首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 410 毫秒
1.
We compared the composition of diatom assemblages collected from New Jersey Pinelands blackwater streams draining four different land uses, including forest land, abandoned-cranberry bogs, active-cranberry bogs, and developed and upland-agricultural land. Over a 2-year period (2002-2003), we collected 132 diatom taxa at 14 stream sites. Between-year variability in the composition of stream samples was high. Most diatom species were rarely encountered and were found in low abundance. Specific conductance and pH were higher at developed/agricultural sites compared with all other site types. Neither species richness nor genus richness was significantly different between stream types. However, clear community patterns were evident, and a significant difference in species composition existed between the developed/agricultural sites and both cranberry and forest sites. The primary community gradient, represented by the first axis of a DCA ordination, was associated with variations in pH and specific conductance. Although community patterns revealed by ordinating the data collected in 2002 differed from those obtained using the 2003 data, both ordinations contrasted the developed/agricultural sites and the other sites. Acidobiontic and acidophilous diatoms characterized the dominant species at forest, abandoned-bog, and cranberry sites, whereas indifferent species dominated the developed/agricultural samples. Although our study demonstrated a relationship between the composition of diatom assemblages and watershed conditions, several factors, including taxonomic problems, the large number of diatom species, incomplete pH classifications, and year-to-year variability may limit the utility of diatom species as indicators of watershed conditions in the New Jersey Pinelands.  相似文献   

2.
Abstract: We describe relationships between pH, specific conductance, calcium, magnesium, chloride, sulfate, nitrogen, and phosphorus and land‐use patterns in the Mullica River basin, a major New Jersey Pinelands watershed, and determine the thresholds at which significant changes in water quality occur. Nonpoint sources are the main contributors of pollutants to surface waters in the basin. Using multiple regression and water‐quality data for 25 stream sites, we determine the percentage of variation in the water‐quality data explained by urban land and upland agriculture and evaluate whether the proximity of these land uses influences water‐quality/land‐use relationships. We use a second, independently collected water‐quality dataset to validate the statistical models. The multiple‐regression results indicate that water‐quality degradation in the study area is associated with basin‐wide upland land uses, which are generally good predictors of water‐quality conditions, and that both urban land and upland agriculture must be included in models to more fully describe the relationship between watershed disturbance and water quality. Including the proximity of land uses did not improve the relationship between land use and water quality. Ten‐percent altered‐land cover in a basin represents the threshold at which a significant deviation from reference‐site water‐quality conditions occurs in the Mullica River basin.  相似文献   

3.
ABSTRACT. Characterizing ecological indicators such as water quality is necessary to effectively manage human-dominated systems such as the New Jersey Pinelands. Pinelands surface waters are naturally acidic and low in nutrients and other dissolved substances. Water quality for 14 Pinelands stream sites monitored by the U.S. Geological Survey was characterized in relation to land use. A gradient of increasing pH, specific conductance, and concentration of dissolved calcium, dissolved magnesium, total nitrite + nitrate-nitrogen, total ammonia-nitrogen, and total phosphorus was associated with a watershed disturbance gradient of increasing land use intensity and waste water flow. These two parallel gradients emphasized the significant effect that watershed disturbance can have on natural water chemistry in the Pinelands. The results of this study can be applied to planning and regulatory programs in the Pinelands.  相似文献   

4.
In all, 13 stream water-quality parameters, including specific conductance (SC), pH, dissolved oxygen (DO), dissolved organic carbon (DOC), three nutrients, and six major ions were compared between the northern bedrock and southern coastal plain regions of New Jersey, USA and related to watershed-disturbance gradients characterized by the percentage of urban land, impervious surface (IS), agriculture, and altered land (sum of urban land and agriculture) in the watersheds. SC, DO, calcium, magnesium, sodium, and chloride concentrations were greater in the north. DOC was higher and pH was lower in the south. Nutrient, potassium, and sulfate concentrations did not differ between regions. Regional water-quality differences are attributed to geologic setting and land use. Except for DO in southern streams, all water-quality parameters were related to urban land, agriculture, or both. Significant correlations between urban land and IS and water-quality variables were similar in both regions with differences in unitless correlation coefficients ranging from 0.00 to 0.06. Compared to urban land and agriculture, relationships between most water-quality variables and altered land were stronger in the south. The extent of urban and agricultural lands in the watersheds did not differ by region. Altered land was correlated with urban land in both regions and with agriculture only in the south. Although focused on New Jersey, this study has broader implications for watershed planning.  相似文献   

