首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 860 毫秒
1.
Urban wastewater in Turkey is primarily discharged without treatment to marine environments, streams and rivers, and natural and artificial lakes. Since it has been well established that untreated effluent in multi-use waters can have acute and chronic impacts to both the environment and human health, it is important to evaluate the consequences of organic enrichment relative to the structure and function of aquatic environment. We investigated the impacts of untreated municipal wastewater discharge from the city of Gumushane in the Eastern Black Sea Region of Turkey on the surface water quality of the stream Harsit. Several key water-quality indicators were measured: chemical oxygen demand (COD), ammonium nitrogen (NH 4 + –N), nitrite nitrogen (NO 2 ? –N), nitrate nitrogen (NO 3 ? –N), total Kjeldahl nitrogen (TKN), total nitrogen (TN), orthophosphate phosphorus (PO 4 3? –P), methylene blue active substances (MBAS), water temperature (t), pH, dissolved oxygen (DO), and electrical conductivity (EC). The monitoring and sampling studies were conducted every 15 days from March 2009 to February 2010 at three longitudinally distributed stations. While t, pH, DO, and EC demonstrated relatively little variability over the course of the study, other parameters showed substantial temporal and spatial variations. The most dramatic differences were noted in COD, NH 4 + –N, NO 2 ? –N, TKN, TN, PO 4 3— P, and MBAS immediately downstream of the wastewater discharge. Concentration increases of 309 and 418 % for COD, 5,635 and 2,162 % for NH 4 + –N, 2,225 and 674 % for NO 2 ? –N, 283 and 478 % for TKN, 208 and 213 % for PO 4 3? –P, and 535 and 1,260 % for MBAS were observed in the summer and autumn, respectively. These changes were associated with greatly diminished seasonal stream flows. Based on NO 2 ? –N, TKN, PO 4 3— P, and MBAS concentrations, it was concluded that Harsit stream water was correctly classified as polluted. The most telling parameter, however, was NH 4 + –N, which indicated highly polluted waters in both the summer and autumn. The elevated concentrations of both P and N in the downstream segment of the stream triggered aggressive growth of submerged algae. This eutrophication of river systems is highly representative of many urban corridors and is symptomatic of ongoing organic enrichment that must be addressed through improved water treatment facilities.  相似文献   

2.
We presented measurements of wet deposition of NH 4 + –N and NO 3 ? –N from 1986 to 2006 in Shenzhen City, China. Over the past 20 years, NO 3 ? –N concentration had significantly increased, but a reverse trend was found for NH 4 + –N. The main form of total inorganic nitrogen (TIN) was NH 4 + –N and the average NH 4 + –N/NO 3 ? –N ratio was 1.57 in this area. The contribution of NO 3 ? –N to TIN increased from 28–42% in the period of 1986–2000 to 50–63% during 2001–2006. The increased deposition flux of NO 3 ? –N resulted in the increasing trend of TIN, although NH 4 + –N showed a decreasing trend over time. Average deposition flux of TIN during 1986–2006 was 13.24 kg/ha/year, with a minimum value of 6.03kg/ha/year in 1988 and a maximum value of 20.52 kg/ha/year in 1997. Wet deposition fluxes of N appeared to vary with season, 81% occurred in the warm season (from April to September). The wet deposition of TIN to the Shenzhen Reservoir reached 8,902 kg in 2006, which contributed 9.95% of the total nonpoint pollution to the reservoir and will be increased in the future.  相似文献   

3.
Textile industry wastes raise a great concern due to their strong coloration and toxicity. The objective of the present work was to characterize the degradation and mineralization of textile effluents by advanced oxidative processes using either TiO2 or TiO2/H2O2 and to monitor the toxicity of the products formed during 6-h irradiation in relation to that of the in natura effluent. The results demonstrated that the TiO2/H2O2 association was more efficient in the mineralization of textile effluents than TiO2, with high mineralized ion concentrations (NH 4 + , NO 3 ? , and SO 4 2? ) and significantly decreased organic matter ratios (represented by the chemical oxygen demand and total organic carbon). The toxicity of the degradation products after 4-h irradiation to Artemia salina L. was not significant (below 10 %). However, the TiO2/H2O2 association produced more toxicity under irradiation than the TiO2 system, which was attributed to the increased presence of oxidants in the first group. Comparatively, the photogenerated products of both TiO2 and the TiO2/H2O2 association were less toxic than the in natura effluent.  相似文献   

