共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of environmental conditions on the ability of a constructed wetland to disinfect municipal wastewaters 总被引:2,自引:0,他引:2
Zdragas A Zalidis GC Takavakoglou V Katsavouni S Anastasiadis ET Eskridge K Panoras A 《Environmental management》2002,29(4):510-515
Constructed wetlands are widely used all over the world for the treatment of municipal wastewaters, which are characterized
by high concentrations of pathogens. The objectives of this study were (1) to study the effect of solar radiation and temperature
on the ability of a constructed wetland to reduce the concentration of total coliforms (TC), and (2) to evaluate the relationship
between the presence of Salmonella spp. in the outflow and the concentration of TC. The results of this study showed that under Mediterranean environmental conditions,
the percentage reduction in coliforms was lower during winter compared to all other seasons. Maximum removal of coliforms
was achieved under conditions of high solar radiation and temperature. In addition, solar radiation was found to play a greater
role in coliform die-off at low temperatures than at high temperatures. Finally, it was found that the probability of Salmonella spp. appearance in the outflow of the wetland was related to the concentration of TC. The increase in coliform bacteria in the
effluents also increased the chances of Salmonella appearance. The risk of Salmonella spp. appearance in the outflow is minimized when the concentration of TC is below 102/100 mL. 相似文献
2.
Ye ZH Whiting SN Qian JH Lytle CM Lin ZQ Terry N 《Journal of environmental quality》2001,30(5):1710-1719
This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. The trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e.,>10 yr after construction). 相似文献
3.
The increased use of pesticides by container nurseries demands that practices for removal of these potential contaminants from runoff water be examined. Constructed wetlands may be designed to clean runoff water from agricultural production sites, including container nurseries. This study evaluated 14 constructed wetlands cells (1.2 by 4.9 m or 2.4 by 4.9 m, and 30 or 45 cm deep) that collected pesticide runoff from a 465-m2 gravel bed containerized nursery in Baxter, TN. One-half of the cells were vegetated with bulrush, Scirpus validus. The cells were loaded at three rates or flows of 0.240, 0.120, and 0.060 m3 d(-1). Herbicides-simazine (Princep) [2-chloro-4,6-bis(ethylamino)-s-triazine] and metolachlor (Pennant) [2-chloro-N-(2-ethyl-6-methylphenyl)-N-2-methoxy-1-methylethyl-acetamide] -were applied to the gravel portion of the container nursery at rates of 4.78 and 239 kg ha(-1), respectively, 9 July 1998, and at rates of 2.39 and 1.19 kg ha(-1), respectively, 17 May 1999. Pesticides entering the wetland and wetland cell water samples were analyzed daily to determine pesticide removal. At the slower flow rate, which corresponds to lower mass loading and greater hydraulic retention times (HRTs), a greater percentage of pesticides was removed. During the 2-yr period, cells with plants removed 82.4% metolachlor and 77.1% simazine compared with cells without plants, which removed 63.2% metolachlor and 64.3% simazine. At the lowest flow rate and mass loading, wetland cells removed 90.2% metolachlor and 83% simazine. Gravel subsurface flow constructed wetlands removed most of the pesticides in runoff water with the greatest removal occurring at lower flow rates in vegetated cells. 相似文献
4.
In Ireland, constructed wetland systems are increasingly being used to perform tertiary treatment on municipal waste effluent from small towns and villages located in areas whose receiving waters are deemed sensitive. The bedrock formation in the west of Ireland is primarily karst limestone and where the overburden-soil cover is very shallow, such waters are highly sensitive to pollution sources, as little or no natural attenuation and/or treatment will occur. Constructed wetland technology has been seen to offer a relatively low-cost alternative to the more conventional tertiary treatment technologies, particularly when dealing with low population numbers in small rural communities. This paper examines the waste treatment performance, in terms of nutrient (P and N) reduction, of a recently constructed surface-flow wetland system at Williamstown, County Galway, Ireland. Performance evaluation is based on more than two years of water quality and hydrological monitoring data. The N and P mass balances for the wetland indicate that the average percentage reduction over the two-year study period is 51% for total N and 13% for total P. The primary treatment process in the wetland system for suspended solids (between 84 and 90% reduction), biological oxygen demand (BOD) (on average, 49% reduction), N, and P is the physical settlement of the particulates. However, the formation of algal bloom during the growing season reduces the efficiency of the total P removal. 相似文献
5.
