首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tool wear in micro-milling poses a serious limitation to increased production rate, and atomized cutting fluids have been shown to be quite effective in increasing tool life in micro-milling operations. A new compact cutting fluid application system has been designed and developed based on ultrasonic atomization. In order to understand the effects of the system input parameters on system performance, two performance measures have been defined in terms of spray characteristics and experiments have been performed to evaluate the system according to the defined performance measures. Based on the experimental results, the system parameters can be adjusted to obtain the desired spray characteristics, and areas of improvement on the design have been identified.  相似文献   

2.
Many problems such as health and environment issues are identified with the use of cutting fluids (CFs). There has been a high demand for developing new environmentally friendly CFs such as vegetable based cutting fluids (VBCFs) to reduce these harmful effects. In this study, performances of six CFs, four different VBCFs from sunflower and canola oils with different ratios of extreme pressure (EP) additives, and two commercial types of CFs (semi-synthetic and mineral) are evaluated for reducing of surface roughness, and cutting and feed forces during turning of AISI 304L austenitic stainless steel with carbide insert tool. Taguchi’s mixed level parameter design (L18) is used for the experimental design. Cutting fluid, spindle speed, feed rate and depth of cut are considered as machining parameters. Regression analyses are applied to predict surface roughness, and cutting and feed forces. ANOVA is used to determine effects of the machining parameters and CFs on surface roughness, cutting and feed forces. In turning of AISI 304L, effects of feed rate and depth of cut are found to be more effective than CFs and spindle speed on reducing forces and improving the surface finish. Performances of VBCFs and commercial CFs are also compared and results generally show that sunflower and canola based CFs perform better than the others.  相似文献   

3.
The conventional additives in metalworking fluids (MWFs) have effects in improving the machining conditions. However, many additives can lead to environmental contamination and health problems. In this paper, lignin obtained from wood is considered as a new “green” additive in MWFs. Lignin has been used as additives in other areas like pasted lead electrodes and polypropylene/coir composites but has never been applied in cutting fluids. In this paper, lignin is dissolved in 5% conventional MWF aqueous solutions in 8 different concentrations through injection and atomization methods. Then, experiments are conducted to evaluate the effectiveness of lignin containing MWFs in micro-milling operations. The performance is compared with that of 5% conventional cutting fluid in terms of machining forces, tool wears, and burr formations. The results show that the concentration of 0.015% lignin leads to the least cutting forces, tool wear and burrs. The results also show that an appropriate concentration of lignin in MWFs can help to improve the cooling and lubrication performances during machining. The results of this paper thus indicate that lignin has a potential to be used as an additive in metalworking fluids.  相似文献   

4.
Growth of cells from amniotic fluid was studied with respect to cell concentration in the inoculum, blood contamination of the fluid, fluid colour, fluid clarity, gestational age of the pregnancy, and growth factors. Dependent variables measured were colony formation, colony size, and colony morphology after 7, 11, and 14 days of culture. The following conclusions were established from these studies: small sample volumes are the most efficient for producing colonies; cells from very bloody or dark brown fluids have a slower rate of growth; growth of cells from cloudy (noncontaminated) fluids is better than growth of cells from clear fluids; the proportion of colonies that are epithelioid varies with gestational age; the stimulating effect of 100 ng/ml fibroblast growth factor on cells from amniotic fluid was confirmed.  相似文献   

5.
New lightweight sandwich materials challenge existing forming processes as well as following process steps. As such the manufacturing potential of shear cutting has to be evaluated. Two cutting methods are compared. Method commonly used is shear-cutting within one stroke engaged, the other one is known as counter-shear cutting, which uses two strokes.The challenges of cutting sandwich materials are variation of hole diameter within the different layers, fraying of the textiles, deformation of the hole contour and burr formation. These effects occur in conventional shear cutting as the intermediate layer and the lower sheet metal are cut by the scrap of the upper sheet instead of the cutting punch.The following methodology included shear cutting with closed cutting edge i.e. cutting of holes into five different sandwich materials. The sandwiches exemplarily represent multiple kinds of possible material designs. For instance, aluminum and steel face sheets, different thicknesses of intermediate layers and different intermediate layers materials such as integrated textile fibers have been used. Adequate cutting parameters such as die clearance and the use of a blank holder have been determined. To achieve good results a stiff machine design with good guidance and precise control of punch position was crucial.Observations of conventional shear cutting revealed the need of small cutting clearance of 4%. High burnish area is possible for the upper face sheet due to the superimposed force by the lower face sheet. The major conclusion depicted that high cutting quality of sandwich materials requires counter shear cutting. Hence, the roll-over of the lower sheet facing the intermediate layer, the burnish area at the lower sheet, good cutting quality of the fibers improve significantly and burr formation is avoided completely. Summarized this paper provides cutting parameters for sandwich materials based on experimental work.  相似文献   

