首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
营养富集、添加醋酸钾和灌注培养都是改善杂交瘤细胞培养的策略,在Cp9B细胞的静止分批培养中,添加氨基酸和维生素延长了培养时间,但对最大细胞密度影响不大,在反应器分批培养中,营养物明显促进细胞增殖,最大细胞密度比原来提高3.5倍,利用添加1g/L醋酸钾的反应器灌注2实验说明,从普通培养基转到营养富集培养基,反应器中的平均细胞密度,抗体浓度和抗体滴度得到了进一步的提高,在培养上清中,乳酸、氨和丙氨酸大  相似文献   

2.
雾化生物反应器培养青蒿毛状根生产青蒿素   总被引:6,自引:0,他引:6  
利用超声雾化生物反应器进行青蒿毛状根多层培养生产青蒿素.对超声雾化生物反应器中营养雾流动状况及毛状根生长过程的形态特征进行观察,并在合适的工艺条件下,经20d分批培养获得生物量10.3g/L,青蒿素产量179.1mg/L.  相似文献   

3.
流化床生物反应器培养青蒿毛状根生产青蒿素   总被引:3,自引:0,他引:3  
利用自制的流化床生物反应器进行青蒿毛状根多层培养生产青蒿素.对毛状根在生物反应器生长过程的形态特征进行观察,并在合适的工艺条件下,经20d分批培养获得生物量干重21.3g/L,青蒿素产量349.8mg/L,并对培养过程中底物消耗的动力学进行了研究.  相似文献   

4.
诸葛菜下胚轴和子叶原生质体培养   总被引:2,自引:0,他引:2  
以诸葛菜无菌苗的下胚轴和子叶组织为材料,分离原生质体,FW产量分别为5×108/g和1×107/g.下胚轴原生质体经纯化后在原生质体培养基中作液体浅层暗培养,培养密度为5×104/mL,培养第二天即出现第一次分裂,7~9d后分裂频率约50%,两周后出现大量细胞团;转入扩增培养基中,即扩增出大量小愈伤,植板率约为5%;愈伤转入分化培养基后即可诱导分化成苗,分化率达100%,随后转到生根培养基中,即形成完整植株.子叶原生质体的培养方式与下胚轴原生质体培养基本相同,结果也类似.  相似文献   

5.
采用平板稀释和PCR-DGGE相结合的方法,比较了4种培养基(果胶富营养培养基PM,只含果胶一种营养的培养基PA,添加果胶的寡营养培养基YPP以及与YPP营养成分一致但不添加果胶的寡营养培养基YPG)分离番茄根际细菌的能力.结果显示:PA培养基能够分离到42种形态的细菌;YPP培养基可以分离到最高的细菌菌落数,分离获得的种类比PA少;YPP培养基分离获得细菌的种类和菌落数量比YPG培养基要多.聚类分析也显示只有果胶一种营养的PA培养基能分离到最多种类,分离获得的菌群与自然环境中微生物群落最相似.研究结果表明添加番茄根际主要分泌物——果胶到培养基中可以提高培养基分离细菌的能力.  相似文献   

6.
蚯蚓是潜在的富硒蛋白饲料.在大棚环境条件下采用不同配比的3种农业废弃物(牛粪、菌渣和残余菜叶)和低浓度硒(Na_2SeO_3,0/20/40 mg/kg)对赤子爱胜蚓(Eisenia fetida)进行培养,研究不同培养基质和硒添加量对蚯蚓生长繁殖和富硒能力的影响.结果发现,培养45 d后,与相同浓度硒处理的其他3组基质[纯牛粪、牛粪+菌渣+菜叶(干重比为6/2/2和3/6/1)]相比,牛粪+菌渣组(干重比为1/1)蚯蚓总生物量、蚓茧数、蚓体硒富集量和富集系数均达到最大,其中总生物量比培养前最大增加了18.21%,每100条蚯蚓产蚓茧数量达68.35-72.45个,蚓体硒富集量最高达到151.56mg/kg,蚓体硒富集系数最大为4.91.当硒添加浓度为20 mg/kg和40 mg/kg时,以牛粪+菌渣+菜叶为基质的两组(干重比为6/2/2,3/6/1)在培养初期对蚯蚓活性和培养后的总生物量增加均有一定的抑制作用,蚯蚓总生物量最大降低了8.48%.在不同基质培养条件下,外源添加硒对蚓体硒富集量和硒富集系数增加有促进作用,蚓体硒富集量与基质硒添加量均呈现出剂量-效应关系.上述结果表明,赤子爱胜蚓对硒具有极强的富集能力且培养基质种类对蚯蚓的生长繁殖具有很大的影响,牛粪和菌渣组合(干重比为1/1)是最佳的富硒蚯蚓培养基质且基质硒添加浓度≤40 mg/kg不影响蚯蚓生长繁殖.(图3表4参25)  相似文献   

