首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Growth and herbivory of heterotrophic dinoflagellates (Gymnodinium sp.) from the Weddell Sea and the Weddell/Scotia Confluence were studied in 1988 in 100-liter microcosms. The microcosms were screened through 200-µm or 20-µm mesh nets and incubated for 12 d at 1 °C under artificial light. Mean cell volume of dinoflagellates was 1 000 to 1 500µm3, and that of their phytoplankton prey 360 to 430µm3. Dinoflagellate growth rate followed a Holling type II functional response, with a maximum growth rate of 0.3 d–1 and half-saturation food concentrations of 1.0µg chlorophylla l–1, 50µg C l–1, or 1 500 cells ml–1. Carbon budgets based on14CO2 assimilation and biomasses of phytoplankton and heterotrophic dinoflagellates suggested a balance between phytoplankton grazing loss and dinoflagellate consumption, assuming a dinoflagellate carbon conversion efficiency of 40%. Applying this to the functional response yielded estimates of maximum ingestion rate (0.8µg Cµg–1 C d–1, or 6 pg C dinoflagellate–1 h–1) and maximum clearance (0.8 to 1.2 × 105 body volumes h–1, or 80 to 120 nl ind.–1 h–1). The microcosm experiments suggested that heterotrophic dinoflagellates may contribute significantly to maintenance of low phytoplankton biomass in the Southern Ocean.  相似文献   

2.
The control mechanisms within the pelagic microbial food web of the oligotrophic Gulf of Aqaba and the northern Red Sea were investigated in the spring of 1999. Nutrient conditions and potential grazer impact were manipulated in a series of dilution experiments. Ambient nutrient concentrations and autotrophic biomass were very low (0.23–1.21 µmol NO3 l–1, 0.06–0.98 µmol NH4 l–1, 1.08–1.17 µmol Si l–1, 0.08–0.12 µmol P l–1, 0.15–0.36 µg chlorophyll a l–1). The planktonic community was characterized by low abundances [3.0–5.5×105 heterotrophic bacteria ml–1, 0.58–7.2×103 ultraphytoplankton <8 µm ml–1 (small eukaryotic photoautotrophs and Prochlorococcus sp., excluding Synechococcus sp.), 0.45–4.4×104 Synechococcus sp. ml–1, 0.32–1.2×103 heterotrophic nanoflagellates ml–1, 1.3–3.8×103 phytoplankton >8 µm l–1, 0.93–5.4×102 microzooplankton l–1] and dominated by small forms (0.2–8 µm). Dinoflagellates and oligotrichous ciliates were the most common groups in initial samples among the phytoplankton >8 µm and microzooplankton, respectively. Results show that bottom-up and top-down control mechanisms operated simultaneously. Small organisms were vulnerable to grazing, with maximum grazing rates of 1.1 day–1 on heterotrophic bacteria and 1.3 day–1 on ultraphytoplankton. In contrast, algae >8 µm showed stronger signs of nutrient limitation, especially when the final assemblages were dominated by diatoms. Synechococcus sp. were not grazed and only showed moderate to no response to nutrient additions. The high spatial and temporal variation of our results indicates that the composition of the planktonic community determines the prevailing control mechanisms. It further implies that, at this transitional time of the year (onset of summer stratification), the populations fluctuate about an equilibrium between growth and grazing.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

3.
Grazing impact of microzooplankton on phytoplankton was investigated on the Grand Bank, Newfoundland, Canada, in April, July and October 1984, using a seawater dilution method. In April a large proportion of chlorophylla was in the microplankton size fraction (> 20µm) while in mid-summer and fall most was in the nanoplankton size fraction (< 20µm). Diatoms were the dominant phytoplankters in April, while undetermined flagellates and coccolithophores were abundant in other seasons. Major grazers were oligotrichous ciliates in all seasons. Instantaneous grazing rates on nanophytoplankton, as measured by changes in chlorophylla, varied from 0.12 to 0.43 d–1 and those on microphytoplankton from 0.19 to 0.68 d–1. Grazing rates did not change over 24 and 48 h intervals. This level of grazing corresponded to a daily loss of about 20 and 30% of standing stock of chlorophylla and about 50 and 70% loss of potential production in the two size fractions respectively. Taxon-specific grazing rates, calculated from microscopic enumeration, showed that small diatoms were grazed heavily, and their growth was controlled by grazing in late spring. In late summer and fall, undetermined flagellates and coccolithophores were also grazed at high rates but their growth rates were higher than the grazing rates, and therefore, were not controlled by microzooplankton. In general, microzooplankton grazed on whatever appropriate sized food was dominant in the experimental water. Their potential ability to control the growth of certain food species may be one of the causes determining the species composition of phytoplankton communities.  相似文献   