4.
Measuring and modeling ammonium adsorption by calcareous soils   总被引:1,自引:0,他引:1  
The aim of this study was assessment of ammonium (NH 4 + ) adsorption isotherms in some agricultural calcareous soils and modeling of that by using the mechanistic exchange model. Ten surface soils (0–30 cm) were collected from areas covered with different land uses in Hamedan, western Iran. Isotherm experiments were carried out by concentrations of NH 4 + prepared from NH4Cl salt (0, 10, 20, 30, 40, 50, 100, and 150 mg NH 4 + ?l?1) in presence of 0.01 M CaCl2 solution. The empirical models including simple adsorption isotherm and Freundlich equations were fitted well to the experimental data. The average amounts of adsorbed NH 4 + in studied soils varied from 8.95 to 35.23 %. Adsorption percentage indicated positive correlation with pH, cation-exchange capacity (CEC), equivalent calcium carbonate, and clay content and had negative correlation with sand content. In order to predict and model NH 4 + adsorption, cation-exchange model in PHREEQC program was used. The model could simulate the NH 4 + adsorption very well in all studied soils. The values of CEC played the major role in modeling of NH 4 + adsorption in this study indicating that cation-exchange process was the major mechanism controlling NH 4 + adsorption in studied soils.  相似文献   

5.
Atmospheric condensate (AC) and rainwater samples were collected during 2010–2011 winter season from Delhi and characterized for major cations and anions. The observed order of abundance of cations and anions in AC samples was NH 4 + ?>?Ca2+?>?Na+?>?K+?>?Mg2+ and HCO 3 ? ?>?SO 4 2? ?>?Cl??>?NO 2 ? ?>?NO 3 ? ?>?F?, respectively. All samples were alkaline in nature and Σ cation/Σ anion ratio was found to be close to one. NH 4 + emissions followed by Ca2+ and Mg2+ were largely responsible for neutralization of acidity caused by high NO x and SO2 emissions from vehicles and thermal power plants in the region. Interestingly, AC samples show low nitrate content compared with its precursor nitrite, which is commonly reversed in case of rainwater. It could be due to (1) slow light-mediated oxidation of HONO; (2) larger emission of NO2 and temperature inversion conditions entrapping them; and (3) formation and dissociation of ammonium nitrite, which seems to be possible as both carry close correlation in our data set. Principal component analysis indicated three factors (marine mixed with biomass burning, anthropogenic and terrestrial, and carbonates) for all ionic species. Significantly higher sulfate/nitrate ratio indicates greater anthropogenic contributions in AC samples compared with rainwater. Compared with rainwater, AC samples show higher abundance of all ionic species except SO4, NO3, and Ca suggesting inclusion of these ions by wash out process during rain events. Ionic composition and related variations in AC and rainwater samples indicate that two represent different processes in time and space coordinates. AC represents the near-surface interaction whereas rainwater chemistry is indicative of regional patterns. AC could be a suitable way to understand atmospheric water interactions with gas and solid particle species in the lower atmosphere.  相似文献   

6.
Surface water quality is vulnerable to pollution due to human activities. The upper reach of the Hun River is an important water source that supplies 52 % of the storage capacity of the Dahuofang Reservoir, the largest reservoir for drinking water in Northeast China, which is suffering from various human-induced changes in land use, including deforestation, reclamation/farming, urbanization and mine exploitation. To investigate the impacts of land use types on surface water quality across an anthropogenic disturbance gradient at a local scale, 11 physicochemical parameters (pH, dissolved oxygen [DO], turbidity, oxygen redox potential, conductivity, biochemical oxygen demand [BOD5], chemical oxygen demand [COD], total nitrogen [TN], total phosphorus [TP], NO 3 ? -N, and NH 4 + -N) of water from 12 sampling sites along the upper reach of the Hun River were monitored monthly during 2009–2010. The sampling sites were classified into four groups (natural, near-natural, more disturbed, and seriously disturbed). The water quality exhibited distinct spatial and temporal characteristics; conductivity, TN, and NO 3 ? -N were identified as key parameters indicating the water quality variance. The forest and farmland cover types played significant roles in determining the surface water quality during the low-flow, high-flow, and mean-flow periods based on the results of a stepwise linear regression. These results may provide incentive for the local government to consider sustainable land use practices for water conservation.  相似文献   

