首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen production from biomass   总被引:1,自引:0,他引:1  
The ‘hydrogen economy’ has received considerable attention in academic, industrial and political contexts. There are opportunities for vast reductions in greenhouse gas emissions, increased energy security and greater overall efficiency. However, if hydrogen is to become a fundamental energy source for electrical power generation, as well as a transportation fuel, novel generation pathways will be necessary to meet the increase in demand. A promising means for generating hydrogen is the thermochemical conversion of biomass to a synthesis gas, composed of a mixture of hydrogen, carbon monoxide, carbon dioxide and methane. In order to manipulate the composition and maximise the hydrogen output, a calcium-based carbon dioxide sorbent can be utilised in situ. The removal of carbon dioxide alters the reaction chemistry to preferentially produce hydrogen. In this work we report on the characterisation of a likely Ca-based carbon dioxide sorbent and demonstrate the merits of hydrogen production from biomass, with in situ carbon dioxide capture, on the basis of a thermodynamic study. Using this model we show that hydrogen output from biomass gasification can be increased from 40%-vol to 80%-vol (dry basis) when a carbon dioxide sorbent is used.  相似文献   

2.
The standard idea for deep saline aquifer sequestration is to separate carbon dioxide from a process stream, compress it, and inject it underground. However, since carbon dioxide is less dense than water, even at the high pressures found in aquifers, it is buoyant and will move towards the surface unless trapped by an impermeable seal. Also, significant energy expenditure is required to separate and compress carbon dioxide, even though neat carbon dioxide is not a desired product. These issues may be addressed by combining the idea of fast dissolution at the surface with supercritical water oxidation (SCWO). By burning coal at high pressure in supercritical water drawn from an aquifer, and then sequestering the entire pre-equilibrated effluent, all carbon from the fuel is captured, as well as all non-mineral coal combustion products including sulfur and metals.A possible block diagram of an SCWO-based electric power plant is proposed, including processes to handle salts from the aquifer brine and minerals from coal. The plant is thermodynamically modeled, using an indirectly fired combined cycle to convert energy from hot combustion products to work. This model estimates the overall thermal efficiency that can be achieved, and reveals unanticipated interactions within the plant that have significant effects on efficiency. The assumptions and results of the model highlight design challenges for an actual system.  相似文献   

3.
Pulp mill effluent was treated by different advanced oxidation processes (AOPs) consisting of UV, UV/H2O2, TiO2-assisted photo-catalysis (UV/TiO2) and UV/H2O2/TiO2 in lab-scale reactors for total organic carbon (TOC) and toxicity removals. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC and toxicity removals were investigated. Almost every method resulted in some degree of TOC and toxicity removal from the pulp mill effluent. However, the TiO2-assisted photo-catalysis (UV/TiO2) resulted in the highest TOC and toxicity removals under alkaline conditions when compared with the other AOPs tested. Approximately, 79.6% TOC and 94% toxicity removals were obtained by the TiO2-assisted photo-catalysis (UV/TiO2) with a titanium dioxide concentration of 0.75gl(-1) at pH 11 within 60min.  相似文献   

4.
In this work, the rate of absorption of carbon dioxide by aqueous ammonia solvent has been studied by applying a newly built wetted wall column. The absorption rate in aqueous ammonia was measured at temperatures from 279 to 304 K for 1 to 10 wt% aqueous ammonia with loadings varying from 0 to 0.8 mol CO2/mol NH3. The absorption rate in 30 wt% aqueous mono-ethanolamine (MEA) was measured at 294 and 314 K with loadings varying from 0 to 0.4 as comparison.It was found that at 304 K, the rate of absorption of carbon dioxide by 10 wt% NH3 solvent was comparable to the rates for 30 wt% MEA at 294 and 314 K (a typical absorption temperature for this process). The absorption rate using ammonia was however significantly lower at temperatures of 294 K and lower as applied in the Chilled Ammonia Process. However, at these low temperatures, the rate of absorption in ammonia has only a small temperature dependency.The rate of absorption decreases strongly with decreasing ammonia concentrations and increasing CO2 loadings.The rate of absorption of carbon dioxide by aqueous ammonia solvent was modeled using the measurements of the unloaded solutions and the zwitter-ion mechanism. The model could successfully predict the experimental measurements of the absorption rate of CO2 in loaded ammonia solutions.  相似文献   