7.
鉴于鱼类和哺乳动物的谷氨酰胺代谢途径有所不同,为了优化CHSE细胞的培养基和大量培养的过程控制。考察了谷氨酰胺对CHSE细胞生长和代谢的影响.在CHSE细胞批培养中,无谷氨酰胺的M199培养基可以支持CHSE细胞的生长,当初始谷氨酰胺浓度c=0.54mmolL^-1时,细胞可达到最高密度nmax/10^5mL^-1=16.19;而更高浓度的谷氨酰胺(c:1.76-5.62mmolL^-1)对细胞生长有抑制作用.在c=0~5.62mmolL^-1初始谷氨酰胺浓度的批培养中,葡萄糖的利用和乳酸的生成基本一致,随谷氨酰胺浓度的升高,Qglc和Qlac增加,Yn/glc降低.另外,随着初始谷氨酰胺浓度的增加(c=0~3.33mmolL^-1),谷氨酰胺的消耗增加,Yn/gln和Yammo/gln分别下降58%和50%;当初始谷氨酰胺浓度继续增加时,谷氨酰胺的消耗、Yn/gla和Yammo/gln基本不变.此外,当初始谷氨酰胺浓度为0时,丙氨酸成为消耗性的氨基酸;Yala/gln先随初始谷氨酰胺浓度的增加(c=0.54~1.76mmolL^-1)而增加,而后又随初始谷氨酰胺浓度的增加(c=1.76~3.33mmolL^-1)而降低.最后维持不变.图4表3参16  相似文献   

8.
通过在Zarrouk培养基中添加不同浓度的谷氨酸(Glu)对螺旋藻进行混合营养培养,研究了不同浓度的Glu对螺旋藻的生长、叶绿素、蛋白质含量以及光合作用的影响,结果表明,Glu浓度小于1.0gL^-1时,藻生长状态、生理活性都明显优于Z氏培养基,其中以在0.8gL^-1浓度时生长最好;当Glu浓度为1.0gL^-1时,藻的生长状态与Z氏培养基中极为相似;Glu浓度大于1.0gL^-1时,对藻的生长产生一定抑制作用,Glu的添加对藻液体系的pH值有一定的缓冲作用,图4表2参7  相似文献   

9.
一株降解苄嘧磺隆光合细菌的分离鉴定及其降解特性   总被引:1,自引:0,他引:1  
从农药厂工业废水和污泥中富集分离到一株能降解苄嘧磺隆(Bensulfuron methyl)的光合细菌PSB07-6,根据分离菌株的细胞形态结构、活细胞光吸收特征、生理生化特征以及系统发育分析将该菌初步鉴定为沼泽红假单胞菌(Rhodopseudomonas palustris).高效液相色谱法(HPLC)测定该菌降解光合细菌培养基中苄嘧磺隆的能力,在pH为6.5的光合细菌培养基中培养5 d,对350 mg·L-1苄嘧磺隆降解率达25.03%.添加回收率为105%~112%.降解特性研究结果表明,该菌能以苄嘧磺隆为唯一碳源和氮源,降解最佳条件为30℃、pH6.5.  相似文献   

10.
自然温度(12~21℃)、贫营养、活性污泥提取物等目前提高菌群可培养性的方法用于培养活性污泥好氧异养菌群的结果显示,这些方法均能显著提高平板培养基的分离培养能力.含活性污泥提取物的贫营养培养基ASEⅡ培养细菌的数量可占细菌总数的23.2%,在所有培养基中最高,而营养最丰富的培养基MRS培养细菌的数量只占细菌总数的8.82%,在所有培养基中最低.图1表4参14  相似文献   

11.
紫球藻的载体培养研究   总被引:1,自引:0,他引:1  
通过对紫球藻的载体培养进行的较详细研究,获得了适合于紫球藻培养的理想载体;采用载体培养条件的优化和流加营养物质、通气培养以及半连续培养等培养手段,显著提高了紫球藻细胞的质量浓度(ρmax =5.52 g L- 1) . 实验结果表明,利用载体法培养紫球藻不仅能有效地实现高密度培养,易于实现该微藻的连续或半连续培养,而且为细胞的采收带来了很大的方便  相似文献   

12.
利用三相鼓泡塔反应器固定化培养黄孢原毛平革菌,可以高效地合成木素过氧化物酶系,固定化载体为聚氨酯泡沫塑料.实验表明,合成木素过氧化物酶和锰过氧化物酶的最佳通气量均是1.0vvm。在此通气量下,最大木素过氧化物酶的酶活达367U/L,最大锰过氧化物酶的酶活达4.72U/mL。在使用相同的培养基和固定化载体单位体积用量条件下,与摇瓶培养相比,酶活分别增大1倍和1.2倍.一定条件下,在三相鼓泡塔中可以进行重复间歇培养生产木素过氧化物酶,连续进行了5批培养,每批最大木素过氧化物酶的活力均在250U/L以上,最高酶活出现在第二批为480U/L,总培养时间达22d.图9参15  相似文献   

