首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract:  Human-induced habitat fragmentation constitutes a major threat to biodiversity. Both genetic and demographic factors combine to drive small and isolated populations into extinction vortices. Nevertheless, the deleterious effects of inbreeding and drift load may depend on population structure, migration patterns, and mating systems and are difficult to predict in the absence of crossing experiments. We performed stochastic individual-based simulations aimed at predicting the effects of deleterious mutations on population fitness (offspring viability and median time to extinction) under a variety of settings (landscape configurations, migration models, and mating systems) on the basis of easy-to-collect demographic and genetic information. Pooling all simulations, a large part (70%) of variance in offspring viability was explained by a combination of genetic structure ( FST ) and within-deme heterozygosity ( HS ). A similar part of variance in median time to extinction was explained by a combination of local population size ( N ) and heterozygosity ( HS ). In both cases the predictive power increased above 80% when information on mating systems was available. These results provide robust predictive models to evaluate the viability prospects of fragmented populations.  相似文献   

2.
Abstract: In natural populations, many breeders do not leave surviving offspring, and as a result many potential genetic lineages are lost. I examined lineage extinction in Serengeti cheetahs ( Acinonyx jubatus ) and found that 76% of matrilines were lost over a 25-year period. Production of future breeders was nonrandom and generally confined to a few families. Five out of 63 matrilines accounted for 45% of the total cheetah population over the course of the study. Lineage persistence is perhaps best illustrated by the variance in lifetime reproductive success ( LRS) and heritability in this parameter. In female cheetahs, variance in LRS was high, and new data show that this LRS was heritable. Variance in LRS and heritability in LRS have dramatic consequences for effective population size, N e. I calculated N e for cheetahs, taking into account fluctuating population size, unequal sex ratio, non-Poisson distribution of reproductive success, and heritability of fitness. The N e was most strongly affected by variance in reproductive success and especially heritability in reproductive success. The variance N e was 44% of the actual population size, and the inclusion of heritability further reduced N e to only 15% of the actual population, a ratio similar to that of a social carnivore with reproductive suppression. The current cheetah population in the Serengeti is below numbers suggested by N e estimates as sufficient to maintain sufficient genetic diversity.  相似文献   

3.
Levels of variation in eight large captive populations of D. melanogaster (census sizes ∼ 5000) that had been in captivity for periods from 6 months to 23 years (8 to 365 generations) were estimated from allozyme heterozygosities, lethal frequencies, and inversion heterozygosities and phenotypic variances, additive genetic variances ( V A), and heritabilities ( h 2) for sternopleural bristle numbers. Correlations between all measures of variation except lethal frequencies were high and significant. All measures of genetic variation declined with time in captivity, with those for average heterozygosities, V A, and h 2 being significant. The effective population size ( N e) was estimated to be 185–253 in these populations, only 0.037–0.051 of census size (N). Levels of allozyme heterozygosities declined rapidly in two large captive populations founded from another wild stock, being reduced by 86% and 62% within 2.5 years in spite of being maintained at sizes of approximately 1000 and 3500. Estimates of N e/ N for these populations were only 0.016 and 0.004. Two estimates of N e/ N for captive populations of D. pseudoobscura from data in the literature were also low at 0.036 and 0.012. Consequently, the rate of loss of genetic variation in captive populations and endangered species may be more rapid than hitherto recognized. Merely maintaining captive populations at large census sizes may not be sufficient to maintain essential genetic variation.  相似文献   