7.
Groundwater hydrogeochemistry of Trikala municipality, central Greece   总被引:1,自引:0,他引:1  
Sixty-four samples from the groundwater resources of Trikala municipality, central Greece, were collected during two periods (2006 and 2007) and analyzed for physico-chemical parameters (temperature, pH, specific electrical conductivity, and total dissolved solids), major ions (Ca2+, Cl?, HCO 3 ? , K+, Mg2+, Na+, NO 3 ? , SO 4 2? ), and several potentially toxic elements (Al, B, Ba, Br, Ca, Ce, Cl, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Rb, S, Sc, Si, Sn, Sr, U, V, Y, Zn). European Council directives and USEPA guidelines were used to assess the water quality. The results indicate that all samples are fresh water, suitable for human consumption. All basic ions and physico-chemical parameters have average concentrations below their recommended optimum limits with the exception of electrical conductivity, for January 2007, and nitrate for October 2006 and January 2007 sampling periods. This exceedance is the result of dissolution of minerals such as calcite and dolomite that are present in the surrounding rocks and the application of fertilizers, respectively. Lead is the only element with an average value that exceeds the recommended EC guideline, while special attention should be paid to one borehole (T9) which has elevated NO 3 ? values which may pose a risk to human health.  相似文献   

8.
To investigate seasonal variations of nutrient distribution in the mudflat–shallow water system, we conducted field surveys once a month from August 2007 to July 2008 in the inner area of Ariake Bay (IAB), Japan. The NH4 +–N concentration of the water column increased in autumn because of the high NH4 + release from the sediments, ranging from 850 to 3,001 μmol?m?2?day?1. The NO3 ?–N concentration was maximal in January, which was thought to be caused by NO3 ? release from the oxic sediments and by NO3 ? regeneration due to water column nitrification. The PO4 3?–P concentration of the water column was high in summer–autumn due to the high PO4 3? release from the reduced sediments, ranging from 22 to 164 μmol?m?2?day?1. We estimated the total amounts of DIN and PO4 3?–P release (R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ , respectively) from the muddy sediment area of the IAB. In summer–autumn, R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ corresponded to about 47.7 % of DIN input and about 116.6 % of PO4 3?–P input from the river, respectively. Thus, we concluded that the muddy sediments were an important source of nutrients for the water column of the IAB during summer–autumn. In addition, we found that phosphorus necessary for the growth of Porphyra (Porphyra yezoensis, Rhodophyceae) would be insufficient in the water column when phosphorus during the Porphyra aquaculture period is supplied only from the river. Therefore, the phosphorus release from the muddy sediments was thought to play an important role in the sustainable production of Porphyra in Ariake Bay.  相似文献   

9.
In this study, surface water quality of the Ceyhan River basin were assessed and examined with 13 physico-chemical parameters in 31 stations in 3 months during the period of 2005. Multivariate statistical techniques were applied to identify characteristics of the water quality in the studied stations. Nutrients, Cl??? and Na?+? affected mostly to the stations of Erkenez 2, S?r 2, and S?r 3 in the ordination diagram of correspondence analysis. Three factors were extracted by principal component analysis, which explains 79.14% of the total variation. The first factor (PC1) captures variables of EC, DO, NO $_{2}^{\; -}$ , PO $_{4}^{\; \equiv }$ , Cl???, SO $_{4}^{\; =}$ , Na?+?, and Ca?+?+?. The second factor (PC2) is significantly related to pH, NH $_{3}^{\; -}$ , and Mg?+?+?, while water temperature (T) and NO $_{3}^{\; -}$ accounted for the greatest loading for factor 3 (PC3). The stations were divided into three groups for PC1, two groups for PC2, and three groups for PC3 by hierarchical cluster analysis. The stations in the vicinity of cities presented low dissolved oxygen and high concentration of physico-chemical parameter levels. The stations of Erkenez 2, S?r 2, S?r 3, and Aksu 4 located near the city of Kahramanmara? were characterized by an extremely high pollution due to discharge of wastewater from industry and domestic. P?narba?? and Elbistan stations were also influenced by household wastewater of the city of Elbistan. According to criteria of Turkish Water Pollution Control Regulation, Erkenez 2, S?r 2, and S?r 3 stations have high polluted water. This study suggests that it is urgent to control point pollutions, and all wastewater should be purified before discharge to the Ceyhan River basin.  相似文献   