6.
采用由亚铁(Fe^2+)盐、表面活性剂(OP)和清水组成的三元复合型洗消剂对液氯泄漏进行模拟洗消实验研究,其洗消效率比清水细水雾有显著提高。通过对比实验考察了添加剂的浓度和洗消时间对其洗消效率的影响,并对雾滴粒径进行了测量。研究结果表明洗消剂中各成分之间的物理化学耦合作用提高了含添加剂的细水雾的洗消效率,表面活性剂组分可以降低溶液的表面张力,减小雾滴粒径,增大细水雾与氯气的接触面积;而亚铁盐组分则可以与氯气发生化学反应,将强氧化性的Cl2完全转变为较稳定的Cl-,增强洗消剂的化学洗消作用,且洗消效果更加彻底。  相似文献   

7.
The D2-protein is a neuronal membrane protein which has an immunochemically detectable soluble derivative in cerebrospinal fluid. We used rocket-on-line immunoelectrophoresis with an antiserum against rat synaptosomal membranes for demonstration of the human D2-protein in fetal cerebrospinal fluid and in amniotic fluids from pregnancies with fetal neural tube defects. D2 was neither found in normal amniotic fluids nor in cases of amniotic fluids from pregnancies with other malformations. Analysis of D2 in amniotic fluids may thus have a future role in the antenatal diagnosis of fetal neural tube defects.  相似文献   

8.
One of the main environmental pollution sources related to machine building industry is the huge amount of cutting fluids which are supplied during the machining processes. In order to avoid the problems induced by cutting fluids' usage, considerable progress has been recently made in the field of near-dry machining (NDM). Converting conventional processes to minimal quantity lubrication (MQL) methods imposes new tasks' classification within the tribiological system in order to guarantee the process safety and product quality. This paper gives an overview on some requirements to be considered for a successful MQL application into industrial practice. Its last part is focused on the evaluation of NDM effects on the gear milling process efficiency, with respect to hob wear, surface quality, cooling effect, and environment protection.  相似文献   

9.
For machining operations such as drilling and tapping, the challenge of achieving dry machining is difficult due to the significant role that cutting fluid plays in lubrication and chip removal. A new approach for dry deep hole drilling of aluminum is presented. This new method utilizes a magnetostrictively actuated tool holder to modulate the axial position of a drill tip and thus vary the chip size. Under appropriate modulation conditions, small chips are produced that are relatively easy to evacuate through the drill flutes. The development of the magnetostrictive tool holder system is described and its performance is evaluated. The results of drilling tests performed with the magnetostrictive tool holder system are reported, and the new tool holder is demonstrated to offer promise as an alternative to drilling with a cutting fluid.  相似文献   

10.
Metalworking fluids (MWFs) are used widely in machining process to dissipate heat, lubricate moving surfaces, and clear chips. They have also been linked to a number of environmental and worker health problems. To reduce these impacts, minimum quantity lubrication (MQL) sprays of MWF delivered in air or CO2 have been proposed. MQL sprays can achieve performance comparable with conventional water-based or straight oil MWFs while only delivering a small fraction of the fluid. This performance advantage could be explained by the enhanced penetration into the cutting zone that results from delivering MWF in high pressure and precise sprays. To explore this hypothesis, an analytical model of MWF penetration into the flank face of the cutting zone is developed and validated using experimental data. The model is based on a derivation of the Navier–Stokes equation and the Reynolds equation for lubrication and applied to an orthogonal cutting geometry under steady-state conditions. A solution to the model is obtained using a numerical strategy of discretizing the analytical scheme with two-dimensional centered finite difference method. Penetration into the cutting zone is estimated for MQL sprays delivered in air, CO2 and N2 as well as two conventional MWFs, straight oil and semi-synthetic emulsion. The model suggests that conventional MWFs, do not penetrate the cutting zone fully and fail to provide direct cooling to the flank zone where wear is most likely to occur. MQL sprays do penetrate the cutting zone completely. Using convective heat transfer coefficients from a previous study, a finite element heat balance is carried out on the tool to understand how each fluid impacts temperature near the flank tip of the tool. The results of the modeling effort are consistent with experimental measurements of tool temperature during turning of titanium (6AL4V) using a K313 carbide tool. The prediction of temperature near the flank indicates that MQL sprays do suppress temperatures near the flank effectively. These results help explain the low levels of tool wear observed for some MQL sprays, particularly those based on high pressure CO2. This modeling framework provides valuable insight into how lubricant delivery characteristics such as speed, viscosity, and cutting zone geometry can impact lubricant penetration.  相似文献   

