indicator of P movement in a soil profile. Phosphorus fractionation revealed that inorganic P (Al/Fe-bound P and Ca-bound P) and residual P were the main P pools in soil, whereas water-soluble P accounted for approximately 70% of TP in biosolids. Little organic P was found in either the soil or biosolids. Concentrations of water-soluble P, bioavailable inorganic P (NaHCO3 Pi) and potentially bioavailable inorganic P (NaOH Pi) in both 0–10 and 10–25 cm depths were significantly higher in the high biosolids treatment than in the control. Mass balance calculation indicated that most P applied with biosolids was retained by the top soil (0–25 cm). The standard biosolids treatment (equivalent to 300 kg N ha−1 applied every three years) had no significant effect on concentrations of TP, Mehlich 3 P and Olsen P, and P fractions in soil. Conclusions The results indicate that the soil had the capacity to retain most biosolids-derived P, and there was a minimal risk of P losses via leaching in the medium term in the sandy forest soil because of the repeated biosolids application, particularly at the standard rate. Recommendations and Perspectives Application to low-fertility forest land can be used as an environmentally friendly option for biosolids management. When biosolids are applied at a rate to meet the N requirement of the tree crop, it can take a very long time before the forest soil is saturated with P. However, when a biosolids product contains high concentrations of P and is applied at a high rate, the forest ecosystem may not have the capacity to retain all P applied with biosolids in the long term. ESS-Submission Editor: Dr. Jean-Paul Schwitzguébel jean-paul.schwitzguebel@epfl.ch  相似文献   

12.
A sensitive and specific method for the determination of propineb and its metabolites, propylenethiourea (PTU) and propylenediamine (PDA), using gas chromatography with flame photometric detection (GC-FPD) and LC–MS/MS was developed and validated. Propineb and its metabolite residue dynamics in supervised field trials under Good Agricultural Practice (GAP) conditions in banana and soil were studied. Recovery of propineb (as CS2), PDA and PTU ranged from 75.3 to 115.4% with RSD (n = 5) of 1.3–11.1%. The limit of quantification (LOQ) of CS2, PDA and PTU ranged from 0.005 to 0.01 mg kg?1, and the limit of detection (LOD) ranged from 0.0015 to 0.0033 mg kg?1. Dissipation experiments showed that the half-life of propineb in banana and soil ranged from 4.4 to 13.3 days. PTU was found in banana with a half-life of 31.5–69.3 days, while levels of PDA were less than 0.01 mg kg?1 in banana and soil. It has been suggested that PTU is the major metabolite of propineb in banana. The method was demonstrated to be reliable and sensitive for the routine monitoring of propineb and its metabolites in banana and soil. It also serves as a reference for the detection and monitoring of dithiocarbamates (DTCs) residues and the evaluation of their metabolic pathway.  相似文献   

13.
Lindane removal by pure and mixed cultures of immobilized actinobacteria   总被引:1,自引:0,他引:1  
Stereoselective dissipation of epoxiconazole had been studied in grape and soil during plant growing under field conditions in this paper. A sensitive and rapid chiral method was developed and validated for the determination of epoxiconazole stereoisomers in grape and soil based on liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS). Phenomenex Lux Cellulose-1 column was used for enantioseparation with a mixture of acetonitrile/water (90/10, v/v) as mobile phase at flow rate of 0.3 mL min−1. Fortified recoveries in grape and soil samples ranged from 76.0% to 91.9% and relative standard deviations were less than 11.4% with fortified levels of 0.025-1.0 mg kg−1. The limits of detection and quantification were 0.005 mg kg−1 and 0.025 mg kg−1, respectively, with linear calibration curves extending up to 5.0 mg kg−1. The field experimental results showed that dissipations of epoxiconazole stereoisomers in grape followed first-order kinetics (R2 > 0.92) and stereoselectivity occurred in 2 h after spraying. The (−)-stereoisomer with half-life of 9.3 d degraded faster than (+)-stereoisomer with that of 13.2 d, and resulted in relative enrichment of (+)-stereoisomer. However, the stereoisomeric dissipations in soil were triphasic (“increase-decrease-steady”) with lower dissipation rates, and also occurred with preferential degradation of (−)-stereoisomer under field condition. The results for stereoselective dissipations can be applied for food and environmental assessments of chiral pesticides.  相似文献   