5.
Elevated levels of CO2 in the atmosphere have been linked to the rise in land and sea temperature [Climate Change, 2001. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Xiaosu, D. (Eds.), The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, UK, p. 944]. To demonstrate geological carbon sequestration as a mitigation technique, a carbon dioxide injection experiment was conducted in East Texas. The target – Frio formation – is a highly porous, permeable and unconsolidated sandstone. The specific interval is the Frio C sand, which originally was saturated with saline formation water. At the injection location, the Frio C sand dips 18° to the south. To monitor the injected CO2 spreading in the formation, an old well from 1956 drilled into the deeper Yegua formation was selected as the observation well. The injection well was drilled at a distance of 100 ft downdip from the monitoring well. Several borehole measurement methods were available to monitor the CO2 injection, but the most suitable technology was thought to be the pulsed neutron logging. This logging is used widely in cased hole, and the measured macroscopic thermal absorption cross-section (Σ) is sensitive to CO2 saturation in high porosity saline water environments. Several log examples are given demonstrating successful the monitoring of the CO2 plume moving through the two boreholes and the resulting saturation changes.  相似文献   

6.
In this study, economically favorable CoCl2 catalysts at four different amounts were supported on activated carbon (AC) for NaBH4 dehydrogenation. Supported catalyst could achieve hydrogen release for 2,060 cycles, which is equivalent to 103 days of uninterrupted operation. Slow and continuous hydrogen release was observed in all experiments. Even 1 g of NaBH4 can carry 1.2 L of hydrogen, and in hydrolysis process, it liberates 2.5 L of hydrogen that indicates the decomposition of water. EDX analysis and reverse burette measurements show that CoCl2 could be homogeneously distributed on and permanently joined to the support surface. Kinetic investigation of the dehydrogenation reaction fits zero order kinetics, and activation energy was calculated to be 48 kJ/mol.  相似文献   

7.
Effect of oxygenated liquid additives on the urea based SNCR process   总被引:1,自引:0,他引:1  
An experimental investigation was performed to study the effect of oxygenated liquid additives, H2O2, C2H5OH, C2H4(OH)2 and C3H5(OH)3 on NOx removal from flue gases by the selective non-catalytic reduction (SNCR) process using urea as a reducing agent. Experiments were performed with a 150 kW pilot scale reactor in which a simulated flue gas was generated by the combustion of methane operating with 6% excess oxygen in flue gases. The desired levels of initial NOx (500 ppm) were achieved by doping the fuel gas with ammonia. Experiments were performed throughout the temperature range of interest, i.e. from 800 to 1200 °C for the investigation of the effects of the process additives on the performance of aqueous urea DeNOx. With H2O2 addition a downward shift of 150 °C in the peak reduction temperature from 1130 to 980 °C was observed during the experimentation, however, the peak reduction efficiency was reduced from 81 to 63% when no additive was used. The gradual addition of C2H5OH up to a molar ratio of 2.0 further impairs the peak NOx reduction efficiency by reducing it to 50% but this is accompanied by a downward shift of 180 °C in the peak reduction temperature. Further exploration using C2H4(OH)2 suggested that a 50% reduction could be attained for all the temperatures higher than 940 °C. The use of C3H5(OH)3 as a secondary additive has a significant effect on the peak reduction efficiency that decreased to 40% the reductions were achievable at a much lower temperature of 800 °C showing a downward shift of 330 °C.  相似文献   

8.
The prepared different components municipal solid wastes based carbons were used to investigate the adsorption of CO2. The optimum conditions for CO2 adsorption were investigated firstly. And then, the CO2 adsorption performance of different components based carbon adsorbents were compared with each other under the optimum parameters. The results illustrated that the triple components (pinewood, acrylic textile, and tire) based carbon exhibited the best adsorption performance, which is 1.522 mmol/g and its physical prosperity was also conducted to interpret the adsorption mechanism. Besides, to further approach to the actual gas, the influence of additional O2 and SO2 on CO2 adsorption properties of ternary-component-based carbon was investigated. The results illustrate that O2 concentration exerts little effect on adsorption capacity. SO2 plays the dominated role in the competitive adsorption effect.  相似文献   

