首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
The years 2012 and beyond seem likely to record major changes in energy use and power generation. The Japanese tsunami has resulted in large countries either scaling back or abolishing the future use of nuclear energy. The discovery of what seems like vast amounts of economically deliverable natural gas has many forecasting a rapid switch from coal- to gas-fired generating plants. On the other hand, environmentalists have strong objections to the production of natural gas and of petroleum by hydraulic fracturing from shale, or by extraction of heavy oil. They believe that global warming from the use of fossil fuels is now established beyond question. There has been rapid progress in the development of alternative energy supplies, particularly from on-shore and off-shore wind. Progress toward a viable future energy mix has been slowed by a U.S. energy policy that seems to many to be driven by politics. The author will review the history of power and energy to put all of the above in context and will look at possible future developments. He will propose what he believes to be an idealized energy policy that could result in an optimum system that would be arrived at democratically.

Implications The combustion energy sector is believed to be a dominant component of environmental pollution. A multitude of technologies support this sector and many have the potential to replace elements of this sector with low-polluting processes. This review covers a selection of energy production technologies that are important for the future. A historical perspective is provided to advance the general knowledge about these technologies as options for the world's increasing demand for energy. In addition, a decarbonization policy option for an energy fee is proposed as an alternative to carbon taxation or cap-and-trade approaches.  相似文献   

2.
Owing to their relative underdevelopment, the 'cohesion' countries of the European Union have been allowed to increase emissions above the 1990 base within the EU 'envelope'. However, they face daunting challenges in meeting the agreed targets, because it requires breaking the link between rising gross domestic product and rising energy consumption at a relatively early stage in the economic development cycle. This paper examines the extreme case of Ireland, which is experiencing the most rapid growth in the EU. It shows that Ireland has already reached its emissions ceiling. The best opportunities for reducing emissions lie in energy supply, industry, and the household sector. A mix of policy instruments is required. Emissions trading seems to be the most effective policy instrument for reducing greenhouse gas emissions from energy supply and large industry. Such a policy would provide a stimulus for continuous improvement, without which Ireland's limit will be breached.  相似文献   

3.
The subject of energy choices and public policy is one that has interested me at a professional level. The outlook for energy supply for Americans is uncertain. Will the OPEC crank the per barrel price of world oil up again this fall by three or four dollars? We don’t know. Will the cost of finding and developing new domestic oil reserves continue to rise, and will the domestic production continue to fall as it has been doing since 1970? We don’t know. Would regulating the price of old oil and natural gas entering into interstate commerce bring forth significantly increased supplies? We don’t know. The chances for reducing oil consumption—or at least checking the rate of increase—are equally uncertain. Will still higher prices, brought on by whatever means, cause people and industries to use less oil? We don’t know. Will demand shift away from oil and natural gas to cheaper, more plentiful energy sources? We don’t know. Will penalties, taxes, or exhortations get the motor vehicle industry to produce more gasoline efficient cars and trucks? We don’t know. We may not even get a chance to try. Will new, less energy intensive lifestyles take over? We don’t know.  相似文献   

4.
The energy supply infrastructure in the United States has been changing dramatically over the past decade. Increased production of oil and natural gas, particularly from shale resources using horizontal drilling and hydraulic fracturing, made the United States the world’s largest producer of oil and natural gas in 2014. This review examines air quality impacts, specifically, changes in greenhouse gas, criteria air pollutant, and air toxics emissions from oil and gas production activities that are a result of these changes in energy supplies and use. National emission inventories indicate that volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from oil and gas supply chains in the United States have been increasing significantly, whereas emission inventories for greenhouse gases have seen slight declines over the past decade. These emission inventories are based on counts of equipment and operational activities (activity factors), multiplied by average emission factors, and therefore are subject to uncertainties in these factors. Although uncertainties associated with activity data and missing emission source types can be significant, multiple recent measurement studies indicate that the greatest uncertainties are associated with emission factors. In many source categories, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. When super-emitters are accounted for, multiple measurement approaches, at multiple scales, produce similar results for estimated emissions. Challenges moving forward include identifying super-emitters and reducing their emission magnitudes. Work done to date suggests that both equipment malfunction and operational practices can be important. Finally, although most of this review focuses on emissions from energy supply infrastructures, the regional air quality implications of some coupled energy production and use scenarios are examined. These case studies suggest that both energy production and use should be considered in assessing air quality implications of changes in energy infrastructures, and that impacts are likely to vary among regions.