5.
In 1979, the Pinelands Commission was established as a regional land-use planning and regulatory agency charged with the implementation of a Comprehensive Management Plan (CMP) for the Pinelands National Reserve (New Jersey, USA). The CMP was created to balance land preservation and development interests in the Reserve. Because water-quality degradation from developed and agricultural landscapes is associated with changes in the composition of biological communities, monitoring landscape changes provides one of the most direct measures of the impact of land-use policies on the Pinelands ecosystem. In this study, we prepared detailed, land-cover maps within randomly selected aerial-photograph plots for a major watershed in the Reserve. We used these land-cover maps to quantify changes in landscape composition and structure (i.e., patch size, patch area, and number of patches) and characterize land-cover transitions in the basin between 1979 and 1991. Because the study period represented the first 12 years of the regional-planning effort in the Reserve, we evaluated the relationship between land-cover transitions and Commission management-area designations which permit different land-use intensities. Although the landscape composition was similar in 1979 and 1991, we found an increase in the total area and number of developed-land, managed-grassland, and barren-land patches. An increase in the number of patches and a decrease in the total area and median and third-quartile patch sizes for forest land and for all patches regardless of cover type indicated that fragmentation of forest land and the landscape as a whole occurred during the study period. The major land-cover transitions that occurred during the period were the loss of forest land to development and associated cover types and the conversion of one agricultural type to another. Overall, land-cover transitions during the period were found to be consistent with the Commission management-area designations, which indicated that the regional-planning effort has been successful in directing human activities to appropriate areas of the basin.  相似文献   

6.
Headwater Influences on Downstream Water Quality   总被引:2,自引:0,他引:2  
We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality.  相似文献   

7.
We describe the development of a bird integrity index (BII) that uses bird assemblage information to assess human impacts on 13 stream reaches in the Willamette Valley, Oregon, USA. We used bird survey data to test 62 candidate metrics representing aspects of bird taxonomic richness, tolerance or intolerance to human disturbance, dietary preferences, foraging techniques, and nesting strategies that were affected positively or negatively by human activities. We evaluated the metric responsiveness by plotting each one against a measure of site disturbance that included aspects of land use/land cover, road density, riparian cover, and stream channel and substrate conditions. In addition, we eliminated imprecise and highly correlated (redundant) metrics, leaving 13 metrics for the final index. Individual metric scores ranged continuously from 0 to 10, and index scores were weighted to range from 0 to 100. Scores were calibrated using historical species information to set expectations for the number of species expected under minimally disturbed conditions. Site scores varied from 82 for the least disturbed stream reach to 8.5 for an urban site. We compared the bird integrity index site scores with the performance of other measures of biotic response developed during this study: a fish index of biointegrity (IBI) and two benthic macroinvertebrate metrics. The three assemblages agreed on the general level of disturbance; however, individual sites scored differently depending on specific indicator response to in-stream or riparian conditions. The bird integrity index appears to be a useful management and monitoring tool for assessing riparian integrity and communicating the results to the public. Used together with aquatic indicator response and watershed data, bird assemblage information contributes to a more complete picture of stream condition.  相似文献   

8.
ABSTRACT: An established trend analysis methodology was applied to the problem of identifying and quantifying stream base flow impacts from water withdrawals and water loss through interbasin transfers. Impacts were simulated using base flow values selected from two U.S. Geological Survey (USGS) continuous record streamflow sites located within the Pinelands of southern New Jersey. Study site base flows were regressed against index site base flows with monotonic and step trend tests applied to the residuals from the regression model. The smallest, significantly detectable (α= 0.10) percentage reduction within a given simulation was used as an estimate of the sensitivity of a trend test. Evaluation of the trend analysis methodology led to the following practical considerations regarding trend test sensitivity. The proportion of study site base flow variability explained by index site base flows should be maximized, while at the same time minimizing positive, first-order autocorrelation in the regression residuals. Given the importance of detecting autocorrelation, missing values should be avoided or minimized. The quarterly (three-month) interval reduced the magnitude of autocorrelation relative to a shorter two-month sampling interval. Sensitivity appeared to improve when equalizing the number of values before and after a base flow impact(s) while seasonally biased sampling appeared to reduce sensitivity. Based primarily on past trend detection studies, nonparametric tests were deemed a better choice over their parametric counterparts, due to the lack of stringent data distributional requirements coupled with little or no loss of power even when applied to normally distributed data.  相似文献   