13.
The release of dissolved free amino acids in axenic batch cultures of the diatom Chaetoceros debile during different growth phases was studied during the late summer of 1982. Variations due to ASP, HIS, ALA, SER, THR, PHE+NH4, LEU and ORN were observed. The proportions of each amino acid differed according to growth phase. Maximum release and accumulation in the medium, corresponding to a rise ranging from 10-8 to 10-6 M, occurred at the transition between the exponential and stationary phases, and coincided with a shift in the intracellular protein and carbohydrate concentrations, and in the chlorophyll: phaeophytin ratio. It is suggested that zooplankton grazers can benefit from the accumulation of phytoplankton standing stock and nutritious compounds at times when the concentration of extracellular amino acids is high enough to trigger chemosensory detection of algal food; i.e., at the end of the exponential growth phase.  相似文献   

14.
Cell nitrogen quotas and uptake rates following ammonium additions were measured during ammonium-limited growth transients obtained by starving batch and chemostat cultures of Thalassiosira pseudonana (Clone 3 H). During starvation, cell quotas decreased by more than 50% in batch cultures. In chemostat cultures, the drop in cell quota during starvation decreased with dilution rate, from more than 50% at 1.45 d-1, to less than 10% at 0.22 d-1. Minimal levels of 3 to 4×10-2 pg-at. N cell-1 were reached after 24 h starvation in both batch and chemostat cultures. Uptake rates over the first minute of perturbation experiments were 3 times the long-term (10 to 30 min) rates. In batch cultures, specific uptake rates increased from 4 d-1 to 20 d-1 after 24 h starvation. Uptake rates per cell were independent of starvation time and dilution rate in chemostat cultures, but lower in non-starved batch cultures. The implications of these data for models of phytoplankton growth are discussed: the data support models which predict a depression in average growth rates when diatoms encounter microscale patches in oligotrophic environments.  相似文献   

15.
H. Kayser 《Marine Biology》1979,52(4):357-369
The growth interactions between the marine dinoflagellates Scrippsiella faeroense (Paulsen) Balech et Soares, Prorocentrum micans Ehrenberg and Gymnodinium splendens Lebour were investigated in batch and continuous-culture combinations. Generation times were 1.3±0.2 days for S. faeroense; 1.6±0.1 days for P. micans and 1.8 ± 0.2 days for G. splendens. In mixed batch cultures, growth depended strongly on the ratio between cell numbers of the two species inoculated at the start of the experiments. In various inocula, the more abundant species prevailed and suppressed the competitor even during exponential growth. Total cell production of the suppressed forms was lowered drastically; initial generation time, however, remained more or less unaffected. In equal inocula, S. faeroense dominated over G. splendens, P. micans over S. faeroense and G. spendens over P. micans. In continuous cultures, the species grew independently of each other during the exponential stage; cell number was regulated only by generation times. Competitive inhibition did not occur until maximum cell densities of the dominating forms had been reached. Filtration experiments indicated inhibiting effects mainly in filtered culture liquids of stagnating cultures: reinoculated cells of all three test populations showed a somewhat reduced total cell production. Short initial lag phases were indicated in filtered culture liquids of P. micans and G. spendens; following this period, generation times of the test population remained unaffected, however. The experiments show that growth in multispecies cultures is regulated during the exponential stage mainly by nutrient competition, while at maximum cell densities an additional effect of inhibiting metabolic products is involved. Whether this effect is caused by toxic algal excretions or by bacterial decomposition products of dead cells could not be determined. Sexual stages occurred in aged cultures of S. faeroense and G. splendens both in monocultures and in multispecies combinations and influenced the equilibrium of the competing species. The results are discussed in the light of the findings of other authors.This paper was presented at a poster presentation of the Second International Conference on Toxic Dinoflagellate Blooms, held in Key Biskayne, Florida, USA, 1978.  相似文献   

16.
The present work studied the influence of glucose feeding on the ligninolytic enzyme production of Phanerochaete chrysosporium in a nitrogen-limited (C/N ratio is 56/8.8 mmol/L) medium. Several sets of shaking flask experiments were conducted. The results showed that 2 g/L glucose feeding on the first day of the culture (24 h after the inoculation) simulated both fungal biomass growth and enzyme production. The manganese peroxidase (MnP) activity was 2.5 times greater than that produced in cultures without glucose feeding. Furthermore, the glucose feeding mode in fed-batch culture was also investigated. Compared to cultures with glucose feeding every 48 h, cultures with glucose feeding of 1.5 g/L (final concentration) every 24 h produced more enzymes. The peak and total yield of MnP activity were 2.7 and 3 times greater compared to the contrast culture, respectively, and the enzyme was kept stable for 4 days with an activity of over 200 U/L.  相似文献   