9.
High-pressure, near-critical liquids were used as float-sink separation media for the microsortation of polyolefin mixtures and PET/PVC mixtures. Near-critical carbon dioxide was used for the refinement of the polyolefins, and sulfur hexafluoride was used to separate post-consumer PVC from PET. Preliminary experiments indicated that there was no overlap in the density ranges of post-consumer HDPE, LDPE and PP containers. There was no overlap in the PET and PVC densities, with the exception of a single PVC packaging material with a density in the PET range. These initial results indicated that a float-sink separation was a viable means of microsortation. Separations of 91% LDPE (1/8′ beads)/9% PP (1/8′ chopped strands) resin mixtures and mixed post-consumer polyolefin flakes were then conducted in a laboratory-scale, 1-I batch apparatus. This apparatus not only permitted the observation of the separation, but also enabled the separated fractions to be removed from the high-pressure environment. The results indicated that LDPE purity of greater than 98.9% was obtained in 3 min or less if (a) the fluid density was 0.018 g/cm3 greater than the PP density and only 0.002 g/cm3 less than the LDPE density, thereby providing the greatest buoyancy force for the removal of the PP, (b) the fluid was recirculated upward through the bed of mixed plastics, facilitating the upward movement of the PP, and (c) the loading was kept at levels below 40% by volume. HDPE purity of 99% was also attained with clean, dry, post-consumer mixed plastic flakes. The loadings for these separations were very low, however, due to the difficulty in agitating the mixed bed of plastics using fluid recirculation. An economic analysis of these microsortation processes indicated that the value of the sorted plastics relative to the mixed feed must increase by approx. $0.08/lb for the CO2-based separation and approx. $0.27/lb for the SF6-based separation to justify the implementation of these high-pressure processes.  相似文献   

10.
As monitoring is essential for the proper management of geological storage of carbon dioxide (CO2), the ability to value information from monitoring is indispensable to adequately design a monitoring program. It is necessary to judge whether the expected improvement in management is worth the cost of monitoring. The value of information (VOI) is closely related to the possible increase in expected utility gained by gathering the information, the concept of which can be applied to such judgement. Although VOI analysis has been extensively studied in the context of decision analysis, its application to the management of carbon dioxide capture and storage (CCS) operations is rare. This paper introduces and discusses the methodology of VOI analyses in the context of monitoring CO2 storage. A motivating problem with discrete probabilities is used to illustrate the concept of VOI. It is demonstrated that information is not always of value; for information to be worthwhile, monitoring under uncertainty must satisfy certain conditions. This concept is then extended to continuous probability distributions. The effects of prior uncertainty and information reliability on the VOI are examined. It is shown that an excessive improvement in information accuracy yields little value and that the optimal level of reliability can be inferred. VOI analyses provide quantitative insights into the value of information-gathering activities and therefore can be an objective means to adequately design and impartially justify a monitoring program.  相似文献   

11.
长三角地区作为我国大气污染较为严重区域之一,如何在保持经济增长的同时减少CO2与大气污染物的排放已成为一个重要挑战。本研究基于2007年与2012年长三角区域间投入产出表,定量分析了长三角地区省市间贸易引致的二氧化碳和大气污染物排放转移特征和变化趋势。同时,运用产业关联系数法,从前向关联与后向关联双重视角分析了长三角地区减缓CO2和大气污染物排放的关键行业。研究结果表明,长三角的SO2、PM2.5排放总量表现为消费端大于生产端,CO2、NOx排放总量表现为生产端大于消费端。安徽省总体呈现为长三角地区贸易的SO2、NOx与PM2.5排放净调出地,而上海与浙江表现为多数污染物排放净调入地。CO2与大气污染物协同前向减排的关键行业为江苏省、浙江省和安徽省的电力、热力的生产和供应业,安徽省的煤炭开采和洗选业等,可以通过生产端技术革新和能源结构优化来促进减排;CO2与大气污染物后向协同减排的关键行业为江苏省、浙江省和安徽省的建筑业等,对于这些行业,调整消费结构是有效的减排措施。为更好地制定长三角地区减排与污染防治政策,应当综合考虑行业减排、协同减排等,以确保经济持续增长的同时达到减排目标。  相似文献   

12.
In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering methane composition (average 63.09%) and COD removal (average 90.60%), slight differences were found among these three reactors.  相似文献   