10.
Assessment Of A Natural Wetland For Use In Wastewater Remediation   总被引:1,自引:0,他引:1  
An environmental study was conducted to assess various aspects of the water and sediment quality of a natural wetland to determine its feasibility for advanced wastewater treatment in Louisiana. Nitrate (NO3), nitrite (NO2), ammonia (NH4), total Kjeldahl nitrogen (TKN), total phosphorus, chloride, total organic carbon, pH, trace metals, fecal coliform, dissolved oxygen (DO), and biochemical oxygen demand (BOD) were monitored. Productivity of a dominant shrub, Iva frutescens, in the wetland was also assessed. Research results indicated that gradients of chloride and salinity concentrations showed a broad mixing of the discharged fresh water into the more saline natural brackish waters. This provided an ideal pattern for nutrient assimilation by the receiving marsh. NH4 was reduced in the range of 50–100% when all combinations of sources and outflows were considered. For total phosphorus and TKN, reduction ranged from 0–95.1% and 11.2–89.7%, respectively. Some nutrient concentrations in the effluent outlet, NO3 in particular, were lower than background concentrations found in the reference wetland. Sediment and water showed no significant deficiency or toxicity problems for the major nutrients and metals analyzed. The secondary effluent discharges had little demonstrable negative impact on the wetland during the study period from 1995 to 1996.  相似文献   

11.
Particles with aerodynamic diameters <10  $\upmu $ m (PM10) and particles with aerodynamic diameters <2.5  $\upmu $ m (PM2.5) were sampled during summer 2006 in Beijing and mass concentrations, water-soluble ionic compounds concentrations, and acidic buffer capacity were analyzed. Results show that the mass concentration ranges of PM10 and PM2.5 were from 56.4 to 226.6  $\upmu $ g/m3 and from 31.3 to 200.7  $\upmu $ g/m3 during sampling days, respectively. Concentrations of F???, Cl???, NO $_{3}^{\,\,-}$ , NO $_{2}^{\,\,-}$ , SO $_{4}^{\,\,2-}$ , Ac???, Ca2?+?, Na?+?, K?+?, Mg2?+?, and NH $_{4}^{\,\,+}$ in particles were analyzed by ion chromatography. Microtitration was adapted to determine the acidic?Cbasic property and the change of the buffering systems in different pH of the aqueous solution in which the PM is suspended. The major alkalinity and buffer capacity of particles were analyzed and calculated. The average carbonate buffer capacity was 0.3 mmol/g in PM2.5 and 0.7 mmol/g in PM10. The average acetic acid buffer capacity was 0.1 mmol/g in PM2.5 and 0.3 mmol/g in PM10. Carbonate and acetic acid are the main species for the buffer capacity in the particle phase. The average mass of carbonate was 71.0 mg/g in PM10 and 46.7 mg/g in PM2.5. The average mass of acetic acid was 11.2 mg/g in PM2.5 and 20.0 mg/g in PM10.  相似文献   