17.
非洲爪蟾肝细胞原代培养方法   总被引:1,自引:1,他引:0  
非洲爪蟾是研究内分泌干扰物的良好模型动物,其体外肝细胞可用于类雌激素活性评价、污染物代谢等研究.论文探讨了非洲爪蟾肝细胞原代培养的方法,采用两步原位灌注法分离非洲爪蟾肝细胞,通过胶原酶的作用使细胞之间解离,后经过一系列转速的离心,获得纯化的肝实质细胞.研究结果表明,采用此法获得的细胞数量为2.5~5×106个,细胞成活率达95%以上,纯度在95%以上,细胞胞体透亮,折光性强,状态良好.培养24h后贴壁较好,每2d换液1次,可培养8~10d,细胞可满足多种后续实验的要求.  相似文献   

18.
Toxin content (fmol cell–1) and a suite of elemental and macromolecular variables were measured in batch cultures of the dinoflagellatesAlexandrium fundyense, A. tamarense andAlexandrium sp. from the southern New England region, USA. A different perspective was provided by semicontinuous cultures which revealed sustained, steady-state physiological adaptations by cells to N and P limitation. Two types of variability were investigated. In batch culture, changes in nutrient availability with time caused growth stage variability in toxin content, which often peaked in mid-exponential growth. A second type of variability that could be superimposed on growth stage differences is best exemplified by the high toxin content of cells grown at suboptimal temperatures. Calculations of the net rate of toxin production (R tox ; fmol cell–1 d–1) for these different culture treatments and modes made it possible to separate the dynamics of toxin production from cell division. Over a wide range of growth rates, cells produced toxin at rates approximating those needed to replace losses to daughter cells during division. The exception to this direct proportionality was with P limitation, which was associated with a dramatic increase in the rate of toxin production as cells stopped dividing due to nutrient limitation in batch culture. Growth stage variability in batch culture thus reflects small imbalances (generally within a factor of two) between the specific rates of toxin production and cell division. N limitation and CO2 depletion both affect pathways involved in toxin synthesis before those needed for cell division; P limitation does the opposite. The patterns of toxin accumulation were the same as for major cellular metabolites or elemental pools. The highest rates of toxin production appear to result from an increased availability of arginine (Arg) within the cell, due to either a lack of competition for this amino acid from pathways involved in cell division or to increased de novo synthesis. There were no significant changes in toxin content with either acclimated growth at elevated salinity, or with short term increases or decreases of salinity. These results demonstrate that toxin production is a complex process which, under some conditions, is closely coupled to growth rate; under other conditions, these processes are completely uncoupled. Explanations for the observed variability probably relate to pool sizes of important metabolites and to the differential response of key biochemical reactions to these pool sizes and to environmental conditions.  相似文献   

19.
A population of a psychrophilic marine vibrio (Ant-300) suspended at a low cell density in natural seawater (SW) or artificial seawater (ASW) showed an initial 200-fold increase in cell numbers. Ant-300 suspended in ASW at various densities showed a magnified initial increase in numbers as well as increased longevity as the population density decreased. The magnitude of the initial increase and the viability of the cells after 7 weeks continued incubation were the same whether the cells were suspended in SW, ASW amended with amino acids, or organic-free ASW. Continued incubation (long-term starvation) of a culture of Ant-300 at low cell densities in ASW showed that after 70 weeks over 15 times the orginal number of cells were still viable. When compared to the starvation survival of other bacceria, Ant-300 exceeds the longest reported starvation survival by at least 2.5 times. Our data indicate that Ant-300 is especially adapted for survival at low nutrient concentrations and low population densities due to a sustained increase in cell numbers that may represent a species survival mechanism for marine bacteria.Technical Paper No. 4493, Oregon Agricultural Experiment Station.  相似文献   

20.
Inhibitory effects of copper on marine dinoflagellates   总被引:1,自引:0,他引:1  
The effect of copper on three species of marine dinoflagellates [Scrippsiella faeroense (Paulsen) Balech et Soares, Prorocentrum micans Ehrenberg, Gymnodinium splendens Lebour] was studied. It inhibited the growth of all species and was lethal to one species in batch cultures. The effect was more pronounced in semicontinuous culture than in batch cultures. Chlorophyll concentrations and rate of uptake of radioactive carbon by cells of S. faeroense were affected in a manner similar to cell numbers. Copper inhibited growth of cells, most probably either by arresting cell division or by penetrating inside the cell and affecting metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号