首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stability of animal societies depends on individuals decisions about whether to tolerate or evict others and about whether to stay or leave. These decisions, in turn, depend on individuals costs and benefits of living in the group. The clown anemonefish, Amphiprion percula, lives in groups composed of a breeding pair and zero to four non-breeders. To determine why breeders accept the presence of non-breeders in this species I investigated the effect of non-breeders on multiple components of the breeders fitness. Non-breeders did not assist breeders in any obvious way. Experimental removal of non-breeders had no significant effect on the survival, growth, or reproductive success of breeders. Experimental removal of one of the breeding pair showed that non-breeders had little effect on the time taken for a widowed breeder to recommence breeding. The results indicate that the presence of non-breeders neither enhances, nor reduces, the fitness of breeders in A. percula. I suggest that non-breeders might modulate their effect on the fitness of breeders, either by reducing the costs they inflict or by increasing the benefits they provide, such that it just pays breeders to tolerate, rather than to evict, them. This study illustrates that animal societies can be stable even when some individuals gain nothing from the association.Communicated by M. Abrahams  相似文献   

2.
In south-western Australia, the isopod Limnoria agrostisa commonly burrows into leaf clusters and immature shoots of Amphibolis griffithii. The isopod also burrows into the sheath and rhizomes of Posidonia species. In A. griffithii, the isopod consumes new tissue within the sheath, damaging or destroying the meristem. This results in malformation of new leaves or destruction of whole leaf clusters with the potential to reduce the photosynthetic area of a shoot. The isopod has been found in all but one meadow of A. griffithii examined over 1,000 km of the Western Australian coastline. It was present throughout the year and showed little variation in abundance. Young were produced year round, but were more abundant in the summer months. Females, 3.5 mm in length or larger, produced 2–5 young that were brooded within the leaf cluster or base of an immature shoot. Within a meadow, 40–70% of shoots and 10–20% of leaf clusters were damaged by isopods. Seasonal trends were not consistent, but damage appeared to be higher in summer when isopod abundance was higher. Approximately 40% of clusters were destroyed by isopod damage. Isopods attack shoots of all ages, but damage was often located on apical clusters. There was no evidence that isopod damage initiated branching or leaf cluster formation. Estimations of clusters damaged or destroyed may be conservative, as only those clusters remaining on a shoot could be counted, and cluster loss could not be quantified. Examination of defoliated stems on upright shoots and horizontal rhizomes indicated that many were destroyed by isopods. The effect of L. agrostisa although substantial appears to be a feature of healthy seagrasses throughout southern Australia.  相似文献   

3.
Functions of the major cheliped in pagurid hermit crabs have been studied in fights for shells. The major cheliped often shows sexual size dimorphism, suggesting that sexual selection favors the development of the male major cheliped. The function of the major cheliped in male–male competition was examined in Pagurus nigrofascia collected from April to June 2009 on the intertidal rocky shore in southern Hokkaido, Japan (41°N, 140°E). Sexual size dimorphism of the major cheliped was observed, and precopulatory guarding males had larger major chelipeds than solitary ones. Guarding males used the major cheliped to deter intruders during competitive interactions. Males without a major cheliped were disadvantaged even if they were larger than opponents and had ownership. Cheliped size affected the outcomes of contests between similar sized males. This suggests that the male major cheliped in P. nigrofascia protects mates from competitors and, consequently, enhances male mating success. Sexual selection may favor the development of the major cheliped in male pagurids.  相似文献   

4.
All honeybee species make use of the waggle dance to communicate the direction and distance to both food sources and potential new nest sites. When foraging, all species face an identical problem: conveying information about profitable floral patches. However, profound differences in nesting biology (some nest in cavities while others nest in the open, often on a branch or a cliff face) may mean that species have different requirements when dancing to advertise new nest sites. In cavity nesting species, nest sites are a precise location in the landscape: usually a small opening leading to a cavity in a hollow tree. Dances for cavities therefore need to be as precise as possible. In contrast, when the potential nest site comprises a tree or perhaps seven a patch of trees, precision is less necessary. Similarly, when a food patch is advertised, dances need not be very precise, as floral patches are often large, unless they are so far away that recruits need more precise information to be able to locate them. In this paper, we study the dance precision of the open-nesting red dwarf bee Apis florea. By comparing the precision of dances for food sources and nest sites, we show that A. florea workers dance with the same imprecision irrespective of context. This is in sharp contrast with the cavity-nesting Apis mellifera that increases the precision of its dance when advertising a potential new home. We suggest that our results are in accordance with the hypothesis that the honeybees’ dance communication initially evolved to convey information about new nest sites and was only later adapted for the context of foraging.  相似文献   

5.