Liikanen A Puustinen M Koskiaho J Väisänen T Martikainen P Hartikainen H 《Journal of environmental quality》2004,33(3):1124-1132
Phosphorus in surface runoff water may cause eutrophication of recipient water. This study clarifies the mechanisms of P removal in the wetland of Hovi, Finland, constructed on arable land in 1998. Before the construction, the surface soil (removed in the construction) and subsoil (the current wetland bottom) were analyzed for Al and Fe oxides (Al(ox) and Fe(ox)) reactive in P sorption, and for the distribution of P between various pools as well as for P exchange properties. Retention of P from runoff water within the wetland was studied from 1999 to 2001 in situ and factors affecting the P removal (O2 availability and P concentration in water) were investigated in a laboratory microcosm. The processes taking place in the wetland diminished by 68% the total P load and by 49% the dissolved reactive P load. Desorption-sorption tests indicated that without removal of the surface soil, there would have been a risk of the wetland being a source of P, since the equilibrium P concentration of the soil removed was high compared with the mean P concentration of the inflowing water. The subsoil contained less P and high amounts of reactive oxides, which could bind P. Evidently, the P sorption by Al(ox) played an important role in a first phase removal of P, since the wetland retained P efficiently even under anoxic conditions, where Fe tends to be reduced. Fine-textured, mineral soil on the bottom of the wetland (subsoil of the former arable land) seemed to be very efficient in retaining P from agricultural runoff. 相似文献
6.
Constructed wetlands are artificial wastewater treatment systems consisting of shallow ponds or channels which have been planted
with aquatic plants and which rely upon natural microbial, biological, physical and chemical process to treat wastewater and
are gaining acceptance in the recent years as a viable option for the treatment of industrial effluents and removal of toxic
components. In this study, an attempt was made to compare the efficiency of aquatic macrophytes like Typha sp., Eichhornia sp., Salvinia sp., Pistia sp., Azolla sp. and Lemna sp. to treat the effluents from dairy factory, under laboratory conditions in constructed wetlands. The biological oxygen
demand and chemical oxygen demand of dairy effluent were reduced up to 65.4–83.07% and 70.4–85.3%, respectively, after treatment
with constructed wetland technology. 相似文献
7.
Use of constructed wetland for the removal of heavy metals from industrial wastewater 总被引:4,自引:0,他引:4
Sardar Khan Irshad Ahmad M. Tahir Shah Shafiqur Rehman Abdul Khaliq 《Journal of environmental management》2009,90(11):3451-3457
This study was conducted to investigate the effectiveness of a continuous free surface flow wetland for removal of heavy metals from industrial wastewater, in Gadoon Amazai Industrial Estate (GAIE), Swabi, Pakistan. Industrial wastewater samples were collected from the in-let, out-let and all cells of the constructed wetland (CW) and analyzed for heavy metals such as lead (Pb), cadmium (Cd), iron (Fe), nickel (Ni), chromium (Cr) and copper (Cu) using standard methods. Similarly, samples of aquatic macrophytes and sediments were also analyzed for selected heavy metals. Results indicate that the removal efficiencies of the CW for Pb, Cd, Fe, Ni, Cr, and Cu were 50%, 91.9%, 74.1%, 40.9%, 89%, and 48.3%, respectively. Furthermore, the performance of the CW was efficient enough to remove the heavy metals, particularly Cd, Fe, and Cu, from the industrial wastewater fed to it. However, it is suggested that the metal removal efficiency of the CW can be further enhanced by using proper management of vegetation and area expansion of the present CW. 相似文献
8.