Implications: The energy supply infrastructure in the United States has been changing dramatically over the past decade, leading to changes in emissions from oil and natural gas supply chain sources. In many source categories along these supply chains, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. Effective emission reductions will require technologies for both identifying super-emitters and reducing their emission magnitudes.  相似文献   


5.
The power industry in the United States has entered a transitory period of major changes. Until a more definitive pattern emerges the image of the future of the industry and of the levels of air pollution generated by the industry will remain far from clear. Computer simulations based on the best currently available consensus can reveal patterns of possible future alternatives. Here three scenarios, discussed in detail, demonstrate that the actual course of the industry will depend to a high degree on our choices. Self sufficiency, a highly desirable goal for U. S. energy can be achieved sometime during the 1980’s, but not without massive increases in the use of coal and nuclear power. Absolute shares of these two principal sources will be determined by the relative success of emerging technologies.  相似文献   

6.
Energy consumption throughout the world contributes to pollution, environmental deterioration, and greenhouse gas emissions. Increases in energy consumption are usually driven by population growth and economic development that tends to increase energy use per capita. Thus, the projected increase in population in the near future, and the economic development that is likely in many countries, have serious implications for the environment. Since the early 1980s the relationship between energy use and environmental impact has received attention, and a number of activities have focused on this topic. In this paper, four important areas related to current and future patterns of environmental impact are introduced and discussed in detail: environmental impact, energy consumption, energy efficiency and conservation, and fuel substitution. We conclude that further political, economic and institutional changes from the standpoint of environmental impact appear to be necessary for future energy policies. To this end, energy efficiency improvements and renewable energy resources can play important roles in controlling and reducing environmental impact.  相似文献   

7.
Moomaw WR 《Ambio》2002,31(2):184-189
Nitrogen oxides are released during atmospheric combustion of fossil fuels and biomass, and during the production of certain chemicals and products. They can react with natural or man-made volatile organic compounds to produce smog, or else can be further oxidized to produce particulate haze, or acid rain that can eutrophy land and water. The reactive nitrogen that begins in the energy sector thus cascades through the atmosphere, the hydrosphere and soils before being eventually partially denitrifed to the global warming and stratospheric ozone-depleting gas nitrous oxide or molecular nitrogen. This paper will suggest how an economic analysis of the nitrogen cycle can identify the most cost-effective places to intervene. Nitrogen oxides released during fossil-fuel combustion in vehicles, power plants and heating boilers can either be controlled by add-on emission control technology, or can be eliminated by many of the same technical options that lead to carbon dioxide reduction. These integrated strategies also address sustainability, economic development and national security issues. Similarly in industrial production, it is more effective to focus on redesigning industrial processes rather than on nitrogen oxide pollution elimination from the current system. This paper will suggest which strategies might be utilized to address multiple benefits rather than focusing on single pollutants.  相似文献   

8.
The number of gas turbine- (GT-) based power plants is rapidly increasing to meet the world’s power demands. Until a few years ago, fossil fuel, and specifically fuel oil, was considered the major energy source for gas turbine operation. Due to the high amount of pollution that fuel oil generates, natural gas has become a popular source of energy due to its lower emissions compared to fuel oil. As a result, many GTs have switched to natural gas as an alternative to fuel oil. However, pollutants expelled from GT-based power plants operating on natural gas impact surrounding air quality. The objective of this study was to examine the dispersion of nitrogen oxides (NOx) emitted from a GT-based power plant located in the Sultanate of Oman. Supported by CALPUFF dispersion modeling software, six scenarios were investigated in this study. The first four scenarios considered a case where the GT-based power plant was operating on natural gas during winter and summer and for open and combined cycle modes. The remaining two scenarios considered, for both open and combined cycle modes, the case where the GT-based power plant was operating on fuel oil. Whether run by natural gas or fuel oil, CALPUFF simulation results for both seasons showed that NOx concentrations were higher when GTs were used in the combined cycle mode. The concentrations were still lower than the allowable concentrations set by the United States Environmental Protection Agency (U.S. EPA) standards. In contrast, for the case where the power plant operated on fuel oil, the NOx one-hour average simulated results exceeded the allowable limits only when the combined cycle mode was activated.  相似文献   