Background

Due to the rising number of type 2 diabetes patients, the antidiabetic drug, metformin is currently among those pharmaceuticals with the highest consumption rates worldwide. Via sewage-treatment plants, metformin enters surface waters where it is frequently detected in low concentrations (µg/L). Since possible adverse effects of this substance in aquatic organisms have been insufficiently explored to date, the aim of this study was to investigate the impact of metformin on health and development in brown trout (Salmo trutta f. fario) and its microbiome.

Results

Brown trout embryos were exposed to 0, 1, 10, 100 and 1000 µg/L metformin over a period from 48 days post fertilisation (dpf) until 8 weeks post-yolk sac consumption at 7 °C (156 dpf) and 11 °C (143 dpf). Chemical analyses in tissues of exposed fish showed the concentration-dependent presence of metformin in the larvae. Mortality, embryonic development, body length, liver tissue integrity, stress protein levels and swimming behaviour were not influenced. However, compared to the controls, the amount of hepatic glycogen was higher in larvae exposed to metformin, especially in fish exposed to the lowest metformin concentration of 1 µg/L, which is environmentally relevant. At higher metformin concentrations, the glycogen content in the liver showed a high variability, especially for larvae exposed to 1000 µg/L metformin. Furthermore, the body weight of fish exposed to 10 and 100 µg/L metformin at 7 °C and to 1 µg/L metformin at 11 °C was decreased compared with the respective controls. The results of the microbiome analyses indicated a shift in the bacteria distribution in fish exposed to 1 and 10 µg/L metformin at 7 °C and to 100 µg/L metformin at 11 °C, leading to an increase of Proteobacteria and a reduction of Firmicutes and Actinobacteria.

Conclusions

Overall, weight reduction and the increased glycogen content belong to the described pharmaceutical effects of the drug in humans, but this study showed that they also occur in brown trout larvae. The impact of a shift in the intestinal microbiome caused by metformin on the immune system and vitality of the host organism should be the subject of further research before assessing the environmental relevance of the pharmaceutical.
  相似文献   

6.
This study evaluated whether larvae of the Indo-Pacific vermetid gastropod Dendropoma maximum are obligate planktotrophs, or whether they exhibit an intermediate feeding strategy. Experiments were conducted in Moorea, French Polynesia (149°50′W, 17°30′S), Sep–Oct 2009, to examine D. maximum larval growth and metamorphic responses to different diets and amounts of food. Dendropoma maximum larvae required particulate food to undergo metamorphosis, but were able to survive and grow in the absence of food for up to 20 days. Larvae in Low and Unfed food treatments exhibited phenotypic plasticity by growing a larger velum (the larval feeding structure) compared with those in high food. Unfed D. maximum larvae had a slower initial growth rate; however, by 11-day post-hatch fed and unfed larvae had converged on the same mean shell height (553 μm), which was only 10% larger than the initial size at hatching. Therefore, although the nutritional strategy of D. maximum larvae is best described as obligate planktotrophy, it appears to approach an intermediate feeding strategy.  相似文献   

7.
A challenge for parasites is how to evade the sophisticated detection and rejection abilities of potential hosts. Many studies have shown how insect social parasites overcome host recognition systems and successfully enter host colonies. However, once a social parasite has successfully usurped an alien nest, its brood still face the challenge of avoiding host recognition. How immature stages of parasites fool the hosts has been little studied in social insects, though this has been deeply investigated in birds. We look at how larvae of the paper wasp obligate social parasite Polistes sulcifer fool their hosts. We focus on cuticular hydrocarbons (CHCs), which are keys for adult recognition, and use behavioral recognition assays. Parasite larvae might camouflage themselves either by underproducing CHCs (odorless hypothesis) or by acquiring a chemical profile that matches that of their hosts. GC/MS analyses show that parasite larvae do not have lower levels of CHCs and that their CHCs profile is similar to the host larval profile but shows a reduced colony specificity. Behavioral tests show that the hosts discriminate against alien conspecific larvae from different colonies but are more tolerant towards parasite larvae. Our results demonstrate that parasite larvae have evolved a host larval profile, which overcomes the host colony recognition system probably because of the lower proportion of branched compounds compared to host larvae. In some ways, this is a similar hypothesis to the odorless hypothesis, but it assumes that the parasite larvae are covered by a chemical blend that is not meaningful to the host.  相似文献   