A field study on the removal of Se from agricultural subsurface drainage was conducted from May 1997 to February 2001 in the Tulare Lake Drainage District (TLDD) of San Joaquin Valley, California. A flow-through wetland system was constructed consisting of ten 15- x 76-m unlined cells that were continuously flooded and planted with either a monotype or combination of plants, including sturdy bulrush [Schoenoplectus robustus (Pursh) M.T. Strong], baltic rush (Juncus balticus Willd.), smooth cordgrass (Spartina alterniflora Loisel.), rabbitsfoot grass [Polypogon monspeliensis (L.) Desf.], salt-grass lDistichlis spicata (L.) Greene], cattail (Typha latifolia L.), tule [Schoenoplectus acutus (Muhl. ex Bigelow) A. L?ve & D. L?ve], and widgeon grass (Ruppia maritima L.). One cell had no vegetation planted. The objectives of this research were to evaluate Se removal efficiency of each wetland cell and to carry out a mass balance on Se. The inflow drainage water to the cells had average annual Se concentrations of 19 to 22 microg L(-1) dominated by selenate [Se(VI), 95%]. Average weekly water residence time varied from about 3 to 15 d for Cells 1 through 7 (target 7 d), 19 to 33 d for Cells 8 and 9 (target 21 d), and 13 to 18 d for Cell 10 (target 14 d). Average weekly Se concentration ratios of outflow to inflow ranged from 0.45 to 0.79 and mass ratio (concentration x water volume) from 0.24 to 0.52 for year 2000, that is, 21 to 55% reduction in Se concentration and 48 to 76% Se removal in mass by the wetland, respectively. The nonvegetated cell showed the least Se removal both in concentration and in mass. The global mass balance showed that on the average about 59% of the total inflow Se was retained within the cells and Se outputs were outflow (35%), seepage (4%), and volatilization (2%). Independent measurements of the Se retained in the cells totaled 53% of the total Se inflow: 33% in the surface (0-20 cm) sediment, 18% in the organic detrital layer above the sediment, 2% in the fallen litter, < 1% in the standing plants, and < 1% in the surface water. Thus, about 6% of the total Se inflow was unaccounted for in the internal compartments. 相似文献
9.
Potential nitrification and denitrification on different surfaces in a constructed treatment wetland
Kallner Bastviken S Eriksson PG Martins I Neto JM Leonardson L Tonderski K 《Journal of environmental quality》2003,32(6):2414-2420
Improved understanding of the importance of different surfaces in supporting attached nitrifying and denitrifying bacteria is essential if we are to optimize the N removal capacity of treatment wetlands. The aim of this study was therefore to examine the nitrifying and denitrifying capacity of different surfaces in a constructed treatment wetland and to assess the relative importance of these surfaces for overall N removal in the wetland. Intact sediment cores, old pine and spruce twigs, shoots of Eurasian watermilfoil (Myriophyllum spicatum L.), and filamentous macro-algae were collected in July and November 1999 in two basins of the wetland system. One of the basins had been constructed on land that contained lots of wood debris, particularly twigs of coniferous trees. Potential nitrification was measured using the isotope-dilution technique, and potential denitrification was determined using the acetylene-inhibition technique in laboratory microcosm incubations. Nitrification rates were highest on the twigs. These rates were three and 100 times higher than in the sediment and on Eurasian watermilfoil, respectively. Potential denitrification rates were highest in the sediment. These rates were three times higher than on the twigs and 40 times higher than on Eurasian watermilfoil. The distribution of denitrifying bacteria was most likely due to the availability of organic material, with higher denitrification rates in the sediment than on surfaces in the water column. Our results indicate that denitrification, and particularly nitrification, in treatment wetlands could be significantly increased by addition of surfaces such as twigs. 相似文献
10.
