首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
The nature of conservation challenges can foster a reactive, rather than proactive approach to decision making. Failure to anticipate problems before they escalate results in the need for more costly and time‐consuming solutions. Proactive conservation requires forward‐looking approaches to decision making that consider possible futures without being overly constrained by the past. Strategic foresight provides a structured process for considering the most desirable future and for mapping the most efficient and effective approaches to promoting that future with tools that facilitate creative thinking. The process involves 6 steps: setting the scope, collecting inputs, analyzing signals, interpreting the information, determining how to act, and implementing the outcomes. Strategic foresight is ideal for seeking, recognizing, and realizing conservation opportunities because it explicitly encourages a broad‐minded, forward‐looking perspective on an issue. Despite its potential value, the foresight process is rarely used to address conservation issues, and previous attempts have generally failed to influence policy. We present the strategic foresight process as it can be used for proactive conservation planning, describing some of the key tools in the foresight tool kit and how they can be used to identify and exploit different types of conservation opportunities. Scanning is an important tool for collecting and organizing diverse streams of information and can be used to recognize new opportunities and those that could be created. Scenario planning explores how current trends, drivers of change, and key uncertainties might influence the future and can be used to identify barriers to opportunities. Backcasting is used to map out a path to a goal and can determine how to remove barriers to opportunities. We highlight how the foresight process was used to identify conservation opportunities during the development of a strategic plan to address climate change in New York State. The plan identified solutions that should be effective across a range of possible futures. Illustrating the application of strategic foresight to identify conservation opportunities should provide the impetus for decision makers to explore strategic foresight as a way to support more proactive conservation policy, planning, and management.  相似文献   

2.
Conservation decisions increasingly involve multiple environmental and social objectives, which result in complex decision contexts with high potential for trade‐offs. Improving social equity is one such objective that is often considered an enabler of successful outcomes and a virtuous ideal in itself. Despite its idealized importance in conservation policy, social equity is often highly simplified or ill‐defined and is applied uncritically. What constitutes equitable outcomes and processes is highly normative and subject to ethical deliberation. Different ethical frameworks may lead to different conceptions of equity through alternative perspectives of what is good or right. This can lead to different and potentially conflicting equity objectives in practice. We promote a more transparent, nuanced, and pluralistic conceptualization of equity in conservation decision making that particularly recognizes where multidimensional equity objectives may conflict. To help identify and mitigate ethical conflicts and avoid cases of good intentions producing bad outcomes, we encourage a more analytical incorporation of equity into conservation decision making particularly during mechanistic integration of equity objectives. We recommend that in conservation planning motivations and objectives for equity be made explicit within the problem context, methods used to incorporate equity objectives be applied with respect to stated objectives, and, should objectives dictate, evaluation of equity outcomes and adaptation of strategies be employed during policy implementation.  相似文献   

3.
Despite decades of discussion and implementation, conservation monitoring remains a challenge. Many current solutions in the literature focus on improving the science or making more structured decisions. These insights are important but incomplete in accounting for the politics and economics of the conservation decisions informed by monitoring. Our novel depiction of the monitoring enterprise unifies insights from multiple disciplines (conservation, operations research, economics, and policy) and highlights many underappreciated factors that affect the expected benefits of monitoring. For example, there must be a strong link between the specific needs of decision makers and information gathering. Furthermore, the involvement of stakeholders other than scientists and research managers means that new information may not be interpreted and acted upon as expected. While answering calls for sharply delineated objectives will clearly add focus to monitoring efforts, for practical reasons, high‐level goals may purposefully be left vague, to facilitate other necessary steps in the policy process. We use the expanded depiction of the monitoring process to highlight problems of cooperation and conflict. We critique calls to invest in monitoring for the greater good by arguing that incentives are typically lacking. Although the benefits of learning accrued within a project (e.g., improving management) provide incentives for investing in some monitoring, it is unrealistic, in general, to expect managers to add potentially costly measures to generate shared benefits. In the traditional linear model of the role of science in policy decisions, monitoring reduces uncertainty and decision makers are rational, unbiased consumers of the science. However, conservation actions increasingly involve social conflict. Drawing insights from political science, we argue that in high‐conflict situations, it is necessary to address the conflict prior to monitoring. Las Inversiones y el Proceso de Políticas en el Monitoreo de la Conservación Sanchirico et al.  相似文献   