14.
Dichlorodiphenyltrichloroethane (DDT) is still used in Africa for the indoor control of malaria and it may represent a potential hazard for wildlife. The littoral sediments of two alkaline-saline lakes, Natron (Tanzania) and Bogoria (Kenya), in the Eastern Rift Valley, supporting large populations of lesser flamingos (Phoeniconaias minor), were analysed for DDT residues. Physical–chemical analyses (temperature, conductivity, pH and dissolved oxygen) were also performed on the water of the two lakes and in the tributaries of Lake Natron, to evaluate the influence of the environmental variables on pollutant occurrence. At Lake Natron, around 1 km from the sediment collection sites, tree leaves of Acacia tortilis were also collected. The main metabolite found in all sediment samples was pp’DDE, whilst equal concentrations of pp’DDT and pp’DDE were measured in acacia leaves. The levels of DDTs measured in the sediments were within 5.9–30.9 ng g−1 d.w., reaching the maximum value in a tributary of Lake Natron. On the whole, the contamination of Lake Natron and Lake Bogoria basins seems to be quite moderate. Nevertheless, the pp’DDE/pp’DDT ratio equals 1 in the Acacia tortilis leaves, which makes one suppose that the input of the parent compound was rather recent and could have been from aerial transport or dust from relatively close-by old pesticides storage sites.  相似文献   

15.
We studied the source, concentration, spatial distribution and health risk of 16 polycyclic aromatic hydrocarbons (PAHs) in urban soils of Beijing. The total mass concentration of 16 PAHs ranged from 93 to 13 141 μg kg−1 with a mean of 1228 μg kg−1. The contour map of soil PAH concentrations showed that the industrial zone, the historical Hutong district and the university district of Beijing have significantly higher concentrations than those in remainder of the city. The results of sources identification suggested that the primary sources of PAHs were vehicle exhaust and coal combustion and the secondary source was the atmospheric deposition of long-range transported PAHs. The incremental lifetime cancer risks (ILCRs) of exposing to PAHs in the urban soils of Beijing for adult were 1.77 × 10−6 and 2.48 × 10−5, respectively under normal and extreme conditions. For child, they were 8.87 × 10−7 and 6.72 × 10−6, respectively under normal and extreme conditions.  相似文献   

16.
The microbial accessibility of native phenanthrene and pyrene was determined in soils representing background scenarios for pollution by polycyclic aromatic hydrocarbons (PAHs). The soils were selected to cover a wide range of concentrations of organic matter (1.7-10.0%) and total PAHs (85-952 μg/kg). The experiments included radiorespirometry determinations of biodegradation with 14C-labeled phenanthrene and pyrene and chemical analyses to determine the residual concentrations of the native compounds. Part of the tests relied on the spontaneous biodegradation of the chemicals by native microorganisms; another part also involved inoculation with PAH-degrading bacteria. The results showed the recalcitrance of PAHs already present in the soils. Even after extensive mineralization of the added 14C-PAHs, the concentrations of native phenanthrene and pyrene did not significantly decrease. We suggest that aging processes operating at background concentrations may contribute to recalcitrance and, therefore, to ubiquitous pollution by PAHs in soils.  相似文献   

17.
The aim of this work was to assess dietary risk resulting from consumption of polycyclic aromatic hydrocarbons (PAHs) with tea infusions. To this end, levels of 28 PAHs in black, green, red and white teas available on the Polish retail market have been assessed. Profiles and correlation between concentrations of individual PAHs have been identified. A model study on transfer of PAHs from tea leaves into tea preparations has been conducted. Relatively high concentrations of 28 evaluated PAHs have been found in 58 tested samples of black, green, red and white teas sampled on the Polish retail market. Total concentration ∑28PAH ranged from 57 to 696 µg kg?1 with mean 258 µg kg?1 (dry tea leaves). The most mature tea leaves fermented to a small degree contained relatively the highest PAH levels among all four tested tea types. Relatively low PAH transfer rates into tea infusions and limited volumes of the consumed tea keep the risks associated with PAH dietary intake at a safely low level.