9.
Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base‐flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite‐nitrate (NO2‐NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2‐NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed‐use and heavily impacted watersheds.  相似文献   

10.
Management of agricultural nonpoint-source pollution continues to be a challenge because of spatial and temporal variability. Using stream order as an index, we explored the distribution of nitrate concentration and load along the stream network of a large agricultural watershed in Pennsylvania-the East Mahantango Creek Watershed and two of its sub-watersheds. To understand nitrate concentration variation in the stream water contributed from ground water, this study focused on baseflow. Impacts of agricultural land use area on baseflow nitrate in the stream network were investigated. Nitrate concentration showed a general decreasing trend with increasing stream order based on stream order averaged values; however, considerable spatial and temporal variability existed within each snapshot sampling. Nitrate loads increased with stream order in a power function because of the dominant effect of stream flow rate over the nitrate concentration. Within delineated sub-watersheds based on stream orders, positive linear functions were found between agricultural land use area percentage and the baseflow nitrate concentration and between agricultural drainage area and the nitrate load. The slope of the positive linear regression between the baseflow nitrate concentration and percent agricultural land area seems to be a valuable indicator of a watershed's water quality as influenced by agricultural practices, watershed size, and specific physiographic setting. Stream order seems to integrate, to a certain degree, the source and transport aspects of nonpoint-source pollution on a yearly averaged basis and thus might provide a quick estimate of the overall trend in baseflow nitrate concentration and load distribution along complex stream networks in agricultural watersheds.  相似文献   

11.
ABSTRACT: A renewed emphasis on source water protection and watershed management has resulted from recent amendments and initiatives under the Safe Drinking Water Act and the Clean Water Act. Knowledge of the impact of land use choices on source water quality is critical for efforts to properly manage activities within a watershed. This study evaluated qualitative relationships between land use and source water quality and the quantitative impact of season and rainfall events on water quality parameters. High levels of specific conductance tended to be associated with dense residential development, while organic carbon was elevated at several forested sites. Turbidity was generally higher in more urbanized areas. Source tracking indicators were detected in samples where land use types would predict their presence. Coliform levels were statistically different at the 95 percent confidence levels for winter versus summer conditions and dry versus wet weather conditions. Other water quality parameters that varied with season were organic carbon, turbidity, dissolved oxygen, and specific conductance. These results indicate that land use management can be effective for mitigating impacts to a water body; however, year‐ round, comprehensive data are necessary to thoroughly evaluate the water quality at a particular site.  相似文献   

12.
Nine sites on streams in the Platte River Basin in central Nebraska were sampled as part of the US Geological Survey's National Water-Quality Assessment Program during 1993–1994. A combination of canonical correspondence analysis and an index of biotic integrity determined from fish community data produced complementary evaluations of water-quality conditions. Results of the canonical correspondence analysis were useful in showing which environmental variables were significant in differentiating fish communities at the nine sites. Five environmental variables were statistically significant in the analysis. Median specific conductance of water samples collected at a site accounted for the largest amount of variability in the species data. Although the percentage of the basin as cropland was not the first variable chosen in a forward selection process, it was the most strongly correlated with the first ordination axis. A rangeland-dominated site was distinguished from all others along that axis. Median orthophosphate concentration of samples collected in the year up to the time of fish sampling was most strongly correlated with the second ordination axis. The index of biotic integrity produced results that could be interpreted in terms of the relative water quality between sites. Sites draining nearly 100% cropland had the lowest scores for two individual metrics of the index of biotic integrity that were related to species tolerance. Effective monitoring of water quality could be achieved by coupling methods that address both the ecological components of fish communities and their statistical relationships to environmental factors.  相似文献   

