首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Contaminated water and soil at active or abandoned munitions plants is a serious problem since these compounds pose risks to human health and can be toxic to aquatic and terrestrial life. Our objective was to determine if zero-valent iron (Fe(0)) could be used to promote remediation of water and soil contaminated with 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). As little as 1% Fe(0) (w/v) removed 70 mg TNT litre(-1) from aqueous solution within 8 h and removed 32 mg RDX litre(-1) within 96 h. Treating slurries (1:5 soil:water) of highly contaminated soil (5200 mg TNT and 6400 mg RDX kg(-1) soil) from the former Nebraska Ordnance Plant (NOP) with 10% Fe(0) (w/w soil) reduced CH(3)CN-extractable TNT and RDX concentrations below USEPA remediation goals (17.2 mg TNT and 5.8 mg RDX kg(-1)). Sequential treatment of a TNT-contaminated solution (70 mg TNT litre(-1) spiked with (14)C-TNT) with Fe(0) (5% w/v) followed by H(2)O(2) (1% v/v) completely destroyed TNT and removed about 94% of the (14)C from solution, 48% of which was mineralized to (14)CO(2) within 8 h. Fe(0)-treated TNT also was more susceptible to biological mineralization. Our observations indicate that Fe(0) alone, Fe(0) followed by H(2)O(2), or Fe(0) in combination with biotic treatment can be used for effective remediation of munitions-contaminated water and soil.  相似文献   

2.
We report the ability of nickel-based catalysts to degrade explosives compounds in aqueous solution. Several nickel catalysts completely degraded the explosives, although rates varied. Nearly all of the organic explosive compounds tested, including 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), were rapidly degraded to below detection limits by a powdered nickel on an alumina-silicate support (Aldrich nickel catalyst). Perchlorate degradation was minimal (<25%). Degradation of TNT by Aldrich nickel catalyst resulted in apparent first-order kinetics. Significant gaseous 14C was released and collected in an alkaline solution (most likely carbon dioxide) from [14C]RDX and [14C]HMX, indicating heterocyclic ring cleavage. Significant gaseous 14C was not produced from [14C]TNT, but spectrophotometric evidence indicated loss of aromaticity. Degradation occurred in low ionic strength solutions, groundwater, and from pH 3 to pH 9. Degradation of TNT, RDX, and HMX was maintained in flow-through columns of Aldrich nickel catalyst mixed with sand down to a hydraulic retention time of 4h. These data indicate that nickel-based catalysts may be an effective means for remediation of energetics-contaminated groundwater.  相似文献   

3.
We describe TNT's inhibition of RDX and HMX anaerobic degradation in contaminated soil containing indigenous microbial populations. Biodegradation of RDX or HMX alone was markedly faster than their degradation in a mixture with TNT, implying biodegradation inhibition by the latter. The delay caused by the presence of TNT continued even after its disappearance and was linked to the presence of its intermediate, tetranitroazoxytoluene. PCR–DGGE analysis of cultures derived from the soil indicated a clear reduction in microbial biomass and diversity with increasing TNT concentration. At high-TNT concentrations (30 and 90 mg/L), only a single band, related to Clostridium nitrophenolicum, was observed after 3 days of incubation. We propose that the mechanism of TNT inhibition involves a cytotoxic effect on the RDX- and HMX-degrading microbial population. TNT inhibition in the top active soil can therefore initiate rapid transport of RDX and HMX to the less active subsurface and groundwater.  相似文献   

4.
Regeneration of iron for trichloroethylene reduction by Shewanella alga BrY   总被引:1,自引:0,他引:1  
Shin HY  Singhal N  Park JW 《Chemosphere》2007,68(6):1129-1134
Zero valent iron (ZVI), the primary reactive material in several permeable reactive barriers, is often oxidized to ferrous or ferric iron, resulting in decreased reactivity with time. Iron reducing bacteria can reconvert the ferric iron to its ferrous form, prolonging the reduction of chlorinated organic contaminants. In this study, the reduction of Fe(II,III) oxide and Fe(III) oxide by a strain of iron reducing bacteria of the group Shewanella alga BrY(S. alga BrY) was observed in both aqueous and solid phases. S. alga BrY preferentially reduced dissolved ferric iron over the solid ferric iron. In the presence of iron oxide the Fe(II) ions reduced by S. alga BrY efficiently reduced trichloroethylene (TCE). On the other hand, Fe(II) produced by S. alga BrY covered the reactive surfaces of ZVI iron filings and inhibited the reduction of TCE by ZVI. The formation of precipitates on the iron oxide or Fe0 surface was confirmed by scanning electron microscopy. The results suggest that iron-reducing bacteria in the oxidized Fe0 barriers can enhance the removal rate of chlorinated organic compounds and influence on the long-term performance of Fe0 reactive barriers.  相似文献   