8.
Optimal investment theory is based on the assumption that the proximate constraint acting on parental investment is resource based. A trade-off between per offspring investment and total investment seems intuitive. Consequently, a parents investment strategy is expected to represent a trade-off between the benefits of investment for current offspring and the costs to future reproduction for parents. In this study, we provide clear evidence that the costs and benefits of maternal provisioning in the dung beetle Onthophagus taurus influence the amount of provisions provided by the mother. Horse dung is typically of a higher nutritional value than cow dung and females were shown to provide 20% less dung to offspring when provisioning with horse dung. By reducing their investment per offspring and exhibiting a clear preference to provision offspring with horse dung, females were able to produce significantly more offspring. Females provisioning with horse dung received greater fitness returns per unit of investment and experienced lower provisioning costs, in terms of the minimum amount of dung required to produce a surviving offspring, than females provisioning with cow dung. Females provisioning in soil of low moisture content were found to have higher tunneling costs than those provisioning in soil of high moisture content, while the fitness returns per unit of investment did not differ. We adopted a marginal value theorem (MVT) approach to calculate the theoretical optimal level of investment for each dung type and for each soil moisture. Predicted levels of provisioning were lower for horse dung than for cow dung and for moist soil than for dry soil. Therefore, the results of this study are in qualitative agreement with MVT predictions and provide empirical support for the proposal that females can adaptively adjust their level of investment in response to resource and/or habitat quality. However, the theoretically predicted optimal investment yielded a poor quantitative fit with our observed levels of investment, with females providing over twice the investment predicted by the MVT approach. We suggest that this difference may reflect either our inability in directly quantifying all the necessary costs and benefits of investment in O. taurus and/or the applicability of the underlying assumptions of MVT.Communicated by D. Gwynne  相似文献   

9.
10.
The spontaneous oxidation process of pristine silicon (Si) limits its application as photocatalyst or electrode in aqueous solution or moist air. Covering a protection layer on Si surface is an effective approach to overcome this disadvantage. In this paper, α-Fe2O3 is demonstrated to be an excellent alternative as a protection material. α-Fe2O3 layer was deposited around each p-type Si micropillar (SiMP) in well-ordered array by chemical bath deposition method. The diameter of SiMP was 5 mm and the thickness of α-Fe2O3 layer was about 20 nm. The photoeletrochemical stability of SiMP/α-Fe2O3 was proved by 10 circles cyclic voltammetry testing. Compared with SiMP, its optical absorption and photocurrent density improved 2 times and 4 times, respectively, and its onset potential for hydrogen evolution moved positively about 0.4 V. These improved performances could be ascribed to the enhanced photogenerated-charge-separation efficiency deriving from built-in electric field at the interface between Si and α-Fe2O3. The above results show an effective strategy to utilize Si material as photocatalyst or electrode in aqueous solution or moist air.
  相似文献   

11.
In marine invertebrates multiple modes of development, or poecilogony, may occur in a single species. However, after close examination, many of such putative cases turned out to be sibling species. A case in point may be the cosmopolitan orbiniid polychaete Scoloplos armiger, which inhabits marine shallow sediments. In addition to the well-known direct, holobenthic development from egg cocoons, pelagic larvae have also been described. Our culture experiments revealed a spatially segregated source of the two developmental modes. All females of an intertidal population produced egg cocoons and no pelagic larvae. All but 2 out of 15 females of an adjacent subtidal population produced pelagic larvae and no egg cocoons. Based on these results we performed a molecular genetic analysis (RAPD-PCR) on three intertidal and four subtidal populations in the North Sea. Selected samples from all sites were analysed also by the AFLP method. We found significantly higher genetic diversity within subtidal than within intertidal populations. This is consistent with a wider dispersal by pelagic larvae and a smaller effective population size when development is holobenthic. Total genetic divergence is not related to distance but to the intertidal/subtidal division. We suggest that S. armiger actually represents two sibling species.  相似文献   