13.
ABSTRACT: The ability of regulators, resource managers, and consultants to assess accurately wetland hydrology is crucial when identifying and delineating wetlands. In this study, simple linear regression and long‐term (ten year) New Jersey Pinelands stream gaging and pitch pine lowland water‐level data sets were used to estimate long‐term hydroperiods at lowland test sites with short‐term (two year) records. Separate regression equations were developed for each test site using reference site data and stream gaging data, and two sets of equations for selected test sites were produced using two different short‐term periods of record. Test sites had long‐term records ranging from four to ten years, allowing validation of the regression models. Measured and predicted test site growing season water levels were similar regardless of which short‐term period of record was used. The results based on the stream gaging site data were similar, although the difference between measured and estimated growing season water levels was greater when this approach was used. Excellent agreement was found between measured and estimated frequencies of near‐surface saturation at test sites for each growing season month, and these relationships improved when cumulative, seasonal frequencies were considered. The reference wetland approach used in this study may have its greatest value in regions with both high development pressures and problem wetlands and may provide an effective way of resolving costly wetland delineation disputes.  相似文献   

14.
Procopio, Nicholas A., 2010. Hydrologic and Morphologic Variability of Streams With Different Cranberry Agriculture Histories, Southern New Jersey, United States. Journal of the American Water Resources Association (JAWRA) 46(3):527-540. DOI: 10.1111/j.1752-1688.2010.00432.x Abstract: The creation of reservoirs and the modification of stream channels are common practices used to facilitate the efficient production of cranberries. The potential impacts to hydrologic and geomorphic aspects of streamflow and channel structure have not been adequately assessed. In this study, the streamflow regime of 12 streams and the channel morphologies of 11 streams were compared for study sites in the Pinelands region of New Jersey with upstream active-cranberry bogs, upstream abandoned-cranberry bogs, and basins with no apparent agricultural history. Flow regime metrics included measures of low-flow, median-flow, and bankfull discharge, two measures of streamflow variability (spread and a modified Richards-Baker Flashiness index), and the frequency of overbank flooding. Stream-channel morphology metrics included average bank slope, average bankfull width, average bankfull depth, average bankfull width-to-depth ratio, and average bankfull area. No significant differences between stream types were apparent for any of the metrics. Basin-area normalized streamflow values of all 12 study sites were highly correlated to each other. Significant relationships existed between some of the flow-regime and channel-morphology metrics. Due to the lack of significant differences between stream types, it appears that neither historic nor current cranberry agricultural practices considerably influence flow regimes or the channel morphology of streams in the New Jersey Pinelands.  相似文献   

15.
/ Fish and macroinvertebrate assemblage composition, instream habitat features and surrounding land use were assessed in an agriculturally developed watershed to relate overall biotic condition to patterns of land use and channel structure. Six 100-m reaches were sampled on each of three first-order warm-water tributaries of the River Raisin in southeastern Michigan. Comparisons among sites and tributaries showed considerable variability in fish assemblages measured with the index of biotic integrity, macroinvertebrate assemblages characterized with several diversity indexes, and both quantitative and qualitative measurements of instream habitat structure. Land use immediate to the tributaries predicted biotic condition better than regional land use, but was less important than local habitat variables in explaining the variability observed in fish and macroinvertebrate assemblages. Fish and macroinvertebrates appeared to respond differently to landscape configuration and habitat variables as well. Fish showed a stronger relationship to flow variability and immediate land use, while macroinvertebrates correlated most strongly with dominant substrate. Although significant, the relationships between instream habitat variables and immediate land use explained only a modest amount of the variability observed. A prior study of this watershed ascribed greater predictive power to land use. In comparison to our study design, this study covered a larger area, providing greater contrast among subcatchments. Differences in outcomes suggests that the scale of investigation influences the strength of predictive variables. Thus, we concluded that the importance of local habitat conditions is best revealed by comparisons at the within-subcatchment scale. KEY WORDS: Stream; Biomonitoring; Land use; Scale; Habitat; Fish; Macroinvertebrates  相似文献   

16.
17.
Elevated levels of P in urban streams can pose significant water quality problems. Sources of P in urban streams, however, are difficult to identify. It is important to recognize both natural and anthropogenic sources of P. We investigated near-stream chemistry and land use factors on stream water P in the urbanizing Johnson Creek watershed in Portland, OR, USA. We sampled stream water and shallow groundwater soluble reactive P (SRP) and total P (TP) and estimated P flux at 13 sites along the main stem of Johnson Creek, with eight sites in urban land use areas and five sites in nonurban land use areas. At each site, we sampled the A and B horizons, measuring soil pH, water-soluble P, acid-soluble P, base-soluble P, total P, Fe, and Al. We found continuous input of P to the stream water via shallow groundwater throughout the Johnson Creek watershed. The shallow groundwater P concentrations were correlated with stream water P within the nonurban area; however, this correlation was not found in the urban area, suggesting that other factors in the urban area masked the relationship between groundwater P and stream water P. Aluminum and Fe concentrations were inversely correlated with shallow groundwater P, suggesting that greater P adsorption to Al and Fe oxides in the nonurban area reduced availability of shallow groundwater P. Using stepwise multiple regression analysis, however, we concluded that while riparian soil chemistry was related to stream water P, land use patterns had a more significant relationship with stream water P concentrations in this urbanizing system.  相似文献   