9.
To preserve and improve environmental quality in a prosperous industrialized nation like the United States, we must use efficient control technology to reduce the pollution which would otherwise accompany our growth. The need for control is especially great in our use of energy. In the near term our country must depend increasingly on coal to meet our energy needs. In his 1977 energy message President Carter declared that it would be this Administration’s policy to require the use of best available control technology for all new coal burning plants. EPA is implementing this policy by adopting a rule that will require such controls on new coal-fired power plants.  相似文献   

10.
Today’s heavy-duty natural gas–fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas–fueled vehicles has been identified as a concern. Since today’s heavy-duty natural gas–fueled fleet penetration is low, today’s total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas–fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These “pump-to-wheels”(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions.

Implications: Newly collected pump-to-wheels methane emissions data for current natural gas technologies were combined with future market growth scenarios, estimated technology advancements, and best practices to examine the climate benefit of future fuel switching. The analysis indicates the necessary targets of efficiency, methane emissions, market penetration, and best practices necessary to enable a pathway for natural gas to reduce the carbon intensity of the heavy-duty transportation sector.  相似文献   


11.
The air quality of an urban area depends to a great extent upon the quantity and type of fuel consumed. Thus, a marked change in energy demand from 1960 to 2000 A.D. will affect the air quality of all of our urban centers. Interwoven with this potential effect is the anticipated influence of the change in type and quality of fuels, e.g., nuclear fuels, high sulfur coals, and a major modification in energy derived motive power, i.e., fuel cells, and the subsequent depletion of natural gas as an energy raw material. The current trend is to greater urban population densities, and it is estimated that by the year 2000 A.D., 85 percent of America’s population will live on only 10 percent of the land mass. To assess the potential impact of the energy demands for the next half century on air quality, particularly of America’s urban centers, a review of current practices of combustion of coal, petroleum, and natural gas, and the potential effect on community air quality will be developed. To meet the impact of the interrelated changing patterns of population growth, urban developments, energy requirements and available sources, research needs on both a short and long term basis will be explored.  相似文献   

12.
Islas J  Manzini F  Martínez M 《Ambio》2002,31(1):35-39
This study presents 4 scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the historic path of Mexico's energy policy. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-1990s as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The fourth scenario takes into account the present- and medium-term use of natural-gas technologies that the energy reform has produced, but after 2007 a high and feasible participation of renewable sources of energy is considered. The 4 scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG).  相似文献   

13.
Azad AK  Nashreen SW  Sultana J 《Ambio》2006,35(2):86-88
Carbon dioxide (CO2) is one of the most important gases in the atmosphere, and is necessary for sustaining life on Earth. It is also considered to be a major greenhouse gas contributing to global warming and climate change. In this article, energy consumption in Bangladesh is analyzed and estimates are made of CO2 emission from combustion of fossil fuel (coal, gas, petroleum products) for the period 1977 to 1995. International Panel for Climate Change guidelines for national greenhouse gas inventories were used in estimating CO2 emission. An analysis of energy data shows that the consumption of fossil fuels in Bangladesh is growing by more than 5% per year. The proportion of natural gas in total energy consumption is increasing, while that of petroleum products and coal is decreasing. The estimated total CO2 release from all primary fossil fuels used in Bangladesh amounted to 5072 Gigagram (Gg) in 1977, and 14 423 Gg in 1995. The total amounts of CO2 released from petroleum products, natural gas, and coal in the period 1977-1995 were 83 026 Gg (50% of CO2 emission), 72 541 Gg (44% of CO2 emission), and 9545 Gg (6% CO2 emission), respectively. A trend in CO2 emission with projections to 2070 is generated. In 2070, total estimated CO2 emission will be 293 260 Gg with a current growth rate of 6.34% y . CO2 emission from fossil fuels is increasing. Petroleum products contribute the majority of CO2 emission load, and although the use of natural gas is increasing rapidly, its contribution to CO2 emission is less than that of petroleum products. The use of coal as well as CO2 emission from coal is expected to gradually decrease.  相似文献   