5.
Biological and abiotic approaches for treating co-mingled perchlorate, nitrate, and nitramine explosives in groundwater were compared in microcosm and column studies. In microcosms, microscale zero-valent iron (mZVI), nanoscale zero-valent iron (nZVI), and nickel catalyzed the reduction of RDX and HMX from initial concentrations of 9 and 1 mg/L, respectively, to below detection (0.02 mg/L), within 2 h. The mZVI and nZVI also degraded nitrate (3 mg/L) to below 0.4 mg/L, but none of the metal catalysts were observed to appreciably reduce perchlorate ( approximately 5 mg/L) in microcosms. Perchlorate losses were observed after approximately 2 months in columns of aquifer solids treated with mZVI, but this decline appears to be the result of biodegradation rather than abiotic reduction. An emulsified vegetable oil substrate was observed to effectively promote the biological reduction of nitrate, RDX and perchlorate in microcosms, and all four target contaminants in the flow-through columns. Nitrate and perchlorate were biodegraded most rapidly, followed by RDX and then HMX, although the rates of biological reduction for the nitramine explosives were appreciably slower than observed for mZVI or nickel. A model was developed to compare contaminant degradation mechanisms and rates between the biotic and abiotic treatments.  相似文献   

6.
Anaerobic dechlorination is an effective degradation pathway for higher chlorinated polychlorinated biphenyls (PCBs). The enhanced reductive dechlorination of PCB-contaminated soil by anaerobic composting with zero-valent iron (ZVI) was studied, and preliminary reasons for the enhanced reductive dechlorination with ZVI were investigated. The results show that the addition of nanoscale ZVI can enhance dechlorination during in-vessel anaerobic composting. After 140 days, the average number of removed Cl per biphenyl with 10 mg g?1 of added nanoscale ZVI was 0.63, enhancing the dechlorination by 34 % and improving the initial dechlorination speed. The ZVI enhances dechlorination by providing a suitable acid base environment, reducing volatile fatty acid inhibition and stimulating the microorganisms. The C/N ratios for treatments with the highest rate of ZVI addition were smaller than for the control, indicating that ZVI addition can promote compost maturity.  相似文献   

7.
Solid phase high explosive (HE) residues from munitions detonation may be a persistent source of soil and groundwater contamination at military training ranges. Saturated soil column tests were conducted to observe the dissolution behavior of individual components (RDX, HMX, and TNT) from two HE formulations (Comp B and C4). HE particles dissolved readily, with higher velocities yielding higher dissolution rates, higher mass transfer coefficients, and lower effluent concentrations. Effluent concentrations were below solubility limits for all components at superficial velocities of 10-50 cm day(-1). Under continuous flow at 50 cm day(-1), RDX dissolution rates from Comp B and C4 were 34.6 and 97.6 microg h(-1) cm(-2) (based on initial RDX surface area), respectively, significantly lower than previously reported dissolution rates. Cycling between flow and no-flow conditions had a small effect on the dissolution rates and effluent concentrations; however, TNT dissolution from Comp B was enhanced under intermittent-flow conditions. A model that includes advection, dispersion, and film transfer resistance was developed to estimate the steady-state effluent concentrations.  相似文献   