12.
Mutualisms can be exploited by parasites—species that obtain resources from a partner but provide no services. Though the stability of mutualisms in the presence of such parasites is under intensive investigation, we have little information on life history traits that allow a species to be a successful mutualist or rather a parasite, particularly in cases where both are closely related. We studied the exploitation of Acacia myrmecophytes by the ant, Pseudomyrmex gracilis, contrasting with the mutualistic ant Pseudomyrmex ferrugineus. P. gracilis showed no host-defending behavior and had a negative effect on plant growth. By preventing the mutualist from colonization, P. gracilis imposes opportunity costs on the host plant. P. gracilis produced smaller colonies with a higher proportion of alates than did the mutualist and thus showed an “r-like” strategy. This appears to be possible because P. gracilis relies less on host-derived food resources than does the mutualist, as shown by behavioral and stable isotope studies. We discuss how this system allows the identification of strategies that characterize parasites of mutualisms.  相似文献   

13.
This paper presents a critical discussion of the so-called “maximum power principle”, often quoted in studies about the energy balance of living systems and also known in the emergy literature as “maximum em-power principle”. Several authors consider this principle highly relevant and some even proposed it as a “fourth law of thermodynamics”. A critical analysis of the original source, namely Alfred Lotka's 1921-22 papers, conducted both in an historical perspective (the connection between Lotka's writings and the ongoing debate at his time) and in a more modern context, leads to a more detailed and less biased assessment. It turns out that in spite of Lotka's very anticipatory and incredibly sharp vision of the possible interconnections between the second law of thermodynamics and evolutionism, doubts arise about the general applicability of his “maximum power principle”. From an accurate analysis of his writings, it can be concluded that: (a) Lotka explicitly and consistently addressed the “optimal use” of the flow of exergy (available energy), and therefore the quantity defined as “em-power” is an incorrect interpretation of Lotka's constrained maximum power principle; (b) “Lotka's principle” can be reformulated within Ziegler's “maximum entropy production” or Prigogine “minimum entropy generation” paradigm only under two different respective sets of rather stringent additional conditions which Lotka was probably already aware of but never explicitly stated.  相似文献   

14.
In August 2000 high concentrations of the dominant herbivorous copepod Calanus hyperboreus were detected in the Arctic Fram Strait, west of Spitsbergen, 1 m above the seafloor at 2,290 m water depth. Individuals from that layer were sampled by a hyper-benthic net attached to the frame of an epi-benthic sledge. For comparison, the vertical distribution of C. hyperboreus in the water column was studied simultaneously by a multiple opening/closing net haul from 2,250 m depth to the surface. Maximum abundance was found close to the surface with 6.6 and 10.0 ind. m?3 at 0–50 m and 50–100 m depth, respectively. However, the major fraction of the population (>40%) occurred between 1,000 and 1,500 m depth. In the deepest layer (2,000–2,250 m) abundance measured 2.2 ind. m?3 and was twice as high as between 100 and 1,000 m depth. In comparison to individuals from surface waters, copepods from the hyper-benthic layer were torpid and did not react to mechanical stimuli. Stage CV copepodids and females from the deep sample contained 4–10% less lipid and showed significantly reduced respiration rates of 0.24 and 0.26 ml O2 h?1 g?1 dry mass (DM) as compared to surface samples (0.49 and 0.43 ml O2 h?1 g?1 DM). All these observations indicate that the hyper-benthic part of the population had already started a dormant overwintering phase at great depth. Based on the lipid deposits and energy demands, the potential maximum duration of the non-feeding dormant phase was estimated at 76–110 days for females and at 98–137 days for CV copepodids, depending on what indispensable minimum lipid content was assumed. In any case, the estimated times could not meet the necessary requirements for a starvation period of >6 months until the next phytoplankton bloom in the following spring. The ecological implications of these results are discussed with respect to the life cycle and eco-physiological adaptations of C. hyperboreus to its high-Arctic habitat.  相似文献   