13.
A sorbent having a calcium oxide core and a clay shell was prepared and shown to be capable of reusable applications in absorption and desorption processes for carbon dioxide. The novelty of this sorbent is that only calcium carbonate and clay are used for its preparation with water as a binder. A two-step granulation procedure is used to get the core and then another step to coat the shell layer with the clay powder. A repeated wet-and-dry procedure probably makes the core porous yet strong enough to serve as a sorbent. The pellet is then calcined at 1200 degrees C for 2h to reach its final structure. The core-shell pellets have an overall diameter of 4.4mm with average shell thickness of 0.45 mm, crush load of 35 N and attrition index of 0.035 wt%/h. These results indicate that the pellets will probably be capable of withstanding the stress in future applications. Carbon dioxide absorption at or below 300 degrees C showed a maximum weight gain of 38% for our pellets. Finally, desorption in nitrogen at 800 degrees C can restore the pellet to its original state and hence it is ready for re-use as a sorbent.  相似文献   

14.
Chemical looping combustion (CLC) is a process in which oxygen required for combustion of a fuel is supplied by the metal oxide. Metal oxide plays the role of an oxygen carrier by providing oxygen for combustion when being reduced and is then re-oxidized by air in a separate reactor. Combustion is thus without any direct contact between air and fuel: as a consequence flue gas does not contain nitrogen of air which simplifies flue gas treatment prior to sequestration. In the present study, biogas combustion was analyzed in a chemical looping combustion fluidized bed reactor. NiAl0.44O1.67 and Cu0.95Fe1.05AlO4 metal oxide particles were used as oxygen carriers. The experiments have shown the feasibility of biogas combustion in chemical looping combustion: CH4 of the biogas was completely converted to CO2 and H2O with a small fraction of CO and H2. The outlet flue gas distribution profile was not affected by ageing during the cycles of reduction and oxidation, indicating the chemical stability of the oxygen carriers. There was limited formation of carbon on the oxygen carriers during reduction.  相似文献   

15.
In the carbon capture and storage (CCS) chain, transport and storage set different requirements for the composition of the gas stream mainly containing carbon dioxide (CO2). Currently, there is a lack of standards to define the required quality for CO2 pipelines. This study investigates and recommends likely maximum allowable concentrations of impurities in the CO2 for safe transportation in pipelines. The focus is on CO2 streams from pre-combustion processes. Among the issues addressed are safety and toxicity limits, compression work, hydrate formation, corrosion and free water formation, including the cross-effect of H2S and H2O and of H2O and CH4.  相似文献   

16.
The gasification reaction of Nantong inferior coal was investigated in a laboratory fixed-bed reactor under CO2 and O2/H2O atmospheres. The effects of the bed temperature and inlet-gas concentration on the yields of CO, H2, and CH4 were studied. The effects of coal ash and particle size on the fixed-carbon conversion were also investigated, and kinetic analysis was conducted with a homogeneous model. The product-gas-heating value and fixed-carbon conversion increased when the temperature was increased from 950 °C to 1100 °C under CO2 atmosphere. When the inlet-CO2 concentration was increased from 50 to 100 vol.%, the low heating value of the product gas and carbon conversion ratio slightly increased. During the gasification of inferior coal under the O2/H2O atmosphere, the CO concentration increased rapidly with increasing temperature. The H2 and CH4 concentrations increased initially and then decreased. The maximum gas heating value of 7934 kJ/m3 was obtained under the O2 concentration of 70 vol.% at a bed temperature of 1050 °C. The cold-gas efficiency increased with increasing temperature and became 40.6% and 86.4% at 1100 °C under the CO2 and O2/H2O atmospheres, respectively. The gasification reaction of the Nantong inferior coal strongly depended on the content of inherent inorganic matter. The gasification rates for both the CO2 and O2/H2O atmospheres were independent of the particle size. The activation energy for the CO2 and O2/H2O gasification reactions were 137 and 81 kJ/mol, respectively. The gasification reactions of the Nantong coal, which was performed under two different atmospheres, were compared and the reaction activity of the gasification reaction under CO2 atmosphere was found to be much lower than that under the O2/H2O atmosphere.  相似文献   