4.
Mussel culture in coastal environments relies on the availability of food of sufficient quality and quantity. Both to determine this availability and to examine impacts that this aquaculture practice may have on the environment, it is important to have good knowledge of the type of plankton communities present in aquaculture sites. It is usually thought that phytoplankton make up the bulk of mussel diet in many of these sites. Here we show that the Grande-Entrée lagoon [Magdalen Islands, Gulf of St Lawrence (GSL), Canada], where commercial mussel culture has been on-going since 1980, differs from this pattern. Heterotrophic protists dominate for most of the summer-early fall season (apart from short diatom bursts), with a high average biomass of 160 mg C m−3. The dominance of small-sized phytoplankton cells (notably green algae), low nutrient concentrations (e.g. 0.3 μM NO3 on average) and high biomass of heterotrophic protists (mostly naked ciliates and tintinnids) all point to the importance of the microbial food web in this shallow marine environment. Sustained cultivation of suspended mussels in the lagoon suggests that these heterotrophic protists could be an important source of food for the mussels, supplementing the small amount of phytoplankton present.  相似文献   

5.
In July 1988 a survey was made in the Dogger Bank area of the North Sea. As a result of wind stress the area was found to be frequently well mixed. At the northerly slope a transition zone was observed between the stratified central North Sea and the well-mixed Dogger Bank area. Low nutrient concentrations were observed in surface waters; especially for nitrate (<0,1µM). High concentrations of phosphate (>0,5µM), nitrate (>1µM), ammonium (>2µM) and silicate (>2µM) only prevailed below the thermocline. Chlorophylla values were below 1µg l–1 near the surface. Enhanced values (up to 4µg l–1) were observed in the deeper layer at the transition zone and just below the thermocline at well-stratified locations. At the transition zone high specific C-fixation rates (up to 100 mg C mg–1 chla d–1) at the surface indicated the presence of enhanced productivity. The compensation depth for primary production was found to coincide with a specific C-fixation rate of 5 mg C mg–1 chla d–1. At greater depths, phytoplankton was only found where tidally induced vertical mixing allowed a regular exposure to higher light intensities. Storms resulted in a rapid redistribution of chlorophylla and enhancement of the C-fixation rate in the upper layer of the water column.Publication No. 10 of the project Applied Scientific Research Netherlands Institute for Sea Research (BEWON)  相似文献   

6.
Zooplankton abundance and grazing on autotrophic and heterotrophic particulate matter were measured along a transect across Davis Reef (18°5S; 147°39E) and in the back-reef lagoon over tidal and diel cycles during austral winter (August 1984). Zooplankton entering the reef from the surrounding shelf waters decreased in abundance over the reef flat, presumably because of predation. Within the reef lagoon, maximum daytime densities of pelagic copepods occurred during high water, suggesting an external input. At night, water-column zooplankton biomass increased by a factor of 2 to 3 due to the emergence of demersal reef zooplankton. Zooplankton grazing rates on heterotrophic particulate matter (bacteria + detritus and Protozoa) compared to phytoplankton were higher on the reef flat than on the fore-reef or lagoon. Within the lagoon, zooplankton grazing rates on heterotrophic material were maximum during high water, coincident with maximum tidal concentrations of particulate organic carbon. The combined demersal and pelagic zooplankton community were often able to crop 30% of the daily primary production by >2µm phytoplankton. However, >50% of phytoplankton biomass was in cells <2µm, presumably unavailable to these zooplankton. Our particulate production and ingestion measurements, together with zooplankton carbon demand extrapolated from respiration estimates, suggest that the zooplankton community of Davies Reef derives much of its nutrition from detritus.Joint contribution from the University of Maryland, Center for Environmental and Estuarine Studies (No. 2015), and the Microbial Ecology on a Coral Reef Workshop (MECOR No. 19)  相似文献   