11.
We have investigated the occurrence of acetylcholinesterase (AChE) (E.C.3.1.1.7) in fetal serum, amniotic fluid and maternal serum using an immuno-chemical assay-technique employing both polyclonal and monoclonal antibodies. Fetal serum had increased amounts of AChE, which is due to an increase in the 10.5S form of the enzyme. This form was also found in amniotic fluids of pregnancies with a fetal neural tube defect (NTD), but not in normal amniotic fluid. The increase in amniotic fluid AChE was however, not reflected in the maternal serum.  相似文献   

12.
The intensive temperatures in high speed machining not only limit the tool life but also impair the machined surface by inducing tensile residual stresses, microcracks and thermal damage. This problem can be handled largely by reducing the cutting temperature. When the conventional coolant is applied to the cutting zone, it fails to remove the extent of the heat effectively. Hence, a cryogenic coolant is highly recommended for this purpose. In this paper, an attempt has been made to use cryogenic carbon dioxide (CO2) as the cutting fluid. Experimental investigations are carried out by turning AISI 1045 steel in which the efficiency of cryogenic CO2 is compared to that of dry and wet machining with respect to cutting temperature, cutting forces, chip disposal and surface roughness. The experimental results show that the application of cryogenic CO2 as the cutting fluid is an efficient coolant for the turning operation as it reduced the cutting temperature by 5%–22% when compared with conventional machining.It is also observed that the surface finish is improved to an appreciable amount in the finished work piece on the application of cryogenic CO2. The surface finish is improved by 5%–25% in the cryogenic condition compared with wet machining.  相似文献   

13.
为提高细水雾对氨气的洗消效率,研究了两种复合型酸性添加剂MZ—1和MZ-2对细水雾的物理化学性质及洗消性能的影响。采用三维激光多普勒测速计和自适应相位多普勒速度计系统(LDV/APV)测量了含有MZ添加剂的细水雾和纯细水雾的雾滴粒径及速度的变化。通过小尺度模拟实验比较了含添加剂的细水雾和纯细水雾洗消氨气的效能高低。对实验结果的分析表明洗消剂中各成分之间的物理化学耦合作用提高了细水雾的洗消效率:表面活性剂组分降低了溶液的表面张力,减小了雾滴粒径,增大了细水雾与氨气的接触面积,而酸性电解质组分则可以与氨气发生化学反应,增强洗消剂的化学洗消作用。  相似文献   

14.
随着人们对铬酸雾环境问题的日益重视,铬酸雾的测定工作就显得愈发重要.文中总结了铬酸雾标准限值,阐述国内外测定方法标准及进展,最后结合实际工作指出测定中的注意事项及存在问题.研究表明,目前国内有关铬酸雾测定的标准方法仅有《固定污染源排气中铬酸雾的测定二苯基碳酰二肼分光光度法》(HJ/T29-1999),国内外有关铬酸雾的其它测定方法也鲜有报道.在依照国标方法测定铬酸雾的实际工作中,测定结果的准确度受诸多因素影响,主要为试剂质量、玻璃器皿的清洗、显色酸度、显色温度、空气采样器流量等,需要引起注意.目前铬酸雾测定也存在诸多问题需要改进及解决,如干扰消除问题、采样管路材质问题、吸收提取液问题、质保质控问题、新测定方法拓展问题等.  相似文献   

15.
For a successful enhancement of mechanical properties of metal matrix nanocomposites, a homogeneous nanoparticle dispersion and distribution in the solidified metal is required. Mechanical mixing can be used for initial break-up of agglomerates, and its study can be simplified with dimensional analysis. Using this technique, mixing time and vortex height were assessed while varying fluid properties, impeller angle, and angular speed. Three relevant dimensionless numbers were recognized: the Reynolds (Re), Froude and Galilei (Ga) numbers. Based on blade and impeller shaft angles, a modified Froude number (Fr*) was defined. These parameters were calculated experimentally, varying angular speed from 200 to 1000 rpm for three different impeller angles: 0°, 15° and 30°. This procedure was performed with three fluids: water, and two aqueous glycerin solutions (25% and 50% by volume). Digital images were taken and processed to measure vortex height. Mixing time was measured for water at 0° impeller angle, angular speed ranging from 200 to 1200 rpm. Results showed an optimal dimensionless mixing time with respect to Re. A linear relationship was found between dimensionless vortex height and Fr*. The first had a second order polynomial relationship with the product ReFr*, regardless of impeller angle. This relationship, together with the Ga, specific for each fluid, allows scaling the results to other fluids such as molten pure aluminum. This study allows experimenting in simpler systems that involve transparent fluids, room temperature and low cost, to then elaborate a prediction of vortex height in fluids where measurements are difficult and costly, such as molten metals.  相似文献   