14.
Bradley MJ  Jones BM 《Ambio》2002,31(2):141-149
Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.  相似文献   

15.
The body of information presented in this paper is directed to those individuals who require information on the present natural gas supply and demand relationship and the prospects for future changes, including individuals concerned with air quality control and the use of natural gas for combating air pollution.

If natural gas could continue to capture large shares of the energy market, as in the past when supply was not a growth inhibiting factor, annual demand for gas is projected to increase to 34.5 and 46.4 trillion cubic feet in 1980 and 1990, respectively. Annual production levels which could be supported by presently proven reserves and anticipated future reserve additions are estimated to peak in the mid-1970’s and decline to about 18 trillion cubic feet in 1990.

When viewed from the perspective of anticipated indigenous supply deficiencies, the acquisition of supplemental sources of gas becomes of paramount importance. Pipeline imports, the only substantive supplemental source presently available, could almost double by 1980 and be about 2 trillion cubic feet annually in 1990.

Available volumes of gas from Alaska could be 0.7 trillion cubic feet in 1980 and could increase to 2.3 trillion cubic feet annually by 1990. Actual initial deliveries of gas are inextricably related to construction of an oil pipeline from Prudhoe Bay. Construction delays postpone initial delivery dates for gas as well as oil.

Advancements in cryogenic transportation and storage technologies have made the heretofore largely untapped supplies of gas from several countries with limited internal markets available to the United States as LNG. Annual LNG imports could be about 0.3 trillion cubic feet in 1975 and perhaps 2 and 4 trillion cubic feet by 1980 and 1990, respectively.

Pipeline quality gas from coal presents the prospect for a supplemental source of gaseous fuel independent of foreign sources and free from balance of payments problems. The first pipeline quality gas from coal may be expected by 1976, and by 1980 perhaps 0.3 trillion cubic feet could be provided annually from this source; in 1990, 3.3 trillion cubic feet might be available. An additional, but presently unqualified, source of synthetic gas will be the conversion of liquid hydrocarbons.

In the aggregate, supplemental gas supplies are anticipated to total about 4.6 and 11.5 trillion cubic feet annually by 1980 and 1990, respectively. While demand for gas is anticipated to increase, domestic conventional gas production is projected to peak in the mid-1970’s and decrease somewhat thereafter. As a consequence, a continuing gas supply-demand imbalance is anticipated.  相似文献   

16.
The body of information presented in this paper is directed to power engineers oncerned with reducing pollution from future electric utility power stations. An Air Pollution Control Office sponsored study of advanced-cycle power systems and methods of desulfurizing fuels investigated a large number of conventional and nonconventional power systems for use by electric utilities. These systems included current and advanced steam systems, steam systems with topping and bottoming cycles, closed-cycle gas turbines, and open-cycle gas turbines alone and combined with steam systems. Also considered were various methods for desulfurizing coal and residual oil, such as mechanical and chemical separation, hydrodesulfurization and gasification followed by gas clean up. The major conclusion of this study is that the most effective and economical means of reducing objectionable effluents from future fossil-fueled power stations appears to be gasification of high-sulfur fuel to produce a low-heating-value fuel gas for use in a combined gas turbine and steam (COGAS) power system. Recent and prospective advances in military and commercial aircraft gas turbine technology, particularly in the area of high-temperature operation, can be applied to industrial gas turbines to yield the high-performance, low-cost, and long-lifetime characteristics desired for base-load power generation.

A COGAS pilot plant burning gasified coal should be built at the earliest possible time. Experience gained in the pilot plant could allow introduction of commercial sized stations within this decade.  相似文献   

17.