4.
Environmental decisions are often deferred to groups of experts, committees, or panels to develop climate policy, plan protected areas, or negotiate trade-offs for biodiversity conservation. There is, however, surprisingly little empirical research on the performance of group decision making related to the environment. We examined examples from a range of different disciplines, demonstrating the emergence of collective intelligence (CI) in the elicitation of quantitative estimates, crowdsourcing applications, and small-group problem solving. We explored the extent to which similar tools are used in environmental decision making. This revealed important gaps (e.g., a lack of integration of fundamental research in decision-making practice, absence of systematic evaluation frameworks) that obstruct mainstreaming of CI. By making judicious use of interdisciplinary learning opportunities, CI can be harnessed effectively to improve decision making in conservation and environmental management. To elicit reliable quantitative estimates an understanding of cognitive psychology and to optimize crowdsourcing artificial intelligence tools may need to be incorporated. The business literature offers insights into the importance of soft skills and diversity in team effectiveness. Environmental problems set a challenging and rich testing ground for collective-intelligence tools and frameworks. We argue this creates an opportunity for significant advancement in decision-making research and practice.  相似文献   

5.
There are many barriers to using science to inform conservation policy and practice. Conservation scientists wishing to produce management‐relevant science must balance this goal with the imperative of demonstrating novelty and rigor in their science. Decision makers seeking to make evidence‐based decisions must balance a desire for knowledge with the need to act despite uncertainty. Generating science that will effectively inform management decisions requires that the production of information (the components of knowledge) be salient (relevant and timely), credible (authoritative, believable, and trusted), and legitimate (developed via a process that considers the values and perspectives of all relevant actors) in the eyes of both researchers and decision makers. We perceive 3 key challenges for those hoping to generate conservation science that achieves all 3 of these information characteristics. First, scientific and management audiences can have contrasting perceptions about the salience of research. Second, the pursuit of scientific credibility can come at the cost of salience and legitimacy in the eyes of decision makers, and, third, different actors can have conflicting views about what constitutes legitimate information. We highlight 4 institutional frameworks that can facilitate science that will inform management: boundary organizations (environmental organizations that span the boundary between science and management), research scientists embedded in resource management agencies, formal links between decision makers and scientists at research‐focused institutions, and training programs for conservation professionals. Although these are not the only approaches to generating boundary‐spanning science, nor are they mutually exclusive, they provide mechanisms for promoting communication, translation, and mediation across the knowledge–action boundary. We believe that despite the challenges, conservation science should strive to be a boundary science, which both advances scientific understanding and contributes to decision making. Logrando que la Ciencia de la Conservación Trasponga la Frontera Conocimiento‐Acción  相似文献   

6.
Abstract: The nonuse (or passive) value of nature is important but time‐consuming and costly to quantify with direct surveys. In the absence of estimates of these values, there will likely be less investment in conservation actions that generate substantial nonuse benefits, such as conservation of native species. To help overcome decisions about the allocation of conservation dollars that reflect the lack of estimates of nonuse values, these values can be estimated indirectly by environmental value transfer (EVT). EVT uses existing data or information from a study site such that the estimated monetary value of an environmental good is transferred to another location or policy site. A major challenge in the use of EVT is the uncertainty about the sign and size of the error (i.e., the percentage by which transferred value exceeds the actual value) that results from transferring direct estimates of nonuse values from a study to a policy site, the site where the value is transferred. An EVT is most useful if the decision‐making framework does not require highly accurate information and when the conservation decision is constrained by time and financial resources. To account for uncertainty in the decision‐making process, a decision heuristic that guides the decision process and illustrates the possible decision branches, can be followed. To account for the uncertainty associated with the transfer of values from one site to another, we developed a risk and simulation approach that uses Monte Carlo simulations to evaluate the net benefits of conservation investments and takes into account different possible distributions of transfer error. This method does not reduce transfer error, but it provides a way to account for the effect of transfer error in conservation decision making. Our risk and simulation approach and decision‐based framework on when to use EVT offer better‐informed decision making in conservation.  相似文献   