12.
Various industrial facilities in the city of Varanasi discharge their effluent mixed with municipal sewage into the River Ganges at different discharge points. In this study, chemometric tools such as cluster analysis and box–whisker plots were applied to interpret data obtained during examination of River Ganges water quality. Specifically, we investigated the temperature (T), pH, total alkalinity, total acidity, electrical conductivity (EC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), nitrate nitrogen (N), phosphate (PO 4 2? ), copper (Cu), cadmium (Cd), chromium (Cr), nickel (Ni), iron (Fe), lead (Pb), and zinc (Zn) in water samples collected from six sampling stations. Hierarchical agglomerative cluster analysis was conducted using Ward’s method. Proximity distance between EC and Cr was the smallest revealing a relationship between these parameters, which was confirmed by Pearson’s correlation. Based on proximity distances, EC, Cr, Ni, Fe, N, COD, temperature, BOD, and total acidity comprised one group; Zn, Pb, Cd, total alkalinity, Cu, and phosphate (PO 4 2? ) were in another group; and DO and pH formed a separate group. These groups were confirmed by Pearson’s correlation (r) values that indicated significant and positive correlation between variables in the same group. Box–whisker plots revealed that as we go downstream, the pollutant concentration increases and maximum at the downstream station Raj Ghat and minimum at the upstream station Samane Ghat. Seasonal variations in water quality parameters signified that total alkalinity, total acidity, DO, BOD, COD, N, phosphate (PO 4 2? ), Cu, Cd, Cr, Ni, Fe, Pb, and Zn were the highest in summer (March–June) and the lowest during monsoon season (July–October). Temperature was the highest in summer and the lowest in winter (November–February). DO was the highest in winter and the lowest in summer season. pH was observed to be the highest in monsoon and the lowest in summer season.  相似文献   

13.
Effects of cement flue dust from Ewekoro cement Kilns were monitored at some aquatic receptor locations. High levels of total suspended particulates (TSPs) and atmospheric deposition rates (ADRs) were recorded within the factory compared to ancillary locations outside the factory. The TSP and ADR levels which were location dependent were significantly higher (P?<?0.05) during the dry periods than in the wet season. Irrespective of seasonal variations, the key elements in the emissions were Ca2?+? and Fe2?+?. The concentrations of Zn2?+?, Mn2?+? and Pb?+? which were trace elements were significantly higher (P?<?0.05) in the deposited than in the airborne particulates. The planktonic flora and fauna of the river systems draining the area were poor with 16 phytoplanktonic and nine zooplanktonic species. Numerically, the phytoplanktons were dominated by diatoms (Bacillariophyta) with Synedra sp. being the most abundant species. The zooplanktonic fauna dominated by rotifers had Lecane curvicornis as a regular occurrence in all the three catchment rivers. The physicochemical parameters assayed were significantly higher (P?<?0.05) in the factory effluent discharges than in water samples from each of the catchment rivers. Seasonal variations inclusive, HCO $_{3}^{-}$ , CO $_{3}^{2-}$ , Ca2?+? and Mg2?+? constituted the major ionic component of water samples analysed irrespective of location. Alaguntan River which receives effluents directly from the factory had significantly higher levels (P?<?0.05) of the assayed ions than the other two rivers draining the cement factory catchment areas.  相似文献   

14.
Groundwater is connected to the landscape above and is thus affected by the overlaying land uses. This study evaluated the impacts of land uses upon groundwater quality using trilinear analysis. Trilinear analysis is a display of experimental data in a triangular graph. Groundwater quality data collected from agricultural, septic tank, forest, and wastewater land uses for a 6-year period were used for the analysis. Results showed that among the three nitrogen species (i.e., nitrate and nitrite (NOx), dissolved organic nitrogen (DON), and total organic nitrogen (TON)), NOx had a high percentage and was a dominant species in the groundwater beneath the septic tank lands, whereas TON was a major species in groundwater beneath the forest lands. Among the three phosphorus species, namely the particulate phosphorus (PP), dissolved ortho phosphorus (PO 4 3?? ) and dissolved organic phosphorus (DOP), there was a high percentage of PP in the groundwater beneath the septic tank, forest, and agricultural lands. In general, Ca was a dominant cation in the groundwater beneath the septic tank lands, whereas Na was a dominant cation in the groundwater beneath the forest lands. For the three major anions (i.e., F?, Cl?, and SO 4 2?? ), F? accounted for <1 % of the total anions in the groundwater beneath the forest, wastewater, and agricultural lands. Impacts of land uses on groundwater Cd and Cr distributions were not profound. This study suggests that trilinear analysis is a useful technique to characterize the relationship between land use and groundwater quality.  相似文献   

