首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Planners advocate best management practices (BMPs) to reduce loss of sediment and nutrients in agricultural areas. However, the scientific community lacks tools that use readily available data to investigate the relationships between BMPs and their spatial locations and water quality. In rural, humid regions where runoff is associated with saturation-excess processes from variable source areas (VSAs), BMPs are potentially most effective when they are located in areas that produce the majority of the runoff. Thus, two critical elements necessary to predict the water quality impact of BMPs include correct identification of VSAs and accurate predictions of nutrient reduction due to particular BMPs. The objective of this research was to determine the effectiveness of BMPs using the Variable Source Loading Function (VSLF) model, which captures the spatial and temporal evolutions of VSAs in the landscape. Data from a long-term monitoring campaign on a 164-ha farm in the New York City source watersheds in the Catskills Mountains of New York state were used to evaluate the effectiveness of a range of BMPs. The data spanned an 11-year period over which a suite of BMPs, including a nutrient management plan, riparian buffers, filter strips and fencing, was installed to reduce phosphorus (P) loading. Despite its simplicity, VSLF predicted the spatial distribution of runoff producing areas well. Dissolved P reductions were simulated well by using calibrated reduction factors for various BMPs in the VSLF model. Total P losses decreased only after cattle crossings were installed in the creek. The results demonstrated that BMPs, when sited with respect to VSAs, reduce P loss from agricultural watersheds, providing useful information for targeted water quality management.  相似文献   

2.
ABSTRACT: On May 19, 1993, a jury in the U.S. District Court for the Western District of New York found Southview Farm and Richard H. Popp guilty of violating the Clean Water Act on five occasions. The violations were the result of storm water runoff from a site used for disposal of dairy cattle manure from an unpermitted concentrated animal feeding operation. The presiding District Court judge later dismissed the jury verdict, and subsequently a U.S. Court of Appeals for the Second Circuit reversed the dismissal. The Court of Appeals concluded that the discharges were not exempt as agricultural storm water discharges, and that the manure spreaders involved were point sources. Because the use of animal manures in crop production activities will result, unavoidably, in the discharge of some pollutants to adjacent surface waters, a rational and universally applicable basis is needed to determine when such discharges are point versus nonpoint source. Current statutes and regulations do not delineate clearly such a boundary. To address this lack of specificity, I propose that application rates be based on recommended crop nutrient needs.  相似文献   

3.
ABSTRACT: Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes ‐ saturation excess and infiltration excess ‐ on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service‐Curve Number (SCS‐CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.  相似文献   

4.
ABSTRACT: The U.S. Geological Survey has collected flood data for small, natural streams at many sites throughout Georgia during the past 20 years. Flood-frequency relations were developed for these data using four methods: (1) observed (log-Pearson Type HI analysis) data, (2) rainfall-runoff model, (3) regional regression equations, and (4) map-model combination. The results of the latter three methods were compared to the analyses of the observed data in order to quantify the differences in the methods and determine if the differences are statistically significant. Comparison of regression-estimates with observed discharges for sites having 20 years (1966 to 1985) and 10 years (1976 to 1985) of record at different sites of annual peak record indicate that the regression-estimates are not significantly different from the observed data. Comparison of rainfall-runoff-model simulated estimates with observed discharges for sites having 10 years and 20 years of annual peak record indicated that the model-simulated estimates are significantly and not significantly different, respectively. The biasedness probably is due to a “loss of variance” in the averaging procedures used within the model and the short length of record as indicated in the 10 and 20 years of record. The comparison of map-model simulated estimates with observed discharges for sites having 20 years of annual-peak runoff indicate that the simulated estimates are not significantly different. Comparison of “improved” map-model simulated estimates with observed discharges for sites having 20 years of annual-peak runoff data indicate that the simulated estimates are different. The average adjustment factor suggested by Lichty and Liscum to calculate the “improved” map-model overestimates in Georgia by an average of 20 percent for three recurrence intervals analyzed.  相似文献   