7.
Beyond Biology: toward a More Public Ecology for Conservation   总被引:3,自引:0,他引:3  
Abstract: The ultimate purpose of conservation science is to inform and affect conservation policy. Therefore, conservation biologists and all the people who produce, review, and apply conservation research should evaluate the success of their knowledge according to its ability to influence conservation decisions. In addition to possessing conventional "scientific" attributes such as validity, generalizability, and precision, conservation knowledge must also possess qualities that make it effective in the political arena of decision making. "Public ecology" is a philosophy and practice of conservation science that goes beyond biology and beyond the norms of modern science to construct knowledge that is useful for environmental decision making. As post-normal conservation science, public ecology is defined by the following six attributes: evaluative, contextual, multiscalar, integrative, adaptive, and accessible. We discuss the need for a more public ecology and describe the qualites that make it a more powerful ecology.  相似文献   

8.
Abstract: Despite advances in the quality of participatory decision making for conservation, many current efforts still suffer from an inability to bridge the gap between science and policy. Judgment and decision‐making research suggests this gap may result from a person's reliance on affect‐based shortcuts in complex decision contexts. I examined the results from 3 experiments that demonstrate how affect (i.e., the instantaneous reaction one has to a stimulus) influences individual judgments in these contexts and identified techniques from the decision‐aiding literature that help encourage a balance between affect‐based emotion and cognition in complex decision processes. In the first study, subjects displayed a lack of focus on their stated conservation objectives and made decisions that reflected their initial affective impressions. Value‐focused approaches may help individuals incorporate all the decision‐relevant objectives by making the technical and value‐based objectives more salient. In the second study, subjects displayed a lack of focus on statistical risk and again made affect‐based decisions. Trade‐off techniques may help individuals incorporate relevant technical data, even when it conflicts with their initial affective impressions or other value‐based objectives. In the third study, subjects displayed a lack of trust in decision‐making authorities when the decision involved a negatively affect‐rich outcome (i.e., a loss). Identifying shared salient values and increasing procedural fairness may help build social trust in both decision‐making authorities and the decision process.  相似文献   

9.
Abstract:  Questions persist regarding whether the science of conservation biology can successfully affect environmental decision making. One of the most prominent fields of intersection between conservation science and environmental policy is public-lands debates in the United States. I reviewed the role of conservation science in the roadless-area policies of the U.S. Forest Service. Since 1971, the Forest Service has systematically evaluated roadless areas on national forests three times, most recently during the Clinton administration's Roadless Area Conservation Review (1998–2000) ( U.S. Department of Agriculture Forest Service 2000b ). Drawing on the agency's environmental impact statements and supporting documents and the internal records of conservation organizations, I examined the changing goals, methodology, and outcome of roadless-area advocacy and policy. Since the 1970s, conservation science has successfully informed public and administrative concern for roadless-area protection. Conservation science has transformed public discourse regarding roadless areas and has changed the scope and rationale of national conservation organizations' goals for roadless-area policy from protecting some to protecting all remaining national forest roadless areas. The Forest Service has increasingly drawn on the lessons of conservation biology to justify its methodology and its administrative recommendations to protect roadless areas. The 2000 Roadless Area Conservation Review resulted in a recommendation to protect all remaining national forest roadless areas, up from 22% of roadless areas in the first roadless review. Despite the scientific merits of recent roadless-area advocacy and policy, however, such initiatives have faced political difficulties. The emphasis on large-scale, top-down, national approaches to conservation policy has rendered such policies politically problematic.  相似文献   