4.
Abstract: Genetic diversity is expected to decrease in small and isolated populations as a consequence of bottlenecks, founder effects, inbreeding, and genetic drift. The genetics and ecology of the rare perennial plant Lychnis viscaria (Caryophyllaceae) were studied in both peripheral and central populations within its distribution area. We aimed to investigate the overall level of genetic diversity, its spatial distribution, and possible differences between peripheral and central populations by examining several populations with electrophoresis. Our results showed that the level of genetic diversity varied substantially among populations (  H exp = 0.000–0.116) and that the total level of genetic diversity (mean H exp = 0.056) was low compared to that of other species with similar life-history attributes. The peripheral populations of L. viscaria had less genetic variation (mean H exp = 0.034) than the central ones (0.114). Analysis of genetic structure suggested limited gene flow (mean F ST = 0.430) and high differentiation among populations, emphasizing the role of genetic drift (  N e m = 0.33). Isolation was even higher than expected based on the physical distance among populations. We also focused on the association between population size and genetic diversity and possible effects on fitness of these factors. Population size was positively correlated with genetic diversity. Population size and genetic diversity, however, were not associated with fitness components such as germination rate, seedling mass, or seed yield. There were no differences in the measured fitness components between peripheral and central populations. Even though small and peripheral populations had lower levels of genetic variation, they were as viable as larger populations, which emphasizes their potential value for conservation.  相似文献   

5.
Abstract: We used microsatellite DNA markers to investigate the maintenance of genetic diversity within and between samples of subpopulations (spanning five captive-bred generations) of the haplochromine cichlid Prognathochromis perrieri . The subpopulations are maintained as part of the Lake Victoria Cichlid species survival plan. Changes in the frequencies of 24 alleles, over four polymorphic loci, were used to estimate effective population size (   N e   ). Point estimates of N e ranged from 2.5 to 7.7 individuals and were significantly smaller than the actual census size (   N obs  ) for all subpopulations (32–243 individuals per generation), with the corresponding conservative N e   /  N obs ratios ranging from 0.01 to 0.12. Approximately 19% of the initial alleles were lost within the first four generations of captive breeding. Between-generation comparisons of expected heterozygosity showed significant losses ranging from 6% to 12% per generation. Seven private alleles were observed in the last sampled generation of four subpopulations, and analysis of population structure by F ST indicated that approximately 33% of the total genetic diversity is maintained between the subpopulations from different institutions. To reduce the loss of genetic variation, we recommend that offspring production be equalized by periodically removing dominant males, which will encourage reproduction by additional males. Consideration should also be given to encouraging more institutions to maintain populations, because a significant fraction of the genetic variation exists as among-population differences resulting from random differentiation among subpopulations.  相似文献   

6.
Equalization of family sizes is recommended for use in captive breeding programs, as it is predicted to double effective population sizes, reduce inbreeding, and slow the loss of genetic variation. The effects of maintaining small captive populations with equalization of family sizes versus random choice of parents on levels of inbreeding genetic variation, reproductive fitness, and effective population sizes ( N e) were evaluated in 10 lines of each treatment maintained with four pairs of parents per generation. The mean inbreeding coefficient ( F ) increased at a significantly slower rate with equalization than with random choice (means of 0.35 and 0.44 at generation 10). Average heterozygosities at generation 10, based on six polymorphic enzyme loci, were significantly higher with equalization (0.149) than with random choice (0.085), compared to the generation 0 level of 0.188. The competitive index measure of reproductive fitness at generation 11 was more than twice as high with equalization as with random choice, both being much lower than in the outbred base population. There was considerable variation among replicate lines within treatments in all the above measures and considerable overlap between lines from the two treatments. Estimates of N e for equalization were greater than those for random choice, whether estimated from changes in average heterozygosities or from changes in F. Equalization of family sizes can be unequivocally recommended for use in the genetic management of captive populations.  相似文献   

7.
Abstract:  The area of Caricion davallianae alliance in Switzerland has been considerably reduced and fragmented during the last 150 years. We assessed the genetic variability, inbreeding level, and among-population differentiation of two common habitat-specific plant species, Carex davalliana SM. and Succisa pratensis Moench, in 18 Caricion davallianae fen meadows subjected to fragmentation. We used a spatial field design of fen systems (six systems total), each consisting of one large habitat island and two small habitat islands. We used allozyme electrophoresis to derive standard genetic parameters ( A, P, HO, HE, FIS, FST ). In Carex we identified a consistently lower A in isolated habitat islands; furthermore, HE was lower in small habitat islands than in large habitat islands. In Succisa we identified a lower HO in small habitat islands than in larger ones. Small habitat islands were marginally significantly differentiated (  FST ) from large islands for Succisa . For both species, no effects were evident for FIS ; therefore, we argue that genetic drift rather than inbreeding is the main cause of the observed differences. The genetic structure of Carex and Succisa in small habitat islands differed from that in large habitat islands, but differences were small. It appears that the observed differences in genetic variability among fen meadows correspond to observed differences in fitness and demographic traits. We show that habitat fragmentation affects not only the rare species in an ecosystem but also reduces the survival probabilities of common species. One of the main goals of conservation should be to mitigate fragmentation of natural habitats in order to increase population sizes and connectivity.  相似文献   

