首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimethylselenide (DMSe) is a highly volatile gas that is produced by indigenous microorganisms in seleniferous soils and sediments; however, little is known about the soil conditions that affect the persistence of DMSe and its transport to the atmosphere. In this study we investigated the effect of moisture content, temperature, and organic amendments on the degradation of soil-applied DMSe. The degradation of DMSe was entirely a result of biological mechanisms, but changes in temperature (20-40 degrees C) and soil moisture content (30-70% of the maximum water holding capacity) had little influence on the degradation rate. In contrast, amending soil with either 1% casein or gluten (by weight) had an inhibitory effect on the degradation of DMSe. After 18 d, 2.1 times more DMSe was present in the casein-amended soil and 2.6 times more DMSe was present in the gluten-amended soil. The transport of DMSe in packed soil columns was also investigated. Increasing the depth to soil surface was found to significantly decrease the amount of DMSe transported to the air. After 6 d, 57% of DMSe injected 10 cm below the soil surface was volatilized. At an injection depth of 20 cm the cumulative emissions were reduced by 38% and at 30 cm the cumulative emissions were reduced by 51%. In columns containing 1% casein or gluten in the top 5 cm of soil the cumulative loss of DMSe was about 9% higher than in unamended soil. Increasing our understanding of the soil conditions that influence the gaseous diffusion of DMSe should help in determining the feasibility of using Se volatilization as a remediation technique.  相似文献   

2.
Previous field studies suggested that the macroalga, muskgrass (Chara canescens Desv. & Lois), plays an important role in the removal of selenium (Se) from agricultural drainage water. This study evaluated the efficiency of Se removal from drainage water by muskgrass-vegetated wetland microcosms, and determined the extent to which muskgrass removed Se through phytoextraction and biovolatilization. Six flow-through wetland microcosms were continuously supplied with drainage water containing an average Se concentration of 22 microg L(-1) over a 24-d experimental period. The Se mass input and outflow and the rate of Se volatilization were monitored daily for each microcosm. Three microcosms containing muskgrass reduced the daily mass Se input in the inflow drainage water by 72.1%; this compared with a reduction of 50.6% of the mass Se input for three unvegetated control microcosms. Selenium accumulated in muskgrass tissues accounted for 1.9% of the total mass Se input in the microcosm, followed by 0.5% via biological volatilization. The low rates of Se volatilization from selenate-supplied muskgrass, which were 10-fold less than from selenite, were probably due to a major rate limitation in the reduction of selenate to organic forms of Se in muskgrass. This conclusion was derived from X-ray absorption spectroscopy speciation analysis, which showed that muskgrass treated with selenite contained 91% of the total Se in organic forms (selenoethers and diselenides), compared with 47% in muskgrass treated with selenate.  相似文献   

3.
Removal of selenium (Se) from agricultural drainage water is very important for protecting wildlife in wetland systems. We conducted a series of experiments on selenite [Se(IV)] adsorption and selenate [Se(VI)] reduction to determine Se removal from drainage water amended with 1000 microg/L of Se(VI) or Se(IV) and 5 g of rice (Oryza sativa L.) straw. Under sterile conditions, the added Se(IV) was not adsorbed to the rice straw within 2 d of the experiment and the added Se(VI) was not reduced within 14 d. In contrast, added Se(VI) in a nonsterile rice-straw solution was reduced rapidly, from 930 microg/L at Day 3 to 20 microg/L at Day 5, with an increase in unprecipitated elemental Se [Se(0)] and total Se(0). In the last several days of the experiments, unprecipitated Se(0) was the major Se form in the rice-straw solution, with a small amount of organic Se(-II). This study showed that Se removal from drainage water in the presence of rice straw involves a two-step process. The first is the microbial reduction of Se(VI) to Se(IV) and then to colloidal Se(0). The second is flocculation and precipitation of colloidal Se(0) to the bottom of the experimental flasks and the surface of rice straw.  相似文献   

4.
A field study on the removal of Se from agricultural subsurface drainage was conducted from May 1997 to February 2001 in the Tulare Lake Drainage District (TLDD) of San Joaquin Valley, California. A flow-through wetland system was constructed consisting of ten 15- x 76-m unlined cells that were continuously flooded and planted with either a monotype or combination of plants, including sturdy bulrush [Schoenoplectus robustus (Pursh) M.T. Strong], baltic rush (Juncus balticus Willd.), smooth cordgrass (Spartina alterniflora Loisel.), rabbitsfoot grass [Polypogon monspeliensis (L.) Desf.], salt-grass lDistichlis spicata (L.) Greene], cattail (Typha latifolia L.), tule [Schoenoplectus acutus (Muhl. ex Bigelow) A. L?ve & D. L?ve], and widgeon grass (Ruppia maritima L.). One cell had no vegetation planted. The objectives of this research were to evaluate Se removal efficiency of each wetland cell and to carry out a mass balance on Se. The inflow drainage water to the cells had average annual Se concentrations of 19 to 22 microg L(-1) dominated by selenate [Se(VI), 95%]. Average weekly water residence time varied from about 3 to 15 d for Cells 1 through 7 (target 7 d), 19 to 33 d for Cells 8 and 9 (target 21 d), and 13 to 18 d for Cell 10 (target 14 d). Average weekly Se concentration ratios of outflow to inflow ranged from 0.45 to 0.79 and mass ratio (concentration x water volume) from 0.24 to 0.52 for year 2000, that is, 21 to 55% reduction in Se concentration and 48 to 76% Se removal in mass by the wetland, respectively. The nonvegetated cell showed the least Se removal both in concentration and in mass. The global mass balance showed that on the average about 59% of the total inflow Se was retained within the cells and Se outputs were outflow (35%), seepage (4%), and volatilization (2%). Independent measurements of the Se retained in the cells totaled 53% of the total Se inflow: 33% in the surface (0-20 cm) sediment, 18% in the organic detrital layer above the sediment, 2% in the fallen litter, < 1% in the standing plants, and < 1% in the surface water. Thus, about 6% of the total Se inflow was unaccounted for in the internal compartments.  相似文献   