Constructed wetlands are one method under investigation for the remediation of trace element-contaminated agricultural drainwater. A greater understanding of the retention of trace elements by the bulk soil and soil constituents is necessary for their safe and effective use. To determine the capacity of soil, calcite, and goethite-coated quartz sand for retention of As, Mo, and V under field conditions, an in situ method was used whereby permeable bags containing those minerals were placed near the sediment surface of a flow-through constructed wetland for 3 or 12 mo. Accumulations of As, Mo, and V occurred on goethite-coated sand. Concentrations of Mo on goethite-coated sand were much higher in samples from a wetland cell with a water depth of 15 cm (38.23 +/- 7.27 mg kg(-1)) compared with those from a cell with a water depth of 3 cm (8.30 +/- 1.45 mg kg(-1)). Calcite sorbed no As and low amounts of Mo and V, indicating that it is not an important sink for those elements under these conditions. In soil bags, total As and V concentrations showed little change over 12 mo. Molybdenum accumulated in the soil bags, resulting in total concentrations (12 mo) of 27.22 +/- 2.69 mg kg(-1) and 11.42 +/- 1.35 mg kg(-1) at water depths of 15 and 3 cm, respectively. Nearly half of the Mo accumulation on soil became water soluble after air-drying. This has important implications for systems that may undergo changes in redox status, possibly resulting in large fluxes of water-soluble Mo. 相似文献
11.
Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland 总被引:1,自引:0,他引:1
A free water surface wetland was built to treat wastewater containing metals (Cr, Ni, Zn) and nutrients from a tool factory in Argentina. Water, sediment and macrophytes were sampled in the inlet and outlet area of the constructed wetland during three years. Three successive phases of vegetation dominance were developed and three different patterns of contaminant retention were observed. During the Eichhornia crassipes dominance, contaminants were retained in the macrophyte biomass; during the E. crassipes+Typha domingensis stage, contaminants were retained in the sediment and in the T. domingensis dominance stage, contaminants were retained in sediment and in the macrophyte biomass. Removal efficiency was not significantly different among the three vegetation stages, except for NH(4)(+) and i-P(diss). Because of its highest tolerance, T. domingensis is the best choice to treat wastewater of high pH and conductivity with heavy metals, a common result from many industrial processes. 相似文献
12.
Nutrient removal in a pilot and full scale constructed wetland, Putrajaya city, Malaysia 总被引:4,自引:0,他引:4
Putrajaya Wetlands in Malaysia, a 200ha constructed wetland system consisting of 24 cells, was created in 1997-1998 to treat surface runoff caused by development and agricultural activities from an upstream catchment before entering Putrajaya Lake (400ha). It was designed for stormwater treatment, flood control and amenity use. The water quality improvement performance of a section of the wetland cells is described. The nutrient removal performance was 82.11% for total nitrogen, 70.73% for nitrate-nitrogen and 84.32% for phosphate, respectively, along six wetland cells from Upper North UN6 to UN1 from April to December 2004. Nutrient removal in pilot scale tank systems, simulating a constructed wetland and planted with examples of common species at Putrajaya, the Common Reed Phragmites karka and Tube Sedge Lepironia articulata, and the capacity of these species to retain nutrients in above and below-ground plant biomass and substrate is reported. The uptake of nutrients by the Common Reed and Tube Sedge from the pilot tank system was 42.1% TKN; 28.9% P and 17.4% TKN; 26.1% P, respectively. The nutrient uptake efficiency of the Common Reed was higher in above-ground than in below-ground tissue. The results have implications for plant species selection in the design of constructed wetlands in Malaysia and for optimizing the performance of these systems. 相似文献
13.
Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant. Heterotrophs in the Acidiphilium genus totaled 20% of the bacterial population. Leptospirillum ferrooxidans was below the level of detection in the bacterial community. The results from the FISH technique from this field study are consistent with results from other experiments involving enumeration by most probable number, dot-blot hybridization, and denaturing gradient gel electrophoresis analyses and with the geochemistry of the site. 相似文献
14.