8.
Relationship of Effective to Census Size in Fluctuating Populations   总被引:6,自引:0,他引:6  
Abstract: The effective size of a population (    N e   ) rather than the census size (    N ) determines its rate of genetic drift. Knowing the ratio of effective to census size, N e  /   N , is useful for estimating the effective size of a population from census data and for examining how different ecological factors influence effective size. Two different multigenerational ratios have been used in the literature based on either the arithmetic mean or the harmonic mean in the denominator. We clarify the interpretation and meaning of these ratios. The arithmetic mean N e  /   N ratio compares the total number of real individuals to the long-term effective size of the population. The harmonic mean N e  /   N ratio summarizes variation in the N e  /   N ratio for each generation. In addition, we show that the ratio of the harmonic mean population size to the arithmetic mean population size provides a useful measure of how much fluctuation in size reduced the effective size of a population. We discuss applications of these ratios and emphasize how to use the harmonic mean N e  /   N ratio to estimate the effective size of a population over a period of time for which census counts have been collected.  相似文献   

9.
Estimating the Effective Population Size of Conserved Populations   总被引:10,自引:0,他引:10  
Accurate estimation of effective population size is important in attempts to conserve small populations of animals or plants. We review the genetic and ecological methods that have been used to estimate effective population size in the past and suggest that, while genetic methods may often be appropriate for the estimation of N e, and its monitoring, ecological methods have the advantage of providing data that can help predict the effect of a changed environment on N e. Estimation of N e, is particularly complex in populations with overlapping generations, and we summarize previous empirical estimates of N e that used ecological methods in such populations. Since it is often difficult to assess what parameters and assumptions have been used in previous calculations, we suggest a method that provides a good estimate of N e, makes clear what assumptions are involved, and yet requires a minimum of information. The method is used to analyze data from 14 studies. In 36% (5) of these studies, our estimate is in excellent agreement with the original, and yet we use significantly less information, in 21% (3) the original estimate is markedly lower, in 43% (6) it is markedly higher. Reasons for the discrepancies are suggested. Two of the underestimates involve a failure in the original to account for a long maturation time, and four of life overestimates involve problems in the original with the correction for overlapping generations.  相似文献   

10.
Abstract:  Endangered species are commonly found in several (partially) isolated populations dispersed on different fragments of a habitat, natural reserve, or zoo. A certain level of connectivity among such populations is essential for maintaining genetic variation within and between populations to allow local and global adaptation and for preventing inbreeding depression. A rule of thumb widely accepted by the conservation community is that one migrant per generation (OMPG) into a population is the appropriate level of gene flow. This rule is based on Wright's study of his island model under a long list of simplifying assumptions. I examined the robustness of the OMPG rule to the violation of each of the many assumptions, quantifying the effect with population genetics theory. I showed that, when interpreted as one effective migrant per generation, OMPG is generally valid for real populations departing from the ideal model in the discrepancies of actual (  N ) and effective (  Ne  ) population sizes and actual ( m ) and effective ( me  ) migration rates. I also addressed the issue of converting the effective number of migrants (  Me= Neme  ) into the actual number of migrants ( M = Nm  ) of a certain age and sex. In particular, Ne < N , a case common for natural populations, did not necessarily require M > Me to maintain a certain level of differentiation among populations. Rather, translating the elusive Me into the manageable M depends on the specific causes (e.g., biased sex ratio, reproductive skew) that lead to Ne < N .  相似文献   