8.
Huang YH  Zhang TC 《Chemosphere》2006,64(6):937-943
Batch tests were conducted to investigate nitrite reduction in a zerovalent iron (Fe0) system under various conditions. Nitrite at 1.4 mM initial concentration was slowly reduced to nitrogen gas in the first stage (days 1-6), which was mediated by an amorphous, Fe(II)-rich iron oxide coating. The second stage (days 7-14) featured a rapid reduction of nitrite to both ammonia and nitrogen gas and the formation of a more crystalline, magnetite form iron oxide coating. Water reduction by Fe0 occurred concurrently with nitrite reduction from the beginning and contributed significantly to the overall iron corrosion. Nitrite at 14 mM was found to passivate the surface of Fe0 grains with respect to nitrite reduction. Adding aqueous Fe2+ significantly accelerated reduction of nitrite by Fe0 to nitrogen gas with lepidocrocite as the main iron corrosion product. Substantially, though still substoichiometrically, 0.55 mol of Fe2+ were concomitantly consumed per 1.0 mol nitrite reduction, indicating that Fe0 was the main electron source. In the presence of Fe2+, nitrite reduction out-competed water reduction in terms of contributing to the overall iron corrosion. Results of this study help understand complicated interactions between water reduction and nitrite reduction, the roles of surface-bound Fe2+, and the evolution of the iron corrosion coating.  相似文献   

9.
零价铁与厌氧微生物协同还原地下水中的硝基苯   总被引:1,自引:0,他引:1  
通过间歇式实验,考察了零价铁与厌氧微生物协同还原地下水中硝基苯的效果。实验结果表明,由零价铁腐蚀为厌氧微生物提供H2电子供体还原硝基苯的效果明显优于零价铁和微生物单独作用,硝基苯去除率分别提高21.8%和57.0%。弱酸性条件有利于协同反应进行,当初始pH为5.0和6.0时,4 d后硝基苯去除率比初始pH为7.0时的提高74.4%和35.2%。增加零价铁投加量可提高协同还原的效果,零价铁最佳投加量为250 mg/L。零价铁腐蚀产生的Fe2+无法作为电子供体被微生物利用,但可作为无机营养元素促进协同过程。由于零价铁产H2速率受表面覆盖物影响不明显,在地下水修复过程中可保证协同效果并延长零价铁的使用寿命。  相似文献   

10.
Remediating dicamba-contaminated water with zerovalent iron   总被引:1,自引:0,他引:1  
Dicamba (3,6-dichloro-2-methoxybenzoicacid) is a highly mobile pre- and post-emergence herbicide that has been detected in ground water. We determined the potential of zerovalent iron (Fe0) to remediate water contaminated with dicamba and its common biological degradation product, 3,6-dichlorosalicylic acid (DCSA). Mixing an aqueous solution of 100 microM dicamba with 1.5% Fe0 (w/v) resulted in 80% loss of dicamba within 12 h. Solvent extraction of the Fe0 revealed that dicamba removal was primarily through adsorption; however when the Fe0 was augmented with Al or Fe(III) salts, dicamba was dechlorinated to an unidentified degradation product. In contrast to dicamba, Fe0 treatment of DCSA resulted in removal with some dechlorination observed. When DCSA was treated with Fe0 plus Al or Fe(III) salts, destruction was 100%. Extracts of this Fe0 treatment contained the same HPLC degradation peak observed with the Fe0 + Al or Fe(III) salt treatment of dicamba. Molecular modeling suggests that differences in removal and dechlorination rates between dicamba and DCSA may be related to the type of coordination complex formed on the iron surface. Experiments with 14C-labeled dicamba confirmed that Fe-adsorbed dicamba residues are available for subsequent biological mineralization (11% after 125 d). These results indicate that Fe0 could be potentially used to treat dicamba and DCSA-contaminated water.  相似文献   

11.
Zero-valent iron (ZVI) permeable reactive barriers (PRBs) have become popular for the degradation of chlorinated ethenes (CEs) in groundwater. However, a knowledge gap exists pertaining to the longevity of ZVI. The present investigation addresses this situation by suggesting a numerical simulation model that is intended to be used in conjunction with field or column tests in order to describe long-term ZVI performance at individual sites. As ZVI aging processes are not yet completely understood and are still subject to research, we propose a phenomenological modelling technique instead of a common process-based approach. We describe ZVI aging by parameters that characterise the extent and rate of ZVI reactivity change depending on the propagation of the precipitation front through ZVI. We approximate degradation of CEs by pseudo-first order kinetics accounting for the formation of partially dechlorinated products, and describe ZVI reactivity change by scaling the degradation rate constants. Three independent modelling studies were carried out to test the suitability of the conceptual and numerical model to describe the observations of accelerated column tests. All three tests indicated that ZVI reactivity declined with an increasing number of exchanged pore volumes. Measured and modelled concentrations showed good agreement, thereby proving that resolving spatial as well as temporal changes in ZVI reactivity is reasonable.  相似文献   