5.
Mechanistic Simulation of Tree Effects in an Urban Water Balance Model1   总被引:1,自引:0,他引:1  
Abstract: A semidistributed, physical‐based Urban Forest Effects – Hydrology (UFORE‐Hydro) model was created to simulate and study tree effects on urban hydrology and guide management of urban runoff at the catchment scale. The model simulates hydrological processes of precipitation, interception, evaporation, infiltration, and runoff using data inputs of weather, elevation, and land cover along with nine channel, soil, and vegetation parameters. Weather data are pre‐processed by UFORE using Penman‐Monteith equations to provide potential evaporation terms for open water and vegetation. Canopy interception algorithms modified established routines to better account for variable density urban trees, short vegetation, and seasonal growth phenology. Actual evaporation algorithms allocate potential energy between leaf surface storage and transpiration from soil storage. Infiltration algorithms use a variable rain rate Green‐Ampt formulation and handle both infiltration excess and saturation excess ponding and runoff. Stream discharge is the sum of surface runoff and TOPMODEL‐based subsurface flow equations. Automated calibration routines that use observed discharge has been coupled to the model. Once calibrated, the model can examine how alternative tree management schemes impact urban runoff. UFORE‐Hydro model testing in the urban Dead Run catchment of Baltimore, Maryland, illustrated how trees significantly reduce runoff for low intensity and short duration precipitation events.  相似文献   

6.
ABSTRACT: It has been well established that the greenhouse gas loading of the atmosphere has been increasing since the mid 19th century. Consequently, shifts in the earth's radiative balance are expected with accompanying alterations to the earth's climate. With these anticipated, and perhaps already observable, changes in both global and regional climate, managers of regional water resources seek insight to the possible impacts climate change may have on their present and future water supplies. The types and degrees of impacts that climate change may have on New York City's water supply system were assessed in a study of a watershed at Allaben, New York. Hypothetical scenarios of future climate and climate change projections from three General Circulation Models (GCMs) were used in conjunction with the WatBal hydrological model and the Palmer Drought Severity Index (PDSI) to ascertain how runoff and soil moisture from this watershed may change in a warmer climate. For the worst case predictions, the results indicate that within the century of the 2000s, the watershed's air temperature may increase up to about 11°F, while its precipitation and runoff may decrease by about 13 and 30 percent, respectively. If this watershed is typical of the others within the New York City water supply system, the system's managers should consider implementing mitigation and adaptation strategies in preparation for the worst of these possible future conditions.  相似文献   

7.
ABSTRACT: Precipitation and resultant runoff were sampled for a series of storm events over the period of one year. The test site was the parking lot of a large suburban shopping mall in the Syracuse, New York, area. Both precipitation and runoff were tested for lead, zinc, copper, cadmium, and petroleum hydrocarbons: substantial amounts were detected in each. No correlation was found between precipitation contaminant concentration and the length of the antecedent dry period. A weak, but apparently inverse relationship was noticed between concentration and amount of precipitation. Poor correlations were obtained between runoff contaminant concentration and the antecedent dry period. The variability attributable to different precipitation volumes was removed by converting to a unit-area basis. The variability attributable to precipitation contaminant load was removed by subtraction. The resultant value, dryfall accumulation, then correlated well with the length of the antecedent dry period. Metal ions were found in both precipitation and runoff and were hypothesized to come from atmospheric fallout as a result of distant emissions and from very localized sources, primarily vehicle traffic on the parking facility. Petroleum residues were believed to be the sole result of automobile losses, since none could be detected in precipitation samples.  相似文献   