7.
The plankton community in the Polar Front area of the Barents Sea was investigated during a cruise from 14 to 28 July 1987. The colonial algaePhaeocystis pouchetii andDinobryon pellucidum dominated the phytoplankton. Depth integrated carbon assimilation rates varied from 190 to 810 mg C m–2 d–1. A high carbon:chlorophyll ratio (which varied from 123 to 352) prevailed at the three stations investigated, which may relate to facultative heterotrophic behaviour byD. pellucidum. The herbivorous zooplankton community was dominated byCalanus glacialis, C. finmarchicus, andC. hyperboreus. Maximum zooplankton biomass was found in the same depth strata as phytoplankton chlorophyll maximum. The herbivorous copepod populations did not display consistent day-night vertical migration patterns. Phytoplankton consumption rates of the various life stages were estimated from the turnover rate of plant pigments in the gut. The gut defecation rate constant (R) varied from 0.014 to 0.027 min–1 at 0°C in copepodites (Stage II to adult female) ofC. glacialis, independent of developmental stage.Calanus spp. community carbon ingestion rates calculated from particulate carbon:chlorophyll ratios, were 10, 65 and 400% of daily phytoplankton carbon fixation rates at Stations 1, 2 and 3, respectively.  相似文献   

8.
The study was carried out in the Skagerrak during late summer when population development in the pelagic cycle culminated in the yearly maximum in zooplankton biomass. The cyclonic circulation of surface water masses created the characteristic dome-shaped pycnocline across the Skagerrak. The large dinoflagellate Ceratium furca dominated the phytoplankton biomass. Ciliates and heterotrophic dinoflagellates were the major grazers and, potentially, consumed 43–166% of daily primary production. The grazing impact of copepods was estimated from specific egg production rates and grazing experiments. The degree of herbivory differed between species (14–85%), but coprophagy (e.g. feeding on fecal pellets) and ingestion of microzooplankton were also important. The appendicularian Oikopleura dioica was present in lower numbers than copepods, but cleared a large volume of water. The grazing impact of copepods and O. dioica was estimated to 57±24% and 12±12% of daily primary production, respectively. Sedimentation of organic material (30 m) varied between 169 and 708 mg C m–2 day–1, and the contribution from the mesozooplankton (copepod fecal pellets and mucus houses with attached phytodetritus of O. dioica) was 5–33% of this sedimentation. Recycling of fecal pellets and mucus houses in the euphotic zone was 59% and 36%, respectively. However, there was a high respiration of organic material by microorganisms in the mid-water column, and 34% of the sedimenting material actually reached the benthic community in the deep, central part of the Skagerrak.  相似文献   

9.
The energetic cost of metamorphosis in cyprids of the barnacle Balanus amphitrite Darwin was estimated by quantification of lipid, carbohydrate and protein contents. About 38–58% (4–5 mJ individual–1) of cypris energy reserves were used during metamorphosis. Lipids accounted for 55–65%, proteins for 34–44% and carbohydrates for <2% of the energy used. Juveniles obtained from larvae fed 106 cells ml–1 of Chaetoceros gracilis were bigger (carapace length: 560–616 µm) and contained more energy (5.56±0.10 mJ juvenile–1) than their counterparts (carapace length: 420–462 µm; energy content: 2.49±0.20 mJ juvenile–1) obtained from larvae fed 104 cells ml–1. At water temperatures of 30°C and 24°C and food concentrations of 104 and 102 cells ml–1 (3:1 mixture of C. gracilis and Isochrysis galbana) as well as under field conditions (26.9±3.1°C and 2.2±0.8 µg chlorophyll a l–1), juveniles obtained from larvae fed the high food concentration grew faster than juveniles obtained from larvae fed low food concentration until 5 days post-metamorphosis. Laboratory experiments revealed a combined effect of early juvenile energy content, temperature and food concentration on growth until 5 days post-metamorphosis. After 10 days post-metamorphosis, the influence of the early juvenile energy content on growth became negligible. Overall, our results indicate that the energy content at metamorphosis is of critical importance for initial growth of juvenile barnacles and emphasize the dependency of the physiological performance of early juvenile barnacles on the larval exposure to food.Communicated by O. Kinne, Oldendorf/LuheAn erratum to this article can be found at  相似文献   