12.
Removal of thiobencarb in aqueous solution by zero valent iron   总被引:2,自引:2,他引:0  
A cost-effective method with zero valent iron (ZVI) powder was developed for the purification of thiobencarb (TB)-contaminated water. The removal treatment was performed in the batch system. A sample solution of 10 ml containing 10 microg ml(-1) of TB could be almost completely treated by 100mg of ZVI at 25 degrees C for 12h of treatment time. Since the formation of chloride ion in the aqueous solution during the treatment of TB was observed, the removal of TB with ZVI may contain two processes: reduction (degradation) and adsorption. Because the present treatment for TB is simple, easy handling and cheap, the developed technology with ZVI can contribute to the treatment of agricultural wastewaters.  相似文献   

13.
Ochsenbein U  Zeh M  Berset JD 《Chemosphere》2008,72(6):974-980
Off-line solid phase extraction and direct injection analysis were evaluated for the determination of traces of explosives such as TNT and its mono and diamino metabolites, HMX, RDX, nitroglycerin and PETN in lake water and tributaries applying liquid chromatography-electrospray tandem mass spectrometry. Improved chromatographic separation was achieved on a phenyl based stationary phase with baseline resolution of the mono- and diamino metabolites of TNT. Identification and quantification of the target compounds was performed by multiple reaction monitoring applying electrospray ionization in either the positive mode for the diaminometabolites of TNT or the negative mode for all other compounds. An extensive method validation was performed and limits of quantification were obtained for the explosives in preconcentrated lake water samples from 0.03 to 1 ng l(-1) and 0.1 to 5 ng l(-1) in river water. Direct injection analysis revealed comparable results to preconcentrated water samples for the most persistent explosives. Analysis of lake water samples collected at different depths showed the presence of HMX, RDX and PETN at concentrations from 0.1 to 0.4 ng l(-1). The analysis of main tributaries revealed concentrations from 0.1 to 0.9 ng l(-1) of the same compounds. They seem to be responsible for the contamination of the explosives in the lakes.  相似文献   

14.
Ghauch A  Tuqan A 《Chemosphere》2008,73(5):751-759
Modified zero valent iron (MZVI) was used to study the transformation of a chlorothalonil (CLT) solution and the variation of the observed degradation rate of the reduction reactions. This was carried out when transition metals e.g. Pd, Cu and Co plated on the surface of micrometric iron particles (< 150 microm) were used as reducing catalytic agents for pesticide removal. Reactions were undertaken under both oxic and anoxic conditions in the presence and the absence of a phosphate buffer solution (PBS). Results of batch studies in nitrogen sparged solutions revealed that incomplete slow dechlorination merely occurred with zero valent iron (ZVI), however, complete rapid dechlorination reactions took place with MZVI especially Fe/Pd. Dechlorination was depicted by studying UV absorbance and MS spectra of CLT and all corresponding by-products. Typical blue shifts (deltalambda = 4-6 nm/chlorine atom) were observed at the same time as chlorine cluster isotopes disappeared. After the plating process, metal loading was controlled by analyzing the remaining metal in the solution by atomic absorption spectroscopy. Experiments showed that CLT degradation mechanism is faster in nitrogen sparged solutions in the absence of PBS. Time needed for complete removal of 2.08 +/- 0.19 microM CLT solution was about 2 h when experiments were conducted with ZVI (t1/2 = 15.0 min) and about 10 min when the reaction was carried out under the same conditions with Fe/Pd 1% (t1/2 = 1.0 min). Degradation rates for all bimetallic systems were determined showing that Pd is the more exciting catalytic transition metal followed by Cu and Co. Furthermore, MZVI method showed obvious advantage to traditional CLT treatment methods.  相似文献   