5.
Ammonia (NH3) volatilization is an undesirable mechanism for the removal of nitrogen (N) from wastewater treatment wetlands. To minimize the potential for NH3 volatilization, it is important to determine how wetland design affects NH3 volatilization. The objective of this research was to determine how the presence of a pond section affects NH3 volatilization from constructed wetlands treating wastewater from a confined swine operation. Wastewater was added at different N loads to six constructed wetlands of the marsh-pond-marsh design that were located in Greensboro, North Carolina, USA. A large enclosure was used to measure NH3 volatilization from the marsh and pond sections of each wetland in July and August of 2001. Ammonia volatilized from marsh and pond sections at rates ranging from 5 to 102 mg NH3-N m(-2) h(-1). Pond sections exhibited a significantly greater increase in the rate of NH3 volatilization (p < 0.0001) than did either marsh section as N load increased. At N loads greater than 15 kg ha(-1) d(-1), NH3 volatilization accounted for 23 to 36% of the N load. Furthermore, NH3 volatilization was the dominant (54-79%) N removal mechanism at N loads greater than 15 kg ha(-1) d(-1). Without the pond sections, NH3 volatilization would have been a minor contributor (less than 12%) to the N balance of these wetlands. To minimize NH3 volatilization, continuous marsh systems should be preferred over marsh-pond-marsh systems for the treatment of wastewater from confined animal operations.  相似文献   

6.
Volatilization of dimethyldiselenide (DMDSe) is one of the most important processes for removing selenium (Se) from Se-contaminated environments. However, the fate of DMDSe in soil is not known. In this study, we monitored the changes of DMDSe in the head space of soil samples spiked with known amounts of DMDSe gas, and fractionated and speciated the resulting Se forms in soil. Dimethyldiselenide was highly dissolved in water in a closed air-water system and was highly sorbed onto soil in a closed air-soil system. Chemical and biological transformations of DMDSe in soil converted a large amount of DMDSe to nonvolatile Se compounds. Elemental Se [Se(0)] and nonvolatile organic Se were the major forms of Se transformed from spiked DMDSe. Microbial conversion of DMDSe to dimethylselenide (DMSe) in soil increased the production of DMSe. Calculation of the mass recovery showed that about 85 to 93% of the added DMDSe was recovered as Se(0), organic Se, organic material Se (OM-Se), Se(IV), and volatile organic Se in the head space in the non-autoclaved soils and 50 to 70% of the added DMDSe was recovered in the autoclaved soils. These results indicate that DMDSe is not a stable form of Se, and it may be one of the important precursors of DMSe in the soil environment.  相似文献   

7.
Fate of colloidal-particulate elemental selenium in aquatic systems   总被引:2,自引:0,他引:2  
Bacterial reduction of selenate [Se(VI)] to elemental Se [Se(0)] is considered an effective bioremediation technique to remove selenium (Se) from agricultural drainage water. However, the fate of the newly formed Se(0) in aquatic systems is not known when it flows out of the treatment system. A set of laboratory experiments was conducted to determine the fate of the colloidal-particulate Se(0) in a water column and in a water-sediment system. Results showed that the newly formed colloidal-particulate Se(0) followed two removal pathways in aquatic systems: (i) flocculation-sedimentation to the bottom of the water and (ii) oxidation to selenite [Se(IV)] and Se(VI). During 58 d of the experiments, 51% of the added Se(0) was precipitated to the bottom of the water and 47% was oxidized to Se(IV) in the water column. In the water-sediment system, Se(IV) in the water accounted for 21 to 25% of the added Se(0). Adsorption of Se(IV) to the bottom sediment resulted in a relatively low amount of Se(IV) in the water. This study indicates that the newly formed Se(0) may be an available form of Se for uptake by organisms if it flows to aquatic systems from a treatment site. Therefore, an effective bioremediation system for removing Se from drainage water must reduce Se(VI) to Se(0) and remove Se(0) directly from the drainage water.  相似文献   

8.
Bacterial reduction of the Se oxyanions selenate [Se(VI)] and selenite [Se(IV)] to elemental selenium [Se0] is an important biological process in removing Se from drainage water. This study was conducted to characterize the molecular diversity of bacterial populations involved in Se reduction of drainage water amended with rice (Oryza sativa L.) straw and also to monitor the bacterial community shifts during the course of the study. Selenate was removed in the drainage water by the bacteria 5 to 6 d after addition of rice straw. Six Se(VI)- and 32 Se(IV)-reducing bacteria were isolated from rice straw containing sterilized drainage water. Three Se(VI)- and two Se(IV)-reducing bacteria were also isolated from the drainage water. Identification of Se(VI)- and Se(IV)-reducing bacteria by 16S rDNA sequence analysis showed a broad phylogenetic diversity in Se-reducing assemblages. Three major phyla (Proteobacteria, Actinobacteria, and Firmicutes) of bacterial domain with numerous classes, orders, and families constituted the Se-reducing bacterial community. We documented changes in the composition of bacterial assemblages in the drainage water amended with rice straw using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) of 16S rDNA. The Shannon-Weaver index (H') revealed higher bacterial diversity at Day 6 in the sterilized and Day 4 in the non-sterilized drainage water amended with rice straw. The results of this study suggest that rice straw, a good source of carbon and energy, harbors a wide range of bacteria useful in Se reduction and may be used in removing Se from drainage water.  相似文献   

9.