With the aim of improving effluent quality of waste stabilization ponds, different designs of vertical flow constructed wetlands and intermittent sand filters were tested on an experimental full-scale plant within the framework of a European project. The information extracted from this study was completed and updated with heuristic and bibliographic knowledge. The data and knowledge acquired were difficult to integrate into mathematical models because they involve qualitative information and expert reasoning. Therefore, it was decided to develop an environmental decision support system (EDSS-Filter-Design) as a tool to integrate mathematical models and knowledge-based techniques. This paper describes the development of this support tool, emphasizing the collection of data and knowledge and representation of this information by means of mathematical equations and a rule-based system. The developed support tool provides the main design characteristics of filters: (i) required surface, (ii) media type, and (iii) media depth. These design recommendations are based on wastewater characteristics, applied load, and required treatment level data provided by the user. The results of the EDSS-Filter-Design provide appropriate and useful information and guidelines on how to design filters, according to the expert criteria. The encapsulation of the information into a decision support system reduces the design period and provides a feasible, reasoned, and positively evaluated proposal. 相似文献
15.
Ecological impacts of water-quality problems have developed in the western United States resulting from the disposal of seleniferous
agricultural wastewater in wetland areas. Overt effects of selenium toxicosis occurred at five areas where deformities of
wild aquatic birds were similar to those first observed at Kesterson National Wildlife Refuge in the west-central San Joaquin
Valley of California. These areas are: Tulare Lake Bed Area, California, Middle Green River Basin, Utah, Kendrick Reclamation
Project Area, Wyoming, Sun River Basin, Montana, and Stillwater Wildlife Management Area, Nevada. Potential for ecological
damage is indicated at six more sites in Oregon, Colorado, the Colorado/Kansas border, and South Dakota out of 16 areas in
11 states where biological tissue data were collected. This conclusion is based on the fact that selenium bioaccumulated in
bird livers to median levels that had exceeded or were in the range associated with adverse reproductive effects. Selenium
concentrations in samples of fish and bird eggs support these conclusions at a majority of these areas. Reason for concern
is also given for the lower Colorado River Valley, although this is not exclusively a conclusion from these reconnaissance
data. Biogeochemical conditions and the extent of selenium contamination of water, bottom sediment, and biota from which this
assessment was made are given here. In a companion paper, the biogeochemical pathway postulated for selenium contamination
to take place from natural geologic sources to aquatic wildlife is defined. 相似文献
16.
Calheiros CS Quitério PV Silva G Crispim LF Brix H Moura SC Castro PM 《Journal of environmental management》2012,95(1):66-71
Treatment of tannery wastewater is problematic due to high and variable concentrations of complex pollutants often combined with high salinity levels. Two series of horizontal subsurface flow constructed wetlands (CWs) planted with Arundo donax and Sarcocornia fruticosa were set up after a conventional biological treatment system operating at a tannery site. The aim of the CWs was polishing organics and nitrogen from the high salinity effluent (2.2-6.6?g Cl(-)?L(-1)). Both plant species established and grew well in the CW. Arundo, however, had more vigorous growth and a higher capacity to take up nutrients. The CWs were efficient in removing COD and BOD(5) with removal efficiencies varying between 51 and 80% for COD (inlet: 68-425?mg?L(-1)) and between 53 and 90% for BOD(5) (inlet: 16-220?mg?L(-1)). Mass removal rates were up to 615?kg COD ha(-1)?d(-1) and 363 BOD(5) kg?ha(-1)?d(-1). Removal efficiencies were 40-93% for total P, 31-89% for NH(4)(+) and 41-90% for Total Kjeldahl Nitrogen. CW systems planted with salt tolerant plant species are a promising solution for polishing saline secondary effluent from the tannery industry to levels fulfilling the discharge standards. 相似文献
17.