15.
This study reports the results from the analyses of a 30-year (1974–2004) river water quality monitoring dataset for NO x –N (NO3–N?+?NO2–N), NH4–N, PO4–P and SiO2–Si at the tidal limit of the River Tamar (SW England), an agriculturally dominated and sparsely populated catchment. Annual mean concentrations of NH4–N, PO4–P and SiO2–Si were similar to other rural UK rivers, while annual mean concentrations of NO x –N were clearly lower. Estimated values for the 1940s were much lower than for those of post-1974, at least for NO3–N and PO4–P. Flow-weighted mean concentrations of PO4–P decreased by approximately 60 % between 1974 and 2004, although this change cannot be unequivocally ascribed to either PO4–P stripping from sewage treatment work effluents or reductions in phosphate fertiliser applications. Lower-resolution sampling (to once per month) in the late 1990s may also have led to the apparent decline; a similar trend was also seen for NH4–N. There were no temporal trends in the mean concentrations of NO x –N, emphasising the continuing difficulty in controlling diffuse pollution from agriculture. Concentrations of SiO2–Si and NO x –N were significantly and positively correlated with river flows ≤15 m3?s?1, showing that diffuse inputs from the catchment were important, particularly during the wet winter periods. In contrast, concentrations of PO4–P and NH4–N did not correlate across any flow window, despite the apparent importance of diffuse inputs for these constituents. This observation, coupled with the absence of a seasonal (monthly) cycle for these nutrients, indicates that, for PO4–P and NH4–N, there were no dominant sources and/or both undergo extensive within-catchment processing. Analyses of nutrient fluxes reveal net losses for NO3–N and SiO2–Si during the non-winter months; for NO3–N, this may be due to denitrification. Areal fluxes of NO x –N from the catchment were towards the higher end of the range for the UK, while NH4–N and PO4–P were closer to the lower end of the ranges for these nutrients. These data, taken together with information on sestonic chlorophyll a, suggest that water quality in the lower River Tamar is satisfactory with respect to nutrients. Analyses of these monitoring data, which were collected at considerable logistical and monetary cost, have revealed unique insights into the environmental behaviour of key nutrients within the Tamar catchment over a 30-year period.  相似文献   

16.
The physicochemical qualities of the final effluents of an urban wastewater treatment plant in South Africa were assessed between August 2007 and July 2008 as well as their impact on the receiving watershed. The pH values across all sampling points ranged between 6.8 and 8.3, while the temperature varied from 18°C to 25°C. Electrical conductivity (EC) of the samples was in the range of 29–1,015 μS/cm, and turbidity varied between 2.7 and 35 NTU. Salinity and total dissolved solids (TDS) varied from 0.36 to 35 psu and 16 to 470 mg/L, respectively. The concentrations of the other physicochemical parameters are as follows: chemical oxygen demand (COD, 48–1,180 mg/L); dissolved oxygen (DO, 3.9–6.6 mg/L); nitrate (0.32–6.5 mg NO $_{3}^{-}$ as N/L); nitrite (0.06–2.4 mg NO $_{2}^{-}$ as N/L); and phosphate (0.29–0.54 mg PO $_{4}^{3-}$ as P/L). pH, temperature, EC, turbidity, TDS, DO, and nitrate varied significantly with season and sampling point (P?<?0.05 and P?<?0.01, respectively), while salinity varied significantly with sampling point (P?<?0.01) and COD and nitrite varied significantly with season (P?<?0.05). Although the treated effluent fell within the recommended water quality standard for pH temperature, TDS, nitrate and nitrite, it fell short of stipulated standards for other parameters. The result generally showed a negative impact of the discharged effluent on the receiving watershed and calls for a regular and consistent monitoring program by the relevant authorities to ensure best practices with regard to treatment and discharge of wastewater into the receiving aquatic milieu in South Africa.  相似文献   