15.
PurposeLittle is known about the ecotoxicity of nanomaterials and there are no specific guidelines for sample preparation and testing. We set out to establish whether the method used to prepare TiO2 dispersions had a significant impact on aquatic ecotoxicity. We also followed the formation of agglomerates during the incubation period.MethodsWe applied the algal growth inhibition test (OECD test guideline no. 201). Dispersions were prepared by stirring and/or ultrasonication for different durations, and by filtration according to an OECD procedure recommended for testing difficult substances.ResultsSamples stirred for 7?d were not toxic, but EC20 values could be calculated for all the other treatments. Shorter treatments generated EC20 values in the range 1–27?mg/L. Only the shortest treatment (1 min stirring, 1 min ultrasonication) produced an unusually high EC20 value, indicating low toxicity. Development of agglomerate size and of toxicity depends on the nanoparticles. We found that ecotoxicity was predominantly caused by a fraction of nanoparticles and agglomerates obtained by passing dispersions through a 0.22-µm filter.ConclusionsWe propose a short treatment regime to generate the most relevant ecotoxicity data for TiO2, for example stirring for 1?min followed by 3 min ultrasonication. Until more data concerning the ecotoxicity of different fractions are available, we recommend the testing of unfiltered dispersions rather than filtrates. Relating ecotoxicity to the total hydrodynamic surface of the nanomaterials rather than concentration does not seem to improve the accuracy of ecotoxicity assessments using the algal growth inhibition test.  相似文献   

16.
Despite considerable interest in physiology, evolution and life history of Antarctic marine invertebrates, only a limited number of studies have examined the genetic variability and diversity patterns of these organisms. Moreover, understanding and characterizing patterns of Antarctic biodiversity has taken on a degree of urgency because of potential impacts of global warming. To expand an understanding of the evolutionary history of Antarctic marine invertebrates, the genetic diversity of the crinoid Promachocrinuskerguelensis Carpenter, 1888 was investigated, which is documented to have a circumpolar distribution extending to subantarctic islands. Specimens of P. kerguelensis were collected from the western side of the Antarctic Peninsula, and the subantarctic islands South Georgia, South Sandwich and Bouvetøya Island from 2001 to 2004. P. kerguelensis was previously subject to morphological review that confirmed the taxonomic recognition of only one species. The wide distribution and reported high dispersal capability for P. kerguelensis predicts one large panmictic population. In contrast, nucleotide sequence data from mitochondrial cytochrome oxidase subunit I and cytochrome b genes, collected herein, reveal distinct genetic structure and cryptic speciation within P.kerguelensis. In the Antarctic Atlantic sector alone, there were at least five “species-level” clades. Some of these clades are geographically limited, and most exist in sympatry. The largest and most widespread of these clades was examined to help elucidate connectivity along the subantarctic islands of the Scotia Arc and the Antarctic Peninsula. Within this clade, most genetic diversity was contained within populations, but significant differences were present between regions (Antarctic Peninsula, South Sandwich Is., South Georgia, Bouvetøya Is.), suggesting a corresponding lack of gene flow. Given that P.kerguelensis” is a well-studied taxon, the finding of considerable genetic diversity within the Atlantic sector alone suggests that the recognized diversity of Antarctica’s benthic marine life may be underestimated, and will rise dramatically with phylogeographic analyses of putative widespread species.  相似文献   

17.
Northern shrimp Pandalus borealis (Krøyer) larvae hatch in the northern Gulf of St. Lawrence from early May to the end of June, and larval development occurs over a range of relatively cold water temperatures. Because of the long duration of the pelagic phase and the difficulty of sampling all successive larval stages at sea, we used laboratory experiments to assess the effects of water temperature on larval development and growth. In spring 2000, P. borealis larvae were reared from hatching to the first juvenile stages (i.e., stage VI and VII) at three temperatures (3, 5, and 8°C) representing conditions similar to those in spring in the northern Gulf of St. Lawrence. Larval development and growth were dependent on temperature, with longer duration and smaller size (cephalothorax length, CL, and dry mass, DM) at 3°C relative to the 5 and 8°C treatments. There were no significant differences in the morphological characters of the different stages among treatments, indicating that regular moults occurred at each temperature. The results suggest a negative impact of cold temperatures (lower intra-moult growth rates and smaller size) and, possibly, higher cumulative mortality due to longer development time that could affect the success of cohorts at sea. However, CL and DM for stage III and later larvae were smaller than those of larvae identified at the same developmental stage in field locations. It is possible that the diet offered to larvae in this experiment (Artemia nauplii, either newly hatched nauplii or live adults, depending on the developmental stage) was not optimal for growth, even though it is known to support successful P. borealis larval development. In the field, there is the possibility that phytoplankton contributes to the larval diet during the first stages and stimulates development of the digestive glands. Furthermore, the nutritional quality of the natural plankton diet (e.g., high protein content, fatty acid composition) might be superior and favourable to higher growth rates even at lower temperatures.Communicated by R.J. Thompson, St. Johns  相似文献   