This study describes the spatial variability in nitrogen (N) transformation within a constructed wetland (CW) treating domestic effluent. Nitrogen cycling within the CW was driven by settlement and mineralization of particulate organic nitrogen and uptake of NO3-. The concentration of NO3- was found to decrease, as the delta15N-NO3- signature increased, as water flowed through the CW, allowing denitrification rates to be estimated on the basis of the degree of fractionation of delta15N-NO3-. Estimates of denitrification hinged on the determination of a net isotope effect (eta), which was influenced byprocesses that enrich or deplete 15NO3- (e.g., nitrification), as well as the rate constants associated with the different processes involved in denitrification (i.e., diffusion and enzyme activity). The influence of nitrification on eta was quantified; however, it remained unclear how eta varied due to variability in denitrification rate constants. A series of stable isotope amendment experiments was used to further constrain the value of eta and calculate rates of denitrification, and nitrification, within the wetland. The maximum calculated rate of denitrification was 956 +/- 187 micromol N m(-2) h(-1), and the maximum rate of nitrification was 182 +/- 28.9 micromol N m(-2) h(-1). Uptake of NO3- was quantitatively more important than denitrification throughoutthe wetland. Rates of N cycling varied spatially within thewetland, with denitrification dominating in the downstream deoxygenated region of the wetland. Studies that use fractionation of N to derive rate estimates must exercise caution when interpreting the net isotope effect. We suggest a sampling procedure for future natural abundance studies that may help improve the accuracy of N cycling rate estimates. 相似文献
18.
The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results for different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbituminous coal ashes at any pH. However, Se(IV) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbituminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO3* and SeO3 2* were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash. 相似文献
19.
Ye ZH Whiting SN Lin ZQ Lytle CM Qian JH Terry N 《Journal of environmental quality》2001,30(4):1464-1473
A flow-through wetland treatment system was constructed to treat coal combustion by-product leachate from an electrical power station at Springdale, Pennsylvania. In a nine-compartment treatment system, four cattail (Typha latifolia L.) wetland cells (designated Cells 1 through 4) successfully removed iron (Fe) and manganese (Mn) from the inlet water; Fe and Mn concentrations were decreased by an average of 91% in the first year (May 1996-May 1997), and by 94 and 98% in the second year (July 1997-June 1998), respectively. Cobalt (Co) and nickel (Ni) were decreased by an average of 39 and 47% in the first year, and 98 and 63% in the second year, respectively. Most of the metal removed by the wetland cells was accumulated in sediments, which constituted the largest sink. Except for Fe, metal concentrations in the sediments tended to be greater in the top 5 cm of sediment than in the 5- to 10- or 10- to 15-cm layers, and in Cell 1 than in Cells 2, 3, and 4. Plants constituted a much smaller sink for metals; only 0.91, 4.18, 0.19, and 0.38% of the Fe, Mn, Co, and Ni were accumulated annually in the aboveground tissues of cattail, respectively. A greater proportion of each metal (except Mn) was accumulated in cattail fallen litter and submerged Chara (a macroalga) tissues, that is, 2.81, 2.75, and 1.05% for Fe, Co, and Ni, respectively. Considerably higher concentrations of metals were associated with cattail roots than shoots, although Mn was a notable exception. 相似文献
20.
Dissolved phosphorus (DP) can be released from wetlands as a result of flooding or shifts in water column concentrations. Our objectives were to determine the long-term (1460 d) DP retention and release characteristics of an in-stream wetland, and to evaluate how these characteristics respond to flooding, draining, and changes in DP concentrations. The studied in-stream wetland drains an agriculturally intensive subwatershed in the North Carolina Coastal Plain region. The wetland's DP retention and release characteristics were evaluated by measuring inflow and outflow DP concentrations, DP mass balance, and DP movement across the sediment-water column interface. Phosphorus sorption isotherms were measured to determine the sediment's equilibria P concentration (EPCo), and passive samplers were used to measure sediment pore water DP concentrations. Initially, the in-stream wetland was undersized (0.31 ha) and released 1.5 kg of DP. Increasing the in-stream wetland area to 0.67 ha by flooding resulted in more DP retention (28 kg) and low outflow DP concentrations. Draining the in-stream wetland from 0.67 to 0.33 ha caused the release of stored DP (12.1 kg). Shifts both in sediment pore water DP concentrations and sediment EPCo values corroborate the release of stored DP. Reflooding the wetland from 0.33 to 0.85 ha caused additional release of stored DP into the outflowing stream (10.9 kg). We conclude that for a time period, this in-stream wetland did provide DP retention. During other time periods, DP was released due to changes in wetland area, rainfall, and DP concentrations. 相似文献