10.
Data on phytoplankton primary production, biomass, and species composition were collected during a 5 yr (1985–1989) study of Auke Bay, Alaska. The data were used to examine the interannual differences in the timing, duration, and magnitude of the spring phytoplankton blooms during each year and to relate these differences to interannual variations in weather patterns. Within any given year, a pre-bloom phase was characterized by low available light, low rates of primary production, low biomass, and predominantly small (<10µm) diatoms. During the primary bloom, integrated production rates rose to 4 to 4.5 g C m–2 d–1, and integrated biomass levels reached 415 to 972 mg chlorophyll m–2. Primary blooms were usually dominated by large diatoms (Thalassiosira spp.), and in a single year (1989) byChaetoceros spp. The primary blooms terminated upon nutrient depletion in the euphotic zone. Secondary blooms, triggered by nutrient resupply from below, occurred sporadically after the primary bloom and accounted for 4 to 31% of total spring production. The date of initiation and the duration of the primary bloom varied little from year to year (standard deviation 3 and 5 d, respectively). Seasonal production rates and biomass levels varied interannually by a factor of 2 to 3. In contrast, intra-annual variations of more than an order of magnitude, especially in biomass, occurred over periods as short as 10 d. These large variations over short time periods indicate the importance of synchronous timing between spring blooms and the production of larval fish and shellfish, which depend on an appropriate and adequate food supply for growth and survival. Parameters describing primary production (e.g. peak daily production, mean daily production, and total production during the primary bloom and the entire season) exhibited little interannual variation (coefficient of variation, CV = 10 to 19%), but a large degree of intra-annual variation (CV = 77 to 116%). Similarly, interannual variations in biomass (peak chlorophyll, mean chlorophyll) were also lower (CV = 20 to 33%) than intra-annual variations (CV = 85 to 120%).  相似文献   

11.
During the austral summers of 1990–1993, phytoplankton studies were conducted in the vicinity of Elephant Island, Antarctica, to investigate the spatial and temporal variability of phytoplankton biomass and taxonomic composition. There was much intraannual variability, with a trend for increasing biomass from January–February (Leg I) to February–March (Leg II), except in the 1993 studies. There was also a change in phytoplankton composition between the two legs. During 1990–1991 the increase was due mostly to diatoms, during 1992 mostly to an increase of flagellates; during 1993 there was a decrease in total biomass between the two legs, with diatoms decreasing, so that dinoflagellates, which increased slightly in numbers, dominated the biomass during the second leg. There was also much inter-annual variability, with the summers of 1990–1991 having greater biomass and higher proportions of microplanktonic diatoms than that of 1992–1993, which had a higher proportion of flagellates. Cluster analyses revealed the presence of four major phytoplankton assemblages, with varying geographical distributions. The northwestern portion of the grid (Drake Passage waters), was characterized by nanoplanktonic diatoms during 1990–1991 and 1993, but by nanoplanktonic flagellates during 1992. The central area (Drake-Bransfield confluence) was characterized by microplanktonic diatoms in 1990–1991, but by cryptophytes or flagellates in 1992–1993. The south and southeastern portion of the area (Bransfield Strait waters) was characterized mainly by either cryptophytes or other flagellates during all 4 yr. The spatial and temporal variability of phytoplankton could not be ascribed specifically to the geographical extent of the different water masses found in the study area, but appears to be due to changing growth conditions in the upper water column as influenced by physical mixing and meteorological conditions, as well as to effects of differential grazing.  相似文献   