16.
介绍了气泡雾化灭火技术,同时结合前人理论和试验研究,分析了气泡雾化细水雾灭火技术的优势,并从固定式和移动式两个方面分析了气泡雾化细水雾灭火技术的应用前景.  相似文献   

17.
近年来,随着对环保的重视,钻井过程中产生的废弃钻井液的处理也越来越受到钻井人的关注.文章针对国内废弃钻井液处理方法的发展现状,从中国海上和陆地废弃钻井液着手,分别论述了海上和陆地废弃钻井液处理中,水基和油基废弃钻井液的处理方法,以及现场应用情况.并对海上以及陆地废弃钻井液的处理进行对比分析,可以更直观的选出适合某地区的废弃钻井液处理方法,对现场工作有一定的帮助.  相似文献   

18.
This paper presents a new technology for minimizing the use of metalworking fluids (MWFs) during the machining process that is atomization-less and occupational friendly. Micro-flood (MF) technology utilizes direct contact between the cutting tool and the MWF without the interaction of a gas medium. Experiments were conducted in high volume mass production environment turning HSLA (high strength low alloy) SAE 070Y steel. Machining performance and total air mass particulates were investigated in dry machining, Near dry machining (NDM) via atomized spray mist and MF technology. Open-atmosphere air monitoring indicated that total mass particulates behaved in an almost linear fashion with respect to gas atomization pressure, whereas the MWF flow rate demonstrated logarithmic trends in NDM applications using an atomized spray. Nozzle orientations directed upward into the air also produced higher mg/m3 concentrations (such as flank) than chip and rake face orientations that were directed down. Greater separation existed at higher gas atomization pressures, MWF flow rates and by changing the MWF type. At extreme limits, nozzle orientation affected mg/m3 concentration as much as 4–5 mg/m3 for water-miscible MWFs and 15–22 mg/m3 for non-water-miscible MWFs. Tool-life performance varied greatly among MWF type and flow rate, and in all cases MF technology performed better than NDM using an atomized spray mist. Direct and consistent MWF penetration to cutting zone using MF technology lowered tool-wear on the average of 12–75% compared to NDM at the same MWF flow rate. Compared to dry machining, NDM improved tool-wear on the average by 20–243%. In one case, tool-wear performance was improved by 616% at 0.15 mm using MF technology compared to dry machining at a nominal 0.925 mm tool-wear. Overall, a large mass reduction of particulates can be achieved employing MF technology that would have been unrealistic for an open-atmosphere machining environment employing an atomized spray mist. On the average, MF technology can maintain a total air mass particulate of less than 0.4 mg/m3 in the occupational work zone using MWF flow rates up to 1260 ml/h, regardless of the MWF classification. Atomized spray mist applications are capable meeting the 5 mg/m3 OSHA limit if MWF flow rates are less than 160 ml/h, air pressures are less than 0.137 MPa (20 psi) using water-miscible MWFs and air pressures are less than 0.0344 MPa (5 psi) using non-water-miscible MWFs.  相似文献   

19.
Changes in the protease activity in amniotic fluid has been proposed as a valid method for the prenatal detection of cystic fibrosis (CF). We have studied by quantitative and qualitative procedures, sixty four amniotic fluids: two of them from CF-affected fetuses. Interpretation of the benzoyl arginine ethyl ester (BAEE)-staining patterns after isoelectric focusing was often difficult, and repeated experiments gave variable results. In order to improve gel discrimination, we performed amniotic fluid electrofocusing in the presence of detergents: 0.1 per cent Triton X-100, 0.1 per cent DOC, or 0.1 per cent SDS. In these conditions, the pattern revealed by BAEE was modified, but no differences were observed between CF and normal amniotic fluids.  相似文献   

20.
液体推进剂贮罐泄漏数值模拟   总被引:1,自引:0,他引:1  
液体推进剂属于危险化学品,一旦发生泄漏,可能会引起火灾、爆炸、人员中毒、环境污染等后果。因此,有效控制推进剂泄漏,对事故处理和降低危害非常重要。运用FUNENT软件对推进剂贮罐泄漏进行数值模拟,研究泄漏孔位于液面下方时,液体推进剂泄漏到不同液位时的速度分布情况,分析了内压、孔径、孔高以及液体推进剂种类等因素对泄漏后泄漏口速度分布的影响,并将模拟结果与经验公式进行对比分析,验证了模拟结果的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号