17.
A numerical study was conducted to predict pCO2 change in the ocean on a continental shelf by the leakage of CO2, which is originally stored in the aquifer under the seabed, in the case that a large fault connects the CO2 reservoir and the seabed by an earthquake or other diastrophism. The leakage rate was set to be 6.025 × 10−4 kg/m2/sec from 2 m × 100 m fault band, which corresponds to 3800 t-CO2/year, referring to the monitored seepage rate from an existing EOR field. The target space in this study was limited to the ocean above the seabed, the depth of which was 200 or 500 m. The computational domain was idealistically rectangular with the seabed fault-band perpendicular to the uniform flow. The CO2 takes a form of bubbles or droplets, depending on the depth of water, and their behaviour and dissolution were numerically simulated during their rise in seawater flow. The advection–diffusion of dissolved CO2 was also simulated. As a result, it was suggested that the leaked CO2 droplets/bubbles all dissolve in the seawater before spouting up to the atmosphere, and that the increase in pCO2 in the seawater was smaller than 500 μ atm.  相似文献   

18.
Coal combustion by-products such as fly ash (FA), brine and CO(2) from coal fired power plants have the potential to impact negatively on the environment. FA and brine can contaminate the soil, surface and ground water through leaching of toxic elements present in their matrices while CO(2) has been identified as a green house gas that contributes significantly towards the global warming effect. Reaction of CO(2) with FA/brine slurry can potentially provide a viable route for CO(2) sequestration via formation of mineral carbonates. Fractionated FA has varying amounts of CaO which not only increases the brine pH but can also be converted into an environmentally benign calcite. Carbonation efficiency of fractionated and brine impacted FA was investigated in this study. Controlled carbonation reactions were carried out in a reactor set-up to evaluate the effect of fractionation on the carbonation efficiency of FA. Chemical and mineralogical characteristics of fresh and carbonated ash were evaluated using XRF, SEM, and XRD. Brine effluents were characterized using ICP-MS and IC. A factorial experimental approach was employed in testing the variables. The 20-150 μm size fraction was observed to have the highest CO(2) sequestration potential of 71.84 kg of CO(2) per ton of FA while the >150 μm particles had the lowest potential of 36.47 kg of CO(2) per ton of FA. Carbonation using brine resulted in higher degree of calcite formation compared to the ultra-pure water carbonated residues.  相似文献   

19.
汞的光还原是影响水生系统汞迁移转化的重要过程.光还原产生的溶解性气态汞会通过水气界面向大气挥发.该过程可以减轻水体汞负荷,降低汞被甲基化的风险,对全球汞循环具有重要意义.水生系统中汞的光还原过程十分复杂,影响因素较多,是汞环境地球化学行为研究的重点和热点.目前科学家在这方面已做了大量研究,但许多结论与建议还存在争议,对其还原机制也还不清楚.本文总结了近年来水体汞光还原过程的研究进展;分析了水生系统中影响汞光还原过程的主要因素;评述了水汞光还原研究存在的问题;提出了水体汞光还原的研究焦点与方向.  相似文献   

20.
Carbon dioxide sequestration in deep saline aquifers is a means of reducing anthropogenic atmospheric emissions of CO2. Among various mechanisms, CO2 can be trapped in saline aquifers by dissolution in the formation water. Vaporization of water occurs along with the dissolution of CO2. Vaporization can cause salt precipitation, which reduces porosity and impairs permeability of the reservoir in the vicinity of the wellbore, and can lead to reduction in injectivity. The amount of salt precipitation and the region in which it occurs may be important in CO2 storage operations if salt precipitation significantly reduces injectivity. Here we develop an analytical model, as a simple and efficient tool to predict the amount of salt precipitation over time and space. This model is particularly useful at high injection velocities, when viscous forces dominate.First, we develop a model which treats the vaporization of water and dissolution of CO2 in radial geometry. Next, the model is used to predict salt precipitation. The combined model is then extended to evaluate the effect of salt precipitation on permeability in terms of a time-dependent skin factor. Finally, the analytical model is corroborated by application to a specific problem with an available numerical solution, where a close agreement between the solutions is observed. We use the results to examine the effect of assumptions and approximations made in the development of the analytical solution. For cases studied, salt saturation was a few percent. The loss in injectivity depends on the degree of reduction of formation permeability with increased salt saturation. For permeability-reduction models considered in this work, the loss in injectivity was not severe. However, one limitation of the model is that it neglects capillary and gravity forces, and these forces might increase salt precipitation at the bottom of formation particularly when injection rate is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号