10.
Policy documents advocate that managers should keep their options open while planning to protect coastal ecosystems from climate‐change impacts. However, the actual costs and benefits of maintaining flexibility remain largely unexplored, and alternative approaches for decision making under uncertainty may lead to better joint outcomes for conservation and other societal goals. For example, keeping options open for coastal ecosystems incurs opportunity costs for developers. We devised a decision framework that integrates these costs and benefits with probabilistic forecasts for the extent of sea‐level rise to find a balance between coastal ecosystem protection and moderate coastal development. Here, we suggest that instead of keeping their options open managers should incorporate uncertain sea‐level rise predictions into a decision‐making framework that evaluates the benefits and costs of conservation and development. In our example, based on plausible scenarios for sea‐level rise and assuming a risk‐neutral decision maker, we found that substantial development could be accommodated with negligible loss of environmental assets. Characterization of the Pareto efficiency of conservation and development outcomes provides valuable insight into the intensity of trade‐offs between development and conservation. However, additional work is required to improve understanding of the consequences of alternative spatial plans and the value judgments and risk preferences of decision makers and stakeholders. Minimizando el Costo de Mantener Opciones Abiertas para la Conservación en un Clima Cambiante  相似文献   

11.
Species hybrids have long been undervalued in conservation and are often perceived as a threat to pure species. Recently, the conservation value of hybrids, especially those of natural origin, has gained recognition; however, hybrid conservation remains controversial. We reviewed hybrid management policies, including laws, regulations, and management protocols, from a variety of organizations, primarily in Canada and the United States. We found that many policies are based on limited ethical and ecological considerations and provide little opportunity for hybrid conservation. In most policies, hybrids are either unrepresented or considered a threat to conservation goals. This is problematic because our review of the hybrid conservation literature identified many ethical and ecological considerations relevant to determining the conservation value of a hybrid, all of which are management‐context specific. We also noted a lack of discussion of the ethical considerations regarding hybrid conservation. Based on these findings, we created a policy framework outlining situations in which hybrids could be eligible for conservation in Canada and the United States. The framework comprises a decision tree that helps users determine whether a hybrid should be eligible for conservation based on multiple ecological and ethical considerations. The framework may be applied to any hybrid and is flexible in that it accommodates context‐specific management by allowing different options if a hybrid is a threat to or could benefit conservation goals. The framework can inform policy makers and conservationists in decision‐making processes regarding hybrid conservation by providing a systematic set of decision criteria and guidance on additional criteria to be considered in cases of uncertainty, and it fills a policy gap that limits current hybrid management.  相似文献   

12.
Southeast Asia possesses the highest rates of tropical deforestation globally and exceptional levels of species richness and endemism. Many countries in the region are also recognized for their food insecurity and poverty, making the reconciliation of agricultural production and forest conservation a particular priority. This reconciliation requires recognition of the trade‐offs between competing land‐use values and the subsequent incorporation of this information into policy making. To date, such reconciliation has been relatively unsuccessful across much of Southeast Asia. We propose an ecosystem services (ES) value‐internalization framework that identifies the key challenges to such reconciliation. These challenges include lack of accessible ES valuation techniques; limited knowledge of the links between forests, food security, and human well‐being; weak demand and political will for the integration of ES in economic activities and environmental regulation; a disconnect between decision makers and ES valuation; and lack of transparent discussion platforms where stakeholders can work toward consensus on negotiated land‐use management decisions. Key research priorities to overcome these challenges are developing easy‐to‐use ES valuation techniques; quantifying links between forests and well‐being that go beyond economic values; understanding factors that prevent the incorporation of ES into markets, regulations, and environmental certification schemes; understanding how to integrate ES valuation into policy making processes, and determining how to reduce corruption and power plays in land‐use planning processes.  相似文献   