17.
Across many environments, nitrate ( $\mbox{NO}_{3}^-$ ) is an important form of N available for microorganisms and photosynthetic organisms. Accurate $\mbox{NO}_{3}^-$ measurements are important for examining N cycling and retention in terrestrial and aquatic ecosystems, but a common method of $\mbox{NO}_{3}^-$ analysis can underestimate $\mbox{NO}_{3}^-$ concentrations when soluble iron is present (iron > 10 mg L???1). The basic method is robust, using copperized cadmium to reduce $\mbox{NO}_{3}^-$ and then diazotizing the resulting $\mbox{NO}_{2}^-$ in a two-step process to form an easily measured colored product. We show that iron interference is unique to using an NH4Cl and ethylenediaminetetraacetic acid (EDTA) buffer. We hypothesize that interference is through iron-catalyzed reduction of the intermediate color product, a diazonium ion. We examine three historical buffers as alternatives to NH4Cl/EDTA and recommend replacement of EDTA with diethylenetriaminepentaacetic acid, which chelates metals much like EDTA, but unlike EDTA, it does not cause interference in the presence of iron.  相似文献   

18.
Considering of the basic properties and also the two nitrogen atoms in the structure, hydrazine hydrate was employed to be an amine additive candidate, to build a Ru(bpy) 3 2+ /hydrazine electrochemiluminescence (ECL) system, and ECL of Ru(bpy) 3 2+ has been employed for the determination of hydrazine hydrate in the paper. The result demonstrated that the logarithmic ECL increasing (ΔECL?=?ECLafter addition of hydrazine???ECLbefore addition of hydrazine) versus the logarithmic concentration of hydrazine hydrate is linear over a concentration range of 1.0?×?10?9 to 1.0?×?10?5?mol/L, on both glassy carbon and Pt electrodes in a pH 9 phosphate buffer. The hydrazine hydrate detection limit was down to 1.0?×?10?9?mol/L, comparatively lower than other detection methods. To check its applicability, the proposed method was applied to the determination of hydrazine hydrate added into a tap water sample with good reproducibility and stability. All these provide a possibility to develop a novel ECL detection method for hydrazine in water.  相似文献   

19.
Two hundred sample sites were selected systematically and samples were taken for a baseline study to understand the geochemistry of the groundwater and to assess the overall physicochemical characteristics. Sampling was carried out using pre-cleaned polyethylene containers. The physical and chemical parameters of the analytical results of groundwater were compared with the standard guideline values recommended by the World Health Organization for drinking and public health standards. Thematic maps pertaining to TDS, EC, Cl, NO3, SO4, and Na were generated using Arc View 3.1 platform. Results showed that most of the locations are contaminated by higher concentration of EC, TDS, K?+?, and NO $_{3}^{\;-}$ . Major hydro-chemical facies were identified using Piper trilinear diagram. Based on US salinity diagram, most of the samples fall in the field of C3-S1 indicating high salinity and low sodium water, which can be used for almost all types of soil with little danger of exchangeable sodium. Majority of the samples are not suitable for domestic purposes and far from drinking water standards. However, PI values indicate that groundwater is suitable for irrigation.  相似文献   

20.
Aqueous triethanolamine (TEA) solutions are widely used as sorption medium for passive sampling of ambient NO2, with NO2 trapped and accumulated as nitrite ion. The results of test measurements of ambient NO2 concentrations using passive sampling method showed that the simple approach commonly used to describe passive sampling process might lead to substantial systematic errors. Presented in the article is a new physicochemical model of the process of passive sampling of gaseous NO2, with aqueous TEA solution used as a trapping medium. The model is based on the available results of experimental studies of interaction of gaseous NO2 with TEA/water solutions. The key principles underlying the model are: (1) when absorbed by a trapping solution, NO2 forms nitrite ion only on the condition that TEA is hydrated; (2) coefficient of conversion of NO2 to NO 2 ? is equal to one when reacting with hydrated TEA; and (3) the fraction of hydrated TEA molecules depends on air humidity at the moment of measurement. Validation of the model was made using the data of the field measurements carried out in the Middle Urals in 2007–2009. The new model was used to calculate average NO2 concentrations. Concentrations calculated agreed well with the results obtained by reference methods. The difference between the datasets was statistically insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号