18.
To test the hypothesis that stable isotope ratios from marine organisms vary, the δ15N and δ13C values from fish and squid collected in Alaskan waters were measured across years (1997, 2000, and 2005), seasons, geographic locations, and different size/age classes, and between muscle tissue and whole animals. Temporal, geographic, and ontogenetic differences in stable isotope ratios ranged from 0.5–2.5‰ (δ15N) to 0.5–2.0‰ (δ13C). Twenty-one comparisons of stable isotope values between whole organisms and muscle tissue revealed only four small differences each for δ15N and δ13C, making costly and space prohibitive collection of whole animals unnecessary. The data from this study indicate that significant variations of stable isotope values from animals in marine systems necessitates collection of prey and predator tissues from the same time and place for best interpretation of stable isotope analysis in foraging ecology studies.  相似文献   

19.
The depletion of shallow-water fish stocks through overexploitation has led to increasing fishing pressure on deep-sea species. Poor knowledge of the biology of commercially valuable deep-water fish has led to the serial depletion of stocks of several species across the world. Data regarding the genetic structure of deep-sea fish populations is important in determining the impact of overfishing on the overall genetic variability of species and can be used to estimate the likelihood of recolonisation of damaged populations through immigration of individuals from distant localities. Here the genetic structure of the commercially fished deep-water species the blackspot sea bream, Pagellus bogaraveo is investigated in the northeastern Atlantic using partial DNA sequencing of mitochondrial cytochrome b (cyt-b) and D-loop regions and genotyping of microsatellite loci. An absence of variation in cyt-b and low genetic variation in D-loop sequences potentially indicate that P. bogaraveo may have undergone a severe bottleneck in the past. Similar bottlenecks have been detected in other Atlantic species of fish and have possibly originated from the last glaciation. P. bogaraveo may have been particularly vulnerable to the effects of low temperature and a fall in sea level because stages of its life history occur in shallow water and coastal sites. However, there are other explanations of low genetic variability in populations of P. bogaraveo, such as a low population size and the impacts of fishing on population structure. Analysis of population structure using both D-loop and microsatellite analysis indicates low to moderate, but significant, genetic differentiation between populations at a regional level. This study supports studies on other deep-sea fish species that indicate that hydrographic or topographic barriers prevent dispersal of adults and/or larvae between populations at regional and oceanographic scales. The implications for the management and conservation of deep-sea fish populations are discussed.Communicated by J.P. Thorpe, Port Erin  相似文献   

20.
The cost of reproduction for the terminal spawning onychoteuthid squid, Moroteuthis ingens, was analysed using measures of condition and tissue biochemistry. Both males and females showed a dramatic drop in the weight of the gonad in stage 6 (spent) individuals. The mantle weight and nidamental gland weight of females also decreased during the maturation process. Males, however, had a marked increase in both the penis and spermatophoric complex weight in spent individuals, while female oviducal gland weight and nidamental gland length also increased in stage 6 individuals. Residual analysis indicated that testis growth was not developing at the expense of mantle growth, although there was a suggestion of cost to the fins. Females showed that the development of the ovary occurred at a cost to both the mantle and fins. Overall body condition also declined with maturity stage for both males and females, with stage 6 individuals of both sexes in poor condition. Very few females had eggs in the oviducts, suggesting that the oviducts are used as ducts instead of storage organs. Proximal analysis revealed a loss of constituents within the mantle during maturation, with an associated increase in water, indicating the remobilization of energy from the mantle to fuel reproduction. This study suggests that the digestive gland is not used as an energy store in this species.Communicated by M.S. Johnson, Crawley  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号