The worst-case scenario dietary intake values were 7.62/0.82/0.097 ng kg?1 b.w. day?1 (estimated on the basis of the maximum found concentrations 696/113/23 µg kg?1 and maximum observed transfer rates 24/16/9%) for ∑28PAH/∑PAH4/B[a]P, respectively. MOE values calculated using the above worst case estimates exceeded 700,000 and 400,000 (BMDL10 0.07 and 0.34 mg kg?1 b.w. day?1) for B[a]P and PAH4, respectively. Both B[a]P and PAH4 concentrations may be used as indicators of total PAH concentration in tea leaves; PAH4 slightly better fits low molecular weight PAHs. Several correlations between various PAHs/groups of PAHs have been identified, the strongest one (R2 = 0.92) between PAH4 and EU PAH 15+1.  相似文献   

18.
The vertical concentration profiles and source contributions of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in respirable particle samples (PM4) collected at 10, 100, 200 and 300-m altitude from the Milad Tower of Tehran, Iran during fall and winter were investigated. The average concentrations of total PAHs and total n-alkanes were 16.7 and 591 ng/m3, respectively. The positive matrix factorization (PMF) model was applied to the chemical composition and wind data to apportion the contributing sources. The five PAH source factors identified were: ‘diesel’ (56.3 % of total PAHs on average), ‘gasoline’ (15.5 %), ‘wood combustion, and incineration’ (13 %), ‘industry’ (9.2 %), and ‘road soil particle’ (6.0 %). The four n-alkane source factors identified were: ‘petrogenic’ (65 % of total n-alkanes on average), ‘mixture of petrogenic and biomass burning’ (15 %), ‘mixture of biogenic and fossil fuel’ (11.5 %), and ‘biogenic’ (8.5 %). Source contributions by wind sector were also estimated based on the wind sector factor loadings from PMF analysis. Directional dependence of sources was investigated using the conditional probability function (CPF) and directional relative strength (DRS) methods. The calm wind period was found to contribute to 4.4 % of total PAHs and 5.0 % of total n-alkanes on average. Highest average concentrations of PAHs and n-alkanes were found in the 10 and 100 m samples, reflecting the importance of contributions from local sources. Higher average concentrations in the 300 m samples compared to those in the 200 m samples may indicate contributions from long-range transport. The vertical profiles of source factors indicate the gasoline and road soil particle-associated PAHs, and the mixture from biogenic and fossil fuel source-associated n-alkanes were mostly from local emissions. The smaller average contribution of diesel-associated PAHs in the lower altitude samples also indicates that the restriction of diesel-fueled vehicle use in the central area of Tehran has been effective in reducing the PAHs concentration.  相似文献   

19.
Concentrations of polycyclic aromatic hydrocarbons (PAHs) were measured in soil and XAD-based passive air samples taken from a total of 22 sites along three transects (Revelstoke, Yoho, and Observation, 6-8 sites for each transect) in the mountains of Western Canada in 2003-2004. Median concentrations in air (4-ring PAHs: 33 pg/m3) were very low and comparable to those in global background regions such as the Arctic. Low median soil concentrations (16 EPA PAHs: 16 ng/g dry weight) and compositional profiles dominated by naphthalene and phenanthrene are similar to those of tropical soils, indicative of remote regions influenced mostly by PAHs from traffic and small settlements. Comparing levels and composition of PAHs in soils between and along transects indeed suggests a clear relationship with proximity to local sources. Sampling sites that are closer to major traffic arteries and local settlements have higher soil concentrations and a higher relative abundance of heavier PAHs than truly remote sites at higher elevations. This remains the case when the variability in soil organic carbon content between sites is taken into account. Both air/soil concentration ratios and fugacity fractions suggest atmospheric net deposition of four-ring PAHs to soils.  相似文献   

20.
The occurrence of selected nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) associated with atmospheric particulate matter has been investigated at an urban site and at a semi-rural site. For this purpose an analysis method based on gas chromatography and tandem ion trap mass spectrometry has been developed and applied. The nitro-PAH levels have been compared with levels of other air pollutants including unsubstituted PAHs, inorganic gases and particulate matter, as well as with meteorological parameters. Correlations and concentration ratios suggest that the dominant source of 9-nitroanthracene at the urban site is direct emissions, whereas at the semirural site its dominant source is atmospheric formation. The atmospheric formation of 2-nitrofluoranthene and 2-nitropyrene generally seems to be initiated by OH radicals during the day rather than by NO3 radicals at night. The average contribution of the OH initiated formation is estimated to be in the range of 90–100%. However, under wintertime conditions with cloudy weather implying low OH radical production, NO3 radicals may also be important as initiators of nitro-PAH formation. Samples influenced by transport of polluted air masses from the European continent have significantly elevated concentrations of atmospherically formed nitro-PAHs. The directly emitted nitro-PAHs, 1-nitropyrene and 3-nitrofluoranthene, do not exhibit elevated levels during such long-range transport episodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号