13.
14.
Guidelines for Systematic Review in Conservation and Environmental Management   总被引:10,自引:0,他引:10  
Abstract:  An increasing number of applied disciplines are utilizing evidence-based frameworks to review and disseminate the effectiveness of management and policy interventions. The rationale is that increased accessibility of the best available evidence will provide a more efficient and less biased platform for decision making. We argue that there are significant benefits for conservation in using such a framework, but the scientific community needs to undertake and disseminate more systematic reviews before the full benefit can be realized. We devised a set of guidelines for undertaking formalized systematic review, based on a health services model. The guideline stages include planning and conducting a review, including protocol formation, search strategy, data inclusion, data extraction, and analysis. Review dissemination is addressed in terms of current developments and future plans for a Web-based open-access library. By the use of case studies we highlight critical modifications to guidelines for protocol formulation, data-quality assessment, data extraction, and data synthesis for conservation and environmental management. Ecological data presented significant but soluble challenges for the systematic review process, particularly in terms of the quantity, accessibility, and diverse quality of available data. In the field of conservation and environmental management there needs to be further engagement of scientists and practitioners to develop and take ownership of an evidence-based framework.  相似文献   

15.
Managing the Koala Problem: Interdisciplinary Perspectives   总被引:1,自引:0,他引:1  
Abstract: There is a complex scientific, ethical, and cultural debate in Australia about how best to conserve koalas and their habitat. Despite the diverse array of management and research options promoted by scientists, wildlife agency staff, and koala advocates, there remains a gap in our acknowledgment of the social factors influencing decision making about koala conservation. Koala management research has generated valuable scientific knowledge about koala biology and ecology but has been weak about organizational and policy processes and about the cultures within which we produce, disseminate, and legitimize this kind of knowledge. We suggest that more effective koala conservation will result from making the political and cultural influences on decision making regarding the koala more explicit in research, management, and policy-making forums. Research must be conducted in the context of the cultural significance of the koala. The koala's survival depends on preserving the valuable lands that these creatures (and many others) inhabit. Ultimately, the koala symbolizes conflicting land-use values and illustrates the need for greater collaboration, cooperation, and trust among social and natural scientists in the conduct of koala conservation research, management, and policy.  相似文献   

16.
Antarctic specially protected areas (ASPAs) are a key regulatory mechanism for protecting Antarctic environmental values. Previous evaluations of the effectiveness of the ASPA system focused on its representativeness and design characteristics, presenting a compelling rationale for its systematic revision. Upgrading the system could increase the representation of values within ASPAs, but representation alone does not guarantee the avoided loss or improvement of those values. Identifying factors that influence the effectiveness of ASPAs would inform the design and management of an ASPA system with the greatest capacity to deliver its intended conservation outcomes. To facilitate evaluations of ASPA effectiveness, we devised a research and policy agenda that includes articulating a theory of change for what outcomes ASPAs generate and how; building evaluation principles into ASPA design and designation processes; employing complementary approaches to evaluate multiple dimensions of effectiveness; and extending evaluation findings to identify and exploit drivers of positive conservation impact. Implementing these approaches will enhance the efficacy of ASPAs as a management tool, potentially leading to improved outcomes for Antarctic natural values in an era of rapid global change. Evaluación del impacto de conservación de las áreas protegidas de la Antártida  相似文献   

17.
Abstract: Conservation scientists are concerned about the apparent lack of impact their research is having on policy. By better aligning research with policy needs, conservation science might become more relevant to policy and increase its real‐world salience in the conservation of biological diversity. Consequently, some conservation scientists have embarked on a variety of exercises to identify research questions that, if answered, would provide the evidence base with which to develop and implement effective conservation policies. I synthesized two existing approaches to conceptualizing research impacts. One widely used approach classifies the impacts of research as conceptual, instrumental, and symbolic. Conceptual impacts occur when policy makers are sensitized to new issues and change their beliefs or thinking. Instrumental impacts arise when scientific research has a direct effect on policy decisions. The use of scientific research results to support established policy positions are symbolic impacts. The second approach classifies research issues according to whether scientific knowledge is developed fully and whether the policy issue has been articulated clearly. I believe exercises to identify important research questions have objectives of increasing the clarity of policy issues while strengthening science–policy interactions. This may facilitate the transmission of scientific knowledge to policy makers and, potentially, accelerate the development and implementation of effective conservation policy. Other, similar types of exercises might also be useful. For example, identification of visionary science questions independent of current policy needs, prioritization of best practices for transferring scientific knowledge to policy makers, and identification of questions about human values and their role in political processes could all help advance real‐world conservation science. It is crucial for conservation scientists to understand the wide variety of ways in which their research can affect policy and be improved systematically.  相似文献   