18.
ABSTRACT: We compared watershed land‐use and fish community data between the 1970s and 1990s in 47 small streams in southeastern Wisconsin. Our goal was to quantify effects of increasing urbanization on stream fishes in what had been a predominantly agricultural region. In the 43 test watersheds, mean surface coverage by agricultural lands decreased from 54 percent to 43 percent and urban lands increased from 24 percent to 31 percent between 1970 and 1990. Agriculture dominated the four reference watersheds, but neither agriculture (65–59 percent) nor urban (4.4–4.8 percent) land‐uses changed significantly in those watersheds during the study period. From the 1970s to the 1990s the mean number of fish species for the test stream sites decreased 15 percent, fish density decreased 41 percent, and the index of biotic integrity (IBI) score dropped 32 percent. Fish community attributes at the four reference sites did not change significantly during the same period, although density was substantially lower in the 1990s. For both the 1970s and 1990s test sites, numbers of fish species and IBI scores were positively correlated with watershed percent agricultural land coverage and negatively correlated with watershed urban land uses, as indexed by percent effective connected imperviousness. Numbers of fish species per site and IBI scores were highly variable below 10 percent imperviousness, but consistently low above 10 percent. Sites that had less than 10 percent imperviousness and fewer than 10 fish species in the 1970s suffered the greatest relative increase in imperviousness and decline in species number over the study period. Our findings are consistent with previous studies that have found strong negative effects of urban land uses on stream ecosystems and a threshold of environmental damage at about 10 percent imperviousness. We conclude that although agricultural land uses often degrade stream fish communities, agricultural land impacts are generally less severe than those from urbanization on a per‐unit‐area basis.  相似文献   

19.
In mountainous landscapes with high climatic and geomorphic variability, how do rural land uses and exurbanization alter hydrology and water quality? We evaluated effects of rural land use and exurbanization on streamflows, suspended sediment concentrations and loads, specific conductance, and summer water temperatures in 12 streams and rivers within the Upper Little Tennessee River basin in the southern Appalachian Mountains. Eleven streams featured low levels of development (>61% forest cover) but differed in land use patterning, basin size, annual precipitation, and watershed morphology. One urban stream, located within the largest town in the basin, provided the high development comparative endpoint. Even low levels of rural development and exurbanization were associated with substantial increases in suspended sediment concentrations, sediment loads, and summer stream temperature daily maxima and diurnal variation. Observed summer temperature increases were much larger than would be expected due to global climate change over the next century. Specific conductance was idiosyncratic among the smaller streams. These water quality changes were not accompanied by streamflow changes that were discernible amid the high natural variation in precipitation and geomorphology. The water quality findings suggest the need for applying the best management practices, including riparian buffers, to even low levels of rural development.  相似文献   

20.
Benthic macroinvertebrate communities in streams adjacent to cornfields, streams where cows had unrestricted access, and reference locations without agriculture were compared to examine the effects of local land use and land use/land cover in the watershed. At each local site, macroinvertebrates and a variety of habitat parameters were measured upstream, adjacent, downstream, and farther downstream of the local land use. A geographic information system (GIS) was used to calculate drainage basin area, land use/land cover percentages in each basin, and the distance from sample sites to the stream source. Three‐way analysis of covariance (ANCOVA) tests with date, site type, and sampling location as main effects were used to explore differences in macroinvertebrate metrics using median substrate size, percent hay/pasture area, and stream depth as covariates. The covariates significantly improved model fit and showed that multiple contributing factors influence community composition. Local impacts were greatest at sites where cows had access, probably because of sedimentation and embeddedness in the substrate. Differences between the upstream and the adjacent and downstream locations were not as great as expected, perhaps because upstream recolonization was reduced by agricultural impacts or because of differences in the intensity or proximity of agriculture to riparian areas in the watershed. The results underscore the importance of both local and watershed factors in controlling stream community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号