11.
Abstract:  We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow ( Hybognathus amarus ). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum-likelihood analysis of temporal genetic data indicated, however, that present-day effective population size ( NeV ) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers ( NeV/N ) was ∼ 0.001 during the study period (1999 to 2001). Coalescent-based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size ( NeI  ) that ranged between 105 and 106. We propose that disparity between contemporary and historical estimates of Ne and low contemporary Ne/N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life-history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced Ne to critically low values over ecological time.  相似文献   

12.
Low Genetic Variability in the Hawaiian Monk Seal   总被引:1,自引:0,他引:1  
The Hawaiian monk seal (   Monachus schauinslandi) is a critically endangered species that has failed to recover from human exploitation despite decades of protection and ongoing management efforts designed to increase population growth. The seals breed at five principal locations in the northwestern Hawaiian islands, and inter-island migration is limited. Genetic variation in this species is expected to be low due to a recent population bottleneck and probable inbreeding within small subpopulations. To test the hypothesis that small population size and strong site fidelity has led to low within-island genetic variability and significant between-island differentiation, we used two independent approaches to quantify genetic variation both within and among the principal subpopulations. Mitochondrial control region and tRNA gene sequences (359 base pairs) were obtained from 50 seals and revealed very low genetic diversity (0.6% variable sites), with no evidence of subpopulation differentiation. Multilocus DNA fingerprints from 22 individuals also indicated low genetic variation in at least some subpopulations (band-sharing values for "unrelated" seals from the same island ranged from 49 to 73%). This method also provided preliminary evidence of population subdivision (  F'st estimates of 0.20 and 0.13 for two adjacent island pairs). Translocations of seals among islands may therefore have the potential to relieve local inbreeding and possibly to reduce the total amount of variation preserved in the population. Genetic variation is only one of many factors that determine the ability of an endangered species to recover. Maintenance of existing genetic diversity, however, remains an important priority for conservation programs because of the possibility of increased disease resistance in more variable populations and the chance that inbreeding depression may only be manifest under adverse environmental conditions.  相似文献   

13.
I used DNA fingerprinting to provide the first analysis of the genetic composition of western pond turtle ( Clemmys marmorata ) populations in Washington, Oregon, and California. Populations of the western pond turtle in Washington and northern Oregon are rapidly approaching extinction. Genetic similarity within the largest northern populations, which are located inland, is high. An analysis of population substructure (Fst) revealed significant genetic divergence between inland populations, indicating a lack of dispersal and gene flow between sites. In contrast, northern coastal sites are not genetically distinct, but there are few if any viable populations remaining in this region. Genetic variability within southern California populations is a great deal higher than in northern inland sites. Similarly, a low Fst value indicated a lack of genetic differentiation between southern sites. An inter-regional analysis of population substructure (Fst = 0.24) revealed a significant degree of genetic divergence between geographical regions throughout the range. In addition, an estimate of western pond turtle phylogeny showed a genetic break in the species between northern and southern populations. Both population subdivision and phylogenetic analyses suggest a lack of appreciable gene flow between geographical regions for a considerable period of time. Genetic analyses support traditional subdivision based solely on the morphological variation of Clemmys marmorata into two subspecies: northern Clemmys marmorata marmorata and southern Clemmys marmorata pallida . Recovery of dwindling northern populations must combine demographic and genetic considerations. A first step should be to preserve local gene pools while augmenting population numbers, with the goal of preventing the extinction of this genetically and morphologically distinct subspecies.  相似文献   