18.
Abstract:  Conservation management is becoming increasingly resource intensive as threats to biodiversity grow through habitat destruction, habitat disturbance, and overexploitation. To achieve successful conservation and sustainable use of natural resources, we need to scientifically evaluate the effectiveness of conservation interventions and provide an efficient framework through which scientific evidence can be used to support decision making in policy and practice. We conducted the first formal assessment of the extent to which scientific evidence is used in conservation management through a questionnaire survey and follow-up interviews of compilers of protected-area management plans from major conservation organizations within the United Kingdom and Australia. Our survey results show that scientific information is not being used systematically to support decision making largely because it is not easily accessible to decision makers. This, in combination with limited monitoring and evaluation of effectiveness of management interventions, results in the majority of decisions being based on experience rather than on evidence. To address this problem we propose using an evidence-based framework adapted from that used in the health services and explain how we are currently putting an equivalent framework into practice by establishing review and dissemination units to serve the conservation sector.  相似文献   

19.
Electronic tags (both biotelemetry and biologging platforms) have informed conservation and resource management policy and practice by providing vital information on the spatial ecology of animals and their environments. However, the extent of the contribution of biological sensors (within electronic tags) that measure an animal's state (e.g., heart rate, body temperature, and details of locomotion and energetics) is less clear. A literature review revealed that, despite a growing number of commercially available state sensor tags and enormous application potential for such devices in animal biology, there are relatively few examples of their application to conservation. Existing applications fell under 4 main themes: quantifying disturbance (e.g., ecotourism, vehicular and aircraft traffic), examining the effects of environmental change (e.g., climate change), understanding the consequences of habitat use and selection, and estimating energy expenditure. We also identified several other ways in which sensor tags could benefit conservation, such as determining the potential efficacy of management interventions. With increasing sensor diversity of commercially available platforms, less invasive attachment techniques, smaller device sizes, and more researchers embracing such technology, we suggest that biological sensor tags be considered a part of the necessary toolbox for conservation. This approach can measure (in real time) the state of free‐ranging animals and thus provide managers with objective, timely, relevant, and accurate data to inform policy and decision making.  相似文献   

20.
Estimates of temporal trends in species’ occupancy are essential for conservation policy and planning, but limitations to the data and models often result in very high trend uncertainty. A critical source of uncertainty that degrades scientific credibility is that caused by disagreement among studies or models. Modelers are aware of this uncertainty but usually only partially estimate it and communicate it to decision makers. At the same time, there is growing awareness that full disclosure of uncertainty is critical for effective translation of science into policies and plans. But what are the most effective approaches to estimating uncertainty and communicating uncertainty to decision makers? We explored how alternative approaches to estimating and communicating uncertainty of species trends could affect decisions concerning conservation status of freshwater fishes. We used ensemble models to propagate trend uncertainty within and among models and communicated this uncertainty with categorical distributions of trend direction and magnitude. All approaches were designed to fit an established decision-making system used to assign species conservation status by the New Zealand government. Our results showed how approaches that failed to fully disclose uncertainty, while simplifying the information presented, could hamper species conservation or lead to ineffective decisions. We recommend an approach that was recently used effectively to communicate trend uncertainty to a panel responsible for setting the conservation status of New Zealand's freshwater fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号