8.
ABSTRACT: A simple nonlinear runoff model was developed and tested for use on field-size agricultural watersheds. A Wooding idealization of the watershed topography was used. Kinematic wave equations were used with an assumed, instead of computed, overland flow, watersurface profile in order to simplify the numerical computations. The approach was used to synthesize runoff hydrographs for an agricultural watershed in Iowa. The accuracy of the synthesized hydro-graphs was judged by comparing the estimated and observed peak discharges and by comparing estimated and observed stages at the measuring weir. The mean errors were 0.01 in/hr and 0.05 ft, respectively. A qualitative comparison was also made with a detailed kinematic wave study. The largest variability occurred during the seedbed period for both models, which was attributed to changes in surface roughness. The roughness was more constant and the results more consistent for the canopy and ground residue periods.  相似文献   

9.
ABSTRACT: The Grand and Saugeen Rivers in southern Ontario were chosen for study as pilot watersheds under the Pollution From Land Use Activities Reference Group (PLUARG) study. The pilot watersheds have adjacent headwater areas and are physically similar in geology, physiography, and climate. Significant differences in water quality between the watersheds at their outlets are attributed to land use and population differences. The major pollutant sources in the two pilot watersheds were identified as trace elements from urban runoff and point source discharges; phosphorus from agricultural and urban runoff and private waste disposal; chloride from transportation corridors; and sediment and nitrogen from agricultural runoff. Yields at the watershed outlets were similar for suspended sediment and two to three times as high in the Grand River for phosphours, nitrogen, chloride, and lead. The higher phosphorus and nitrogen levels were attributed to larger point source inputs and the higher proportion of agricultural activity, comprising 75 percent of the Grand River basin compared to 64 percent in the Saugeen River basin. Similarly, the higher chloride and lead levels were attributed to an order of magnitude larger population and three times as much urban land in the Grand River basin compared to the Saugeen River basin.  相似文献   

10.
Mulvihill, Christiane I. and Barry P. Baldigo, 2012. Optimizing Bankfull Discharge and Hydraulic Geometry Relations for Streams in New York State. Journal of the American Water Resources Association (JAWRA) 48(3): 449-463. DOI: 10.1111/j.1752-1688.2011.00623.x Abstract: This study analyzes how various data stratification schemes can be used to optimize the accuracy and utility of regional hydraulic geometry (HG) models of bankfull discharge, width, depth, and cross-sectional area for streams in New York. Topographic surveys and discharge records from 281 cross sections at 82 gaging stations with drainage areas of 0.52-396 square miles were used to create log-log regressions of region-based relations between bankfull HG metrics and drainage area. The success with which regional models distinguished unique bankfull discharge and HG patterns was assessed by comparing each regional model to those for all other regions and a pooled statewide model. Gages were also stratified (grouped) by mean annual runoff (MAR), Rosgen stream type, and water-surface slope to test if these models were better predictors of HG to drainage area relations. Bankfull discharge models for Regions 4 and 7 were outside the 95% confidence interval bands of the statewide model, and bankfull width, depth, and cross-sectional area models for Region 3 differed significantly (p < 0.05) from those of other regions. This study found that statewide relations between drainage area and HG were strongest when data were stratified by hydrologic region, but that co-variable models could yield more accurate HG estimates in some local regional curve applications.  相似文献   