14.
Abstract: The endangered Hawaiian monk seal breeds at six locations in the northwestern Hawaiian Islands. To determine whether significant genetic differentiation exists among these sites, we used microsatellite loci to examine the monk seal population structure at the five largest breeding colonies. Of 27 loci isolated from other seal species, only 3 were polymorphic in an initial screening of one individual from each breeding site. Only two alleles were found at each of these 3 loci in samples of 46–108 individuals. This extremely low variation is consistent with other measures of genetic variability in this species and is probably the result of a recent severe population bottleneck, combined with a long-term history of small population sizes. Although the smallest monk seal subpopulation in this study ( Kure Atoll) showed some evidence of heterozygote deficit, possibly indicative of inbreeding, the next smallest ( Pearl and Hermes Reef) had an apparent excess of heterozygous individuals. Genetic differentiation was detected between the two subpopulations at extreme ends of the range ( Kure and French Frigate Shoals). This trend was significant only at the microsatellite locus for which we had the largest sample size ( Hg6.3: R ST = 0.206, p = 0.002; allelic goodness of fit G h = 15.412, p < 0.005). French Frigate Shoals is the source population for translocated animals that have been released primarily at Kure Atoll. Differentiation between these sites consisted of allele frequency differences (with the same allele predominant in each location at all three loci), rather than the preservation of alternative alleles. Although the translocations have had positive demographic effects, we recommend continued genetic monitoring of both the source and recipient populations because translocated individuals are now entering the breeding population.  相似文献   

15.
Erosion of Heterozygosity in Fluctuating Populations   总被引:1,自引:0,他引:1  
Abstract: Demographic, environmental, and genetic stochasticity threaten the persistence of isolated populations. The relative importance of these intertwining factors remains unresolved, but a common view is that random demographic and environmental events will usually drive small populations to the brink of extinction before genetic deterioration poses a serious threat. To evaluate the potential importance of genetic factors, we analyzed a model linking demographic and environmental conditions to the loss of genetic diversity in isolated populations undergoing natural levels of fluctuation. Nongenetic processes—environmental stochasticity and population demography—were modeled according to a bounded diffusion process. Genetic processes were modeled by quantifying the rate of drift according to the effective population size, which was predicted from the same parameters used to describe the nongenetic processes. We combined these models to predict the heterozygosity remaining at the time of extinction, as predicted by the nongenetic portion of the model. Our model predicts that many populations will lose most or all of their neutral genetic diversity before nongenetic random events lead to extinction. Given the abundant evidence for inbreeding depression and recent evidence for elevated extinction rates of inbred populations, our findings suggest that inbreeding may be a greater general threat to population persistence than is generally recognized. Therefore, conservation biologists should not ignore the genetic component of extinction risk when assessing species endangerment and developing recovery plans.  相似文献   

16.
Double Allee Effects and Extinction in the Island Fox   总被引:3,自引:0,他引:3  
Abstract:  An Allee effect (AE) occurs in populations when individuals suffer a decrease in fitness at low densities. If a fitness component is reduced (component AE), per capita population growth rates may decline as a consequence (demographic AE) and extinction risk is increased. The island fox ( Urocyon littoralis ) is endemic to six of the eight California Channel Islands. Population crashes have coincided with an increase in predation by Golden Eagles ( Aquila chrysaetos ). We propose that AEs could render fox populations more sensitive and may be a likely explanation for their sharp decline. We analyzed demographic data collected between 1988 and 2000 to test whether fox density (1) influences survival and reproductive rates; (2) interacts with eagle presence and affects fox fitness parameters; and (3) influences per capita fox population trends. A double component AE simultaneously influenced survival (of adults and pups) and proportion of breeding adult females. The adult survival AE was driven by predation by eagles. These component AEs led to a demographic AE. Multiple-component AEs, a predation-driven AE, and the simultaneous occurrence of both component and demographic AEs in a mammal are all previously unreported processes. Populations below 7 foxes/km2 could have suboptimal population growth rates due to the demographic AE, and AEs may have contributed to the dramatic declines in three fox populations. Because fox densities in critically endangered populations are well below this level, removing Golden Eagles appears necessary to prevent a predation-driven AE. Conservationists should also be aware of AEs when planning the release of captive foxes. More generally, our findings highlight the danger of overlooking AEs in the conservation of populations of rare or threatened species.  相似文献   