12.
At three stations in Bahamas waters, in 1989, 15 to 30% of all the dinoflagellates >20µm diameter observed in near-surface waters fluoresced green under blue excitation light, 55 to 66% fluoresced red, and the remainder did not fluoresce at all. The abundance of these green-fluorescing dinoflagellates ranged from ca 5 to 10 cells l–1 at the study sites. Under UV excitation, however, the dinoflagellates had a blue to blue-green appearance. Almost all the blue-green fluorescing dinoflagellates appeared to be heterotrophic, except for one species,Phalacroma rapa Stein, which also contained red-fluorescing (under blue light) chlorophylla. The emission spectra from all species examined were of three basic types. Type 1 typically had two fluorescence emission peaks (ca 440 and ca 510 nm). Type 2 spectra possessed one sharp peak at 495 nm. Spectra belonging to Type 3 had a broad peak around 470 to 480 nm. The green fluorescence thus is likely caused by different substances in individual species. The attempt to reconstitute observed spectra with nicotinamide adenine dinucleotide (NADH) and riboflavin 5-phosphate (FMN) solutions was unsuccessful.  相似文献   

13.
The kinetics and efficiency of sterol production and bioconversion of phytosterols in two heterotrophic protists Oxyrrhis marina and Gyrodinium dominans were examined by feeding them two different algal species (Rhodomonas salina and Dunaliella tertiolecta) differing in sterol profiles. R. salina contains predominantly brassicasterol (≅99%) and <2% cholesterol. The major sterols in D. tertiolecta are ergosterol (45–49%), 7-dehydroporiferasterol (29–31%) and fungisterol (21–26%). O. marina fed R. salina metabolized dietary brassicasterol to produce 22-dehydrocholesterol and cholesterol. O. marina fed D. tertiolecta metabolized dietary sterols to produce cholesterol, 22-dehydrocholesterol, brassicasterol and stigmasterol. G. dominans fed either R. salina or D. tertiolecta metabolized dietary sterols to make cholesterol, brassicasterol and a series of unknown sterols. When protists were fed R. salina, which contains cholesterol, the levels of cholesterol were increased to a magnitude of nearly 5- to 30-fold at the phytoplankton-heterotrophic protist interface, equivalent to a production of 172.5 ± 16.2 and 987.7 ± 377.7 ng cholesterol per mg R. salina carbon consumed by O. marina and G. dominans, respectively. When protists were fed D. tertiolecta, which contains no cholesterol, a net production of cholesterol by the protists ranged from 123.2 ± 30.6 to 871.8 ± 130.8 ng per mg algal C consumed. Cholesterol is not only the dominant sterol, but a critical precursor for many physiologically functional biochemicals in higher animal. As intermediates, these heterotrophic protists increase the amount of cholesterol at the phytoplankton–zooplankton interface available to higher trophic levels relative to zooplankton feeding on algae directly.  相似文献   

14.
The colonization dynamics in trophic-functional patterns of periphytic protist communities was studied in coastal waters of the Yellow Sea, northern China, from May to June, 2010. The periphytic protists represented different trophic-functional structures during colonization process. Only certain trophic-functional groups (e.g., photoautotrophs, algivores and non-selectives) occurred within the protist communities with low species number and abundance at the initial stage (1–3 days), while more trophic-functional groups (e.g., photoautotrophs, algivores, non-selectives and raptors) contributed to the communities with increased and peaked species number and abundance at the transitional (7–10 days) and equilibrium (14–28 days) stages, respectively. All heterotrophic groups were significantly fitted the MacArthur–Wilson model in colonization curves and represented higher species number and colonization rates at a depth of 1 m than at 3 m. These results may provide necessary understandings for ecological researches and monitoring programs using periphytic protists with different colonization ages in marine ecosystems.  相似文献   