15.
Background, Aim and Scope The polynitramines, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are important military explosives and regulated toxic hazardous compounds. Production, testing and use of the compounds has resulted in numerous acres of contaminated soils and groundwater near many munitions facilities. Economical and efficient methods for treatment of wastewater and cleanup of soils or groundwater containing RDX and HMX are needed. This study focuses on the photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide (nano-TiO2) under simulated sunlight, whose intensity and wavelength are similar to that of the real sunlight in Xi'an at noon. The objective is to determine the potential for RDX destruction with nano-TiO2 in aqueous solution. Materials and Methods: An activated carbon fiber (ACF) cloth-loaded with nano-TiO2 was put into the RDX containing solution, and the concentration of RDX was measured (by HPLC–UV) at regular time intervals under simulated sunlight. Results: The RDX degradation percentage of the photocatalytic process is higher than that of Fenton oxidation before 80 min, equivalent after 80 min, and it reaches 95% or above after 120 min. The nano-TiO2 catalyst can be used repeatedly. Discussion: The photocatalytic degradation kinetics of RDX under simulated sunlight can be described by a first-order reaction kinetics equation. The possible degradation mechanism of RDX was presented and the degradation performance was compared with that of biological method. Conclusions: It was demonstrated that the degradation of RDX wastewater is very effective with nano-TiO2 as the photocatalytic catalyst under simulated sunlight. The efficiency of the nano-TiO2 catalyst for RDX degradation under simulated sunlight is nearly identical to that of Fenton oxidation. Recommendations and Perspectives: To date, a number of catalysts show poor absorption and utilization of sunlight, and still need ultraviolet light irradiation during wastewater degradation. The nano-TiO2 used in the described experiments features very good degradation of RDX under simulated sunlight, and the manufacturing costs are rather low (around 10 Euro/m2). Moreover, the degradation efficiency is higher compared to that of the biological method. This method exhibits great potential for practical applications owing to its easiness and low cost. If it can be applied extensively, the efficiency of wastewater treatment will be enhanced greatly.  相似文献   

16.
Chemical reaction between nitric oxide (NO) andzero valent iron (ZVI) was studied in a packed-bed column process with high temperatures based on ZVI strong reducing abilities. For six controlled temperatures of 523-773 K and 400 ppm of NO (typical flue gas temperature and concentration), under short empty bed contacttime ([EBCT] 0.0226-0.0679 sec), NO was completely removed for temperature of 573-773 K but not for 523 K. Break-through curves were conducted for the five working temperatures, and the results indicated that NO reductions by ZVI were varied from 2 to 26.7 mg NO/g ZVI. Higher temperature and longer EBCT achieved better NO removal efficiency. X-ray diffraction (XRD) and electron spectroscopy for chemical analysis (ESCA) were conducted to analyze the crystal structure and oxidation state of the reacted ZVI. Three layers of iron species were detected by XRD: ZVI, Fe3O4, and Fe2O3. ZVI was the most prevalent species, and Fe3O4 and Fe2O3 were less from the XRD analysis. By ESCA, the oxidation state on the reacted ZVI surface was determined, and the species was identifled as Fe2O3, which is the most oxidizing species for iron. Therefore, three layers from the ZVI core to the ZVI surface can be identified: ZVI, Fe3O4, and Fe2O3. Combining the results from XRD and ESCA, the mechanisms for ZVI and NO can be proposed as two consecutive reactions from lower oxidation state (ZVI) in the core to higher oxidation state on the iron surface (Fe2O3): 3Fe + 4NO<--(high temperature)-->Fe3O4 + 2N2 (A1), 4Fe3O4 + 2NO<--(high temperature)-->6Fe2O3 + N2* (A2) Because there was only <5% ZVI used to remove NO comparing to theoretical ZVI used based on the proposed stoichiometry, it can be concluded that the heterogeneous reaction only occurred on the ZVI surface instead of on bulk of the ZVI.  相似文献   