17.
Abstract:  In conservation ecology there is an urgent need for indicators that can be used to predict the risk of extinction of populations. Identifying extinction-prone populations has been difficult because few data sets on the demographic characteristics of the final stage to extinction are available and because of problems in separating out stochastic effects from changes in the expected dynamics. We documented the demographic changes that occurred during the period prior to extinction of a small island population of House Sparrows ( Passer domesticus ) after the end of permanent human settlement. A mark-recapture analysis revealed that this decline to extinction was mainly due to increased mortality after closure of the last farm that resulted in a negative long-term-specific growth rate. No change occurred in either the structural composition (breeding sex ratio and age distribution) of the population or in female recruitment. No male, however, recruits were produced on the island after the farm closure. Based on a simple, stochastic, density-dependent model we constructed a population prediction interval (PPI) to estimate the time to extinction. The 95% PPI slightly overestimated the time to extinction with large uncertainty in predictions, especially due to the influence of demographic stochasticity and parameter drift. Our results strongly emphasize the importance of access to data on temporal variation that can be used to parameterize simple population models that allow estimation of critical parameters for credible prediction of time to extinction.  相似文献   

18.
Abstract:  Determining the inter-island migration abilities of pest species and delimiting eradication units enable more viable long-term eradication campaigns because recurrent colonization from neighboring islands is avoided. We examined the genetic structure of the invasive Norway rat ( Rattus norvegicus ) to identify gene flow between islands and delimit population units at different geographical scales. We investigated variation in eight microsatellite loci in rat populations from 18 islands, representing five archipelagos off the Brittany coast (France). Although most of the islands are isolated from each other, short genetic distances, weak FST values between close islands, and a high level of cross-assignment showed that individuals collected on different islands could represent a single population unit. A Bayesian clustering method also supported the existence of high levels of gene flow between some neighboring islands. Thus, the statement "one island equals one population" can be false when inter-island distances are less than a few hundred meters. Genetic studies enable the definition of island clusters among which migration may occur that should be considered eradication units. To avoid reinvasion and to minimize ecological and economic costs, rats on all islands in an eradication unit should be eradicated simultaneously. We suggest that the genetic monitoring we performed here can be applied for management of any pest.  相似文献   

19.
Abstract: Starch-gel electrophoresis was used to examine the levels and distribution of genetic diversity in two Adenophora species: the narrow endangered Adenophora lobophylla and its widespread congener, A. potaninii . Based on allozyme variation at 18 putative loci, we measured high levels of genetic variability both in the endangered and the widespread species, with 83.3% of the loci being polymorphic. The mean expected heterozygosity within populations (   H ep  ) and within species (   H es  ) were 0.234 and 0.244 for A. potaninii and were as high as 0.210 and 0.211 for A. lobophylla . There was higher differentiation among populations in A. potaninii (   F ST = 0.155) than in A. lobophylla (   F ST = 0.071). The high levels of genetic diversity in the present allozyme survey are consistent with the morphological variation observed in these species and may be attributed to high outcrossing rates in the Adenophora species. In addition, A. lobophylla was identified as a distinct species on the basis of Nei's genetic distances and thus should be given a high priority for protection. It is noteworthy that the endangered A. lobophylla maintains much higher genetic diversity than most endemic or narrowly distributed plant species in spite of its restricted distribution. We hypothesize that A. lobophylla has become endangered for ecological and stochastic reasons, including habitat destruction or environmental changes, mud slides, and human disturbance such as grazing and mowing. Consequently, habitat protection is of particular importance for conserving this endangered species.  相似文献   

20.
We examined genetic diversity in 464 individuals of the monotypic lily Harperocallis flava in its two habitats (seepage bogs and a roadside right-of-way) and five populations of a co-occurring related lily, Tofieldia racemosa. The endangered H. flava, endemic to the Apalachicola lowlands of the Florida panhandle, was monomorphic for the 22 loci scored. In contrast, T. racemosa had a high proportion of polymorphic loci ( Ps = 68.2%; Pp = 47.7%) with moderate genetic diversity (   Hes = 0.134; Hep = 0.114). Estimated gene flow was moderately high ( Nm = 2.07) for T. racemosa, with most (93%) of the total genetic diversity found within populations. Despite the low level of genetic divergence, some isolation by distance was detected among T. racemosa populations. Harperocallis flava and other species without discernable genetic variation pose special problems for conservation biologists because genetic criteria are not available for the development of ex situ and in situ conservation and management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号