15.
K. Furuya 《Marine Biology》1990,107(3):529-539
Vertical distribution of phytoplankton biomass in terms of carbon content (PC) and its relationship with chlorophylla and particulate organic carbon (POC) were examined together with phytoplankton growth rates in the tropical and subtropical western Pacific in 1979, where a prominent subsurface chlorophyll maximum (SCM) developed between 65 and 150 m. Fluorescence microscopy combined with image analysis was used for measurement of cell volume which was converted to PC. The SCM coincided consistently with subsurface maximum of PC, and the SCM primarily reflected in situ accumulation of phytoplankton biomass. The PC:chlorophylla ratio decreased with depth; the ratio was 1.8 times, on average, higher in populations at the SCM compared to those near the surface. This increase in relative cellular chlorophylla along with depth accentuated the magnitude of the SCM. The PC:POC ratio was substantially lower near the surface, 0.17 on average, and increased sharply around the SCM, with a mean value of 0.53. Thus suspended particles around SCM were richer in phytoplankton than those in the upper layers. A major part of PC was contributed by autotrophic eukaryotes both near the surface and at the SCM, and prokaryotic picoplankton comprised a relatively small proportion (6.3 to 14.9%) of PC. The high phytoplankton biomass around the SCM was suggested to be ascribed to in-situ growth of phytoplankton.Please address all correspondence and requests for reprints to Dr Furuya at his present address: Institute of Bioresources, Miè University, Kamihama, Tsu 514, Japan  相似文献   

16.
The occurrence of unusual symbiotic microorganisms was examined in the intestines of a range of fish from the Great Barrier Reef, Australia. The fish taxa examined included 26 species of the family Acanthuridae, as well as representatives of phylogenetically related and herbivorous taxa. The microorganisms, referred to as protists, were only found in herbivorous and detritivorous members of the Acanthuridae. Protists were not found in planktivorous acanthurids, nor in any members of the families Kyphosidae, Pomacentridae, Scaridae, Zanclidae, Siganidae and Bleniidae we examined. In addition, protists were absent from the herbivorous acanthurids A. xanthopterus and A. nigricans. A range of protist forms, characterized by differences in size (8 to 417 m), shape and mode of cell division (daughter-cell production and binary fission), was observed. The occurrence of these forms appeared to be correlated with host feedingecology. Large forms (>100 m) of the protists were only found in acanthurids which fed over hard-reef substrata. Smaller forms were found in sand-grazing and detritivorous species. One of the protist forms appears identical to protists previously reported from Red Sea acanthurids.  相似文献   

17.
D. Dietrich  H. Arndt 《Marine Biology》2000,136(2):309-322
 The structure of a benthic microbial food web and its seasonal changes were studied in the shallow brackish waters of the island of Hiddensee, northeastern Germany, at two sites in close proximity by monthly or bimonthly sampling from July 1995 to June 1996. Abundance and biomass of phototrophic and non-phototrophic bacteria, heterotrophic flagellates (HF) and ciliates as well as the biomass of microphytobenthos were determined in the upper 0.3 cm sediment layer. Abundance of organisms showed strong positive correlation with water temperature, with the exception of the bacteria. Non-phototrophic bacterial numbers ranged from 7 × 108 to 6.7 × 109 cells cm−3 and phototrophic bacterial abundance from 4 × 107 to 2.7 × 108. Heterotrophic protist abundance ranged from 8 × 103 to 104 × 103 ind cm−3 for HF and from 39 to 747 ind cm−3 for ciliates. The biomass partitioning demonstrated the primary importance of non-phototrophic bacteria (min. 0.83, max. 84.87 μg C cm−3), followed by the microphytobenthos (min. 1.32, max. 50.93 μg C cm−3). The heterotrophic protists contributed roughly the same fraction to the total microbial biomass, with the biomass of the HF being slightly higher (HF 0.23 to 1.76 μg C cm−3, ciliates 0.04 to 1.17 μg C cm−3). Taxonomic classification of the benthic HF revealed the euglenids to be the most important group in terms of abundance and biomass, followed by thaumatomastigids and kinetoplastids. Other important groups were apusomonads, cercomonads, pedinellids and cryptomonads. The structure of the HF assemblage showed strong seasonal changes with euglenids being the most abundant taxa in summer, while apusomonads and thaumatomastigids were predominant in winter. Similar to the pelagic microbial food web, benthic picophototrophic bacteria were occasionally abundant, and the feeding modes of heterotrophic protists exhibited a great variety (predominantly omnivores, bacterivores, herbivores or predators). Filter-feeding HF were of little importance. Contrary to the pelagic environment, a top-down control on total benthic bacterial numbers by HF seemed unlikely at the studied stations which were characterised by muddy sand. Received: 6 January 1999 / Accepted: 21 October 1999  相似文献   