11.
ABSTRACT The 60's drought (1961 1966) which hit the Northeastern United States, had its center over the Delaware River Basin and caused water supply shortages to New York City, Philadelphia, and many other towns and industries in the Basin. Until this event occurred, the existing water supply sources and those planned for the future had been considered adequate, as they were designed for the worst drought of record (usually the 1930-31 drought). In view of this “change in hydrology,” the Delaware River Basin Commission authorized a study (DRBC Resolution 67-4) to re-evaluate the adequacy of existing and planned water supply sources of the Delaware River Basin and its Service Area (New York City and northern New Jersey). Synthetic hydrology is a tool which can be used to overcome many of the limitations of the traditional approach. By analyzing generated streamflow traces in this study, it has been determined that there is a definite relationship between the accumulated rainfall deficiency during the drought and the return periods associated with various durations of runoff in the drought. This indicated that generated traces can be used to standardize the hydrology over an area where the intensity of drought varied. This represented an important facet in the study, because it provided a means to equalize the effects of this drought over the study area, and gave the Delaware River Basin Commission more information so that it could better plan and manage its water resources equitably, not only for the people within the Basin, but for the New York City and northern New Jersey areas as well. Synthetic hydrology was used to determine yield-probability relationships for 50-year periods, and storage-yield-frequency relationships for existing and planned water-supply reservoirs. It was also used to determine yield-probability relationships for reservoir systems within the Basin. In the study, it was determined that monthly streamflow traces and uniform draft rates could be used in yield analysis because of the magnitude of the reservoirs and because seasonal variations of draft rate are small in the study area. Although it was found that with the streamflow generating models (first order Markov) in common use today, it is not possible to definitely determine the actual frequency of a very severe historic drought, it is possible to place a drought in perspective by using synthetic hydrology. The study showed that it is a useful tool in determining water availability over a basin and is useful in studying water management problems such as interbasin transfers, and reservoir systems operations.  相似文献   

12.
In this study, two different versions of the Soil and Water Assessment Tool (SWAT) model were used to simulate the hydrology and biogeochemical response of the Cannonsville Reservoir watershed, in New York. The first version distributes overland flow in ways that are consistent with variable source area (VSA) hydrology driven by saturation excess runoff, whereas the second version is the standard version of SWAT. These two models were each calibrated for streamflow (Flow), particulate phosphorus (PP), total dissolved phosphorus (TDP), and sediment (Sed) against measured data from the 1,200 km2 Cannonsville watershed. The standard version of the model yielded an r2 between the measured and simulated data of 0.85, 0.73, 0.70, and 0.72 for Flow, Sed, TDP, and PP, respectively. The VSA version yielded an r2 of 0.84, 0.69, 0.72, and 0.53 for Flow, Sed, TDP, and PP, respectively. The two models were then used to determine the maximum upper bound on the reduction in phosphorus loading by removing all of the corn in the watershed. The average reductions between the two models were 65 and 37% for PP and TDP, respectively. The VSA version was also used to estimate the effect of moving corn land in the watershed from the wettest, most runoff prone areas to the driest, least runoff prone areas, which cannot be done directly with the standard SWAT model.  相似文献   

13.
A total of 154 aquatic alien species have invaded the New York State Canal and Hudson River systems and a total of 162 aquatic species have invaded the Great Lakes Basin. Some of these invasive species are causing significant damage and control costs in both aquatic ecosystems. In the New York State Canal and Hudson River systems, the nonindigenous species are causing an estimated 500 million dollars in economic losses each year. The economic and environmental situation in the Great Lakes Basin is far more serious from nonindigenous species, with losses estimated to be about 5.7 billion dollars per year. Commercial and sport fishing suffer the most from the biological invasions, with about 400 million dollars in losses reported for the New York State Canal and Hudson River systems and 4.5 billion dollars in losses reported for the Great Lakes Basin.  相似文献   

14.
ABSTRACT: The objectives of this paper were to test the ability of various design storm distributions to simulate the actual rainfall pattern and to compare the runoff rates used in the design of stormwater management devices in the State of Florida using continuous simulation approach. The analyses were performed for four gaged stations to evaluate the applicability of design storm distributions in different parts of the State of Florida. The approach used in this study compared the peak runoff rates from design storms based on the various distributions to those that would result from actual rainfall events. A series of continuous runoff rates were developed through the use of actual fifteen-minute recorded rainfall data, Horton type infiltration decay and recovery rate, and a continuous simulation model. The runoff rates were analyzed using frequency distributions to obtain peak runoff rates associated with different return periods based on the assumption that the continuous simulation approach closely predicts the actual runoff rates from the gaged stations. The results show that the behavior of the design storm distributions varies for different watershed characteristics in different parts of the state. The study also suggests that in general the Florida Department of Transportation and the Suwanne River Water Management (FDOT/ SRWMD) distributions appeared to agree with the continuous simulation results.  相似文献   