Globally, the issues about sustainable development are on the increase. Moreover, these issues are rising every day in Pakistan, as remittances are increasing, technology innovation is ambiguous, natural resources are degraded, and economic expansion might pose serious challenges to the environment. Thus, this research looks at how remittances, natural resources, technological innovation, and economic growth affect carbon dioxide (CO2) emissions in Pakistan by controlling energy consumption and urbanization from 1990 to 2019. The Bayer and Hanck test of combined cointegration discloses a cointegration between remittances, natural resources, technological innovations, economic growth, and CO2 emissions. Moreover, the autoregressive distributive lag model (ARDL) proposes a significant positive association between remittances and CO2 emissions in the long run, indicating that the increase in remittances distresses the environmental performance of Pakistan. Our study confirms that natural resources decrease CO2 emissions while technological advancement, economic progress, energy use, and urbanization increase CO2 emissions. In addition, the results of robustness checks by employing fully modified ordinary least squares and dynamic ordinary least squares are parallel to the conclusions of ARDL estimations. Furthermore, the frequency causality test results show that remittances, natural resources, technological innovation, economic growth, energy use, and urbanization cause CO2 emissions at different frequencies. Therefore, to achieve the sustainable development goals, appropriate policy repercussions can be developed toward advanced and environmentally sustainable sources of energy.

  相似文献   

18.
It is estimated that there is sufficient in-state “technically” recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality.

Implications:?This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining increased biomass use. Further work involving economic assessment, seasonal or annual emissions and air quality modeling, and potential exposure analysis would help inform policy makers and industry with respect to further development and direction of biomass policy and bioenergy technology alternatives needed to meet energy and environmental goals in California.  相似文献   

19.
The role of ammonia on mercury leaching from coal fly ash   总被引:1,自引:0,他引:1  
Wang J  Wang T  Mallhi H  Liu Y  Ban H  Ladwig K 《Chemosphere》2007,69(10):1586-1592
The Federal Clean Air Interstate Rule issued in March 2005 will result in many power plants employing ammonia-based technologies to control NO(x) emission. The Clean Air Mercury Rule, issued at the same time, will encourage many power plants to use various technologies to remove mercury from flue gas, generating fly ashes that contain elevated concentrations of mercury. Ammonia forms relatively strong complexes with mercury compared to most other cationic elements and, therefore, may change the leaching characteristics of mercury. Understanding the impact of ammonia on the leaching of mercury from fly ash is critical in predicting the potential environmental impact of future fly ash. Batch methods were used to investigate the ammonia impact on mercury leaching from fly ash under different pH conditions. The results indicated that mercury leaching without external ammonia addition is not significant. However, ammonia addition increased mercury leaching in the alkaline pH range, due to the formation of less adsorbable mercury-ammonia complexes. Washed ash released more mercury than the raw ash if the ammonia concentration is the same, mainly due to the dissolution of some ash components during washing which exposed more mercury on ash surface. Mercury adsorption data indicated that more than 90% of available mercury was adsorbed by fly ash even in the presence of 1000 mg l(-1) ammonia addition.  相似文献   

20.
Sven Kullander 《Ambio》2010,39(3):249-256
Humankind is currently faced with the huge challenge of securing a sustainable energy supply and biofuels constitute one of the major options. However, the commercially traded edible crops are barely sufficient to meet food demand of the present world population. Certain regions, for example EU-27, do not even have a sufficient indigenous crop production. Of this follows that motor biofuels based on edible crops should be avoided. To replace more than some percent of the fossil motor fuels, non-edible biomass—rest products and wastes—should instead be considered for conversion to biofuels. In this way, about 10% of the current fossil fuels can be replaced. Feeding a world population expected to grow by some 50% during the next 50 years will be a major challenge. For environmental reasons it seems that agricultural land cannot be expanded very much, maybe not at all. The solution to the increasing food demand seems therefore to be using the present crop production more efficiently and increasing output from present agricultural land, maintaining biodiversity and climate stability within reasonable limits. In the future, agriculture will need more energy and more water irrigation. Food production is, however, already very energy demanding, requiring several times more externally provided energy than the energy content of the food itself. A sufficient energy supply will be a key issue for the future farming!  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号