18.
The heterotrophic phase of plankton succession in the Japan Sea   总被引:7,自引:0,他引:7  
The vertical structure, composition and productivity of a plankton community was studied in the Japan Sea in June, 1972 during a period of thermocline formation; the parameters measured were: phytoplankton production and biomass; number, biomass, and production of planktonic bacteria; biomass of phagotrophic flagellates, ciliates and remaining microzooplankton. The concentration of micro- and mesozooplankton attained a basic maximum in a layer near the upper part of the thermocline. The biomass and calculated production of the heterotrophic part of the community exceeded considerably the amount of primary production. The heterotrophic phase of the seasonal succession of a plankton community in a temperate sea is described, when heterotrophic metabolism and production predominate. Heterotrophs at this stage use mostly energy from organic matter accumulated during the previous spring phytoplankton bloom.  相似文献   

19.
The seasonal abundance, distribution, maturity, growth and population dynamics of the euphausiidsThysanoessa raschi (M. Sars, 1864),T. inermis (Krøyer, 1846) andMeganyctiphanes norvegica (M. Sars, 1857) were studied in Ísafjord-deep, a fjord in northwest Iceland, from February 1987 to February 1988. Sampling was made at nine stations along the length of the fjord at approximately monthly intervals, along with hydrographic measurements and water sampling for nutrient analysis and measurements of chlorophylla concentrations. Spring warming of the water began in late May and maximum temperatures (8° to 10°C) were observed in late July–September. The phytoplankton spring-bloom started in early April, and the highest chlorophylla levels were measured in early May (7.0 mg m–3). A small increase was observed in the chlorophylla content in August. The greatest abundance of juveniles and males and females of all three species was observed during January and February 1988, during which period the euphausiids were concentrated in the middle and inner parts of the fjord. Euphausiid eggs were first recorded in the plankton in mid-May, and the greatest abundance ofThysanoessa spp. larvae occurred at the end of May. Larvae ofM. norvegica were not observed in Ísafjord-deep, indicating that recruitment of this species was occurring from outside the fjord.T. raschi andT. inermis had a life span of just over 2 yr; the life span ofM. norvegica was more difficult to determine. Almost all femaleT. raschi were mature at the age of 1 yr, while mostT. inermis females appeared not to mature until 2 yr of age. Most males of both species took part in breeding at 1 yr of age. The maximum carapace length ofT. raschi andT. inermis was 8 to 9 and 9 to 10 mm, respectively. The largestM. norvegica had a carapace length of 9 to 10 mm. The spawning of the euphausiids in Ísafjord-deep appeared to be closely related to the phytoplankton spring bloom; water temperature appeared to have no influence on spawning.  相似文献   

20.
Vertical distribution, chlorophylla (chla) and phaeopigment concentrations in the gut, and natural nitrogen isotope ratio ( 15N) were investigated for pelagic amphipodsThemisto japonica (Bovallius) collected from the Sea of Japan in July 1987. Differences in diel vertical migration behavior were clearly observed between small and largeT. japonica. Many small (<5 mm body length) amphipods appeared in the phytoplankton-rich shallow layers. Their gut pigment concentrations were higher (mean 0.52 ± 0.15µg chla g–1 amphipod) than those of large amphipods (mean 0.33±0.14µg g–1); this implies that the amphipods fed on a large amount of phytoplankton during the early stage of life. The 15N values of small amphipods were lower (5.7 to 6.3) than those of large amphipods (6.8 to 11.7), reflecting the lower trophic level of small amphipods compared to large ones. The 15N values for small amphipods were similar to those of herbivorous zooplankton. The amphipods' feeding behavior thus changes from herbivorous to carnivorous as they grow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号