15.
Predicting soil erosion for alternative land uses   总被引:3,自引:0,他引:3  
The APEX (Agricultural Policy-Environmental eXtender) model developed in the United States was calibrated for northwestern China's conditions. The model was then used to investigate soil erosion effects associated with alternative land uses at the ZFG (Zi-Fang-Gully) watershed in northwestern China. The results indicated that the APEX model could be calibrated reasonably well (+/-15% errors) to fit those areas with >50% slope within the watershed. Factors being considered during calibration include runoff, RUSLE (Revised Universal Soil Loss Equation) slope length and steepness factor, channel capacity flow rate, floodplain saturated hydraulic conductivity, and RUSLE C factor coefficient. No changes were made in the APEX computer code. Predictions suggest that reforestation is the best practice among the eight alternative land uses (the status quo, all grass, all grain, all grazing, all forest, half tree and half grass, 70% tree and 30% grain, and construction of a reservoir) for control of water runoff and soil erosion. Construction of a reservoir is the most effective strategy for controlling sediment yield although it does nothing to control upland erosion. For every 1 Mg of crop yield, 11 Mg of soil were lost during the 30-yr simulation period, suggesting that expanding land use for food production should not be encouraged on the ZFG watershed. Grass species are less effective than trees in controlling runoff and erosion on steep slopes because trees generally have deeper and more stable root systems.  相似文献   

16.
The size of multipurpose reservoir development is usually determined by an economic analysis of reservoir capabilities and the present and projected water resources needs which can be satisfied. This analysis is referred to as project formulation, wherein optimum conditions are sought. In responding to multiple objectives, i.e., national economic development, regional development and environmental quality, which are being considered in river basin planning in recent years, reservoirs should provide for reasonably full hydrologic development. Additional storage will be needed to provide opportunities for economic development, as well as meet unexpected development. Also, it provides more flow regulation capability for quality of environment considerations. An analysis has been made on twelve reservoir sites in the New York State portion of the Susquehanna River Basin to determine the so-called “reasonably full hydrologic development of reservoir sites.” Hydrologic, economic, environmental and physical characteristics of the sites are taken into consideration. For normal conditions, it can be concluded that a yield equivalent to about 80 percent of the average discharge (runoff) can be considered as reasonably full hydrologic development for reservoir sites in the Susquehanna River Basin in New York. The same technique can be applied elsewhere to determine reasonably full hydrologic development of reservoir sites.  相似文献   

17.
While storm water detention basins are widely used for controlling increases in peak discharges that result from urbanization, recent research has indicated that under certain circumstances detention storage can actually cause increases in peak discharge rates. Because of the potential for detrimental downstream effects, storm water management policies often require downstream effects to be evaluated. Such evaluation requires the design engineer to collect additional topographic and land use data and make costly hydrologic analyses. Thus, a method, which is easy to apply and which would indicate whether or not a detailed hydrologic analysis of downstream impacts is necessary, should decrease the average cost of storm water management designs. A planning method that does not require either a large data base or a computer is presented. The time co-ordinates of runoff hydrographs are estimated using the time-of-concentration and the SCS runoff curve number; the discharge coordinates are estimated using a simple peak discharge equation. While the planning method does not require a detailed design of the detention basin, it does provide a reasonably accurate procedure for evaluating whether or not the installation of a detention basin will cause adverse downstream flooding.  相似文献   