17.
Incidental exposure to high explosive compounds can cause subtle health effects to which a population could be more susceptible than injury by detonation. Proper source characterization is a key requirement in the conduct of risk assessments. For nonvolatile solid explosives, dissolution is one of the primary mechanisms that controls fate and transport, resulting in exposure to these compounds remote from their source. To date, information describing dissolution rates of high explosives has been sparse. The objective of this study was to determine the dissolution rates of three high explosive compounds, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), in dilute aqueous solutions as a function of temperature, surface area, and energy input. To determine each variable's impact on dissolution rate, experiments were performed where one variable was changed while the other two were held constant. TNT demonstrated the fastest dissolution rate followed by HMX and then RDX. Dissolution rate correlation equations were developed for each explosive compound incorporating the three aforementioned variables, independently, and collectively in one correlation equation.  相似文献   

18.
Calcium carbonate is a secondary mineral precipitate influencing zero valent iron (ZVI) barrier reactivity and hydraulic performance. We conducted column experiments to investigate electrical signatures resulting from concurrent CaCO3 and iron oxides precipitation under simulated field geochemical conditions. We identified CaCO3 as a major mineral phase throughout the columns, with magnetite present primarily close to the influent based on XRD analysis. Electrical measurements revealed decreases in conductivity and polarization of both columns, suggesting that electrically insulating CaCO3 dominates the electrical response despite the presence of electrically conductive iron oxides. SEM/EDX imaging suggests that the electrical signal reflects the geometrical arrangement of the mineral phases. CaCO3 forms insulating films on ZVI/magnetite surfaces, restricting charge transfer between the pore electrolyte and ZVI particles, as well as across interconnected ZVI particles. As surface reactivity also depends on the ability of the surface to engage in redox reactions via charge transfer, electrical measurements may provide a minimally invasive technology for monitoring reactivity loss due to CaCO3 precipitation. Comparison between laboratory and field data shows consistent changes in electrical signatures due to iron corrosion and secondary mineral precipitation.  相似文献   

19.
Degradation of atrazine by catalytic ozonation in the presence of iron scraps (ZVI/O3) was carried out. The key operational parameters (i.e., initial pH, ZVI dosage, and ozone dosage) were optimized by the batch experiments, respectively. This ZVI/O3 system exhibited much higher degradation efficiency of atrazine than the single ozonation, ZVI, and traditional ZVI/O2 systems. The result shows that the pseudo-first-order constant (0.0927?min?1) and TOC removal rate (86.6%) obtained by the ZVI/O3 process were much higher than those of the three control experiments. In addition, X-ray diffraction (XRD) analysis indicates that slight of γ-FeOOH and Fe2O3 were formed on the surface of iron scrap after ZVI/O3 treatment. These corrosion products exhibit high catalytic ability for ozone decomposition, which could generate more hydroxyl radical (HO?) to degrade atrazine. Six transformation intermediates were identified by liquid chromatography-mass spectrometry (LC-MS) analysis in ZVI/O3 system, and the degradation pathway of atrazine was proposed. Toxicity tests based on the inhibition of the luminescence emitted by Photobacterium phosphoreum and Vibrio fischeri indicate the detoxification of atrazine by ZVI/O3 system. Finally, reused experiments indicate the approving recyclability of iron scraps. Consequently, the ZVI/O3 system could be as an effective and promising technology for pesticide wastewater treatment.  相似文献   

20.
Composition B (Comp B) is a commonly used military formulation composed of the toxic explosive compounds 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Numerous studies of the temporal fate of explosive compounds in soils, surface water and laboratory batch reactors have been conducted. However, most of these investigations relied on the application of explosive compounds to the media via aqueous addition and thus these studies do not provide information on the real world loading of explosive residues during detonation events. To address this we investigated the dissolution and sorption of TNT and RDX from Comp B residues loaded to pure mineral phases through controlled detonation. Mineral phases included nontronite, vermiculite, biotite and Ottawa sand (quartz with minor calcite). High Performance Liquid Chromatography and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy were used to investigate the dissolution and sorption of TNT and RDX residues loaded onto the mineral surfaces. Detonation resulted in heterogeneous loading of TNT and RDX onto the mineral surfaces. Explosive compound residues dissolved rapidly (within 9 h) in all samples but maximum concentrations for TNT and RDX were not consistent over time due to precipitation from solution, sorption onto mineral surfaces, and/or chemical reactions between explosive compounds and mineral surfaces. We provide a conceptual model of the physical and chemical processes governing the fate of explosive compound residues in soil minerals controlled by sorption-desorption processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号