18.
ABSTRACT: A loading function methodology is presented for predicting runoff, sediment, and nutrient losses from complex watersheds. Separate models are defined for cropland, forest, urban and barnyard sources, and procedures for estimating baseflow nutrients are provided. The loading functions are designed for use as a preliminary screening tool to isolate the major contributors in a watershed. Input data sources are readily available and the functions do not require costly calibrations. Data requirements include watershed land use and soil information, daily precipitation and temperature records and rainfall erosivities. Comparison of predicted and measured water, sediment, and nutrient runoff fluxes for the West Branch Deleware River in New York, indicated that runoff was underpredicted by about 14 percent while dissolved nutrients were within 30 percent of observed values. Sediment and solid-phase nutrients were overpredicted by about 50 percent. An annual nutrient budget for the West Branch Delaware River showed that cornland was the major source of sediment, solid phase nutrients, and total phosphorus. Waste water treatment plants and ground water discharge contributed the most dissolved phosphorus and dissolved nitrogen, respectively.  相似文献   

19.
Commercial exhaustion of soft-shell clam,Mya arenaria, had become the fate of many potentially productive clamming areas along the coasts of Massachusetts, New Hampshire, and southern Maine. Investigations of a particularly severe case of soft-shell clam stock depletion in Hampton-Seabrook estuary, New Hampshire, indicated that by 1976 human diggers had removed approximately 87% of the adult clam resource that had existed in 1971. Meanwhile, circumstantial evidence strongly implicated the green crab,Carcinus maenas, as responsible for successive stock recruitment failures, these crabs having consumed most of the young seed clams before they could grow to harvestable size. In 1976, this apparent population imbalance may have been at least partly redressed by a prodigious spatfall, resulting in a massive and widespread reseeding of many flats along the northern New England coast. Spat, or seed clam, densities of up to 1,700 individuals per square foot, over areas of several acres, have been observed. Those clamming areas where aggressive predator control programs had been instituted exhibited the most favorable response in terms of seed clam survival and growth. Evidence also indicated that crowding in thickly seeded portions of the clam flats inhibited shell growth.  相似文献   

20.
Abstract: The residents of Nassau County Long Island, New York receive all of their potable drinking water from the Upper Glacial, Jameco/Magothy (Magothy), North Shore, and Lloyd aquifers. As the population of Nassau County grew from 1930 to 1970, the demand on the ground‐water resources also grew. However, no one was looking at the potential impact of withdrawing up to 180 mgd (7.9 m3/s) by over 50 independent water purveyors. Some coastal community wells on the north and south shores of Nassau County were being impacted by saltwater intrusion. The New York State Legislature formed a commission to look into the water resources in 1972. The commission projected extensive population growth and a corresponding increase in pumping resulting in a projected 93.5 to 123 mgd (4.1 to 5.5 m3/s) deficit by 2000. In 1986, the New York Legislature passed legislation to strengthen the well permit program and also establish a moratorium on new withdrawals from the Lloyd aquifer to protect the coastal community’s only remaining supply of drinking water. Over 30 years has passed since the New York Legislature made these population and pumping projections and it is time to take a look at the accuracy of the projections that led to the moratorium. United States Census data shows that the population of Nassau County did not increase but decreased from 1970 to 2000. Records show that pumping in Nassau County was relatively stable fluctuating between 170 and 200 mgd (7.5 to 8.8 m3/s) from 1970 to 2004, well below the projection of 242 to 321 mgd (10.6 to 14.1 m3/s). Therefore, the population and water demand never grew to projected values and the projected threat to the coastal communities has diminished. With a stable population and water demand, its time to take a fresh look at proactive ground‐water resource management in Nassau County. One example of proactive ground‐water management that is being considered in New Jersey where conditions are similar uses a ground‐water flow model to balance ground water withdrawals, an interconnection model to match supply with demand using available interconnections, and a hydraulic model to balance flow in water mains. New Jersey also conducted an interconnection study to look into how systems with excess capacity could be used to balance withdrawals in stressed aquifer areas with withdrawals in unstressed areas. Using these proactive ground‐water management tools, ground‐water extraction could be balanced across Nassau County to mitigate potential impacts from saltwater intrusion and provide most water purveyors with a redundant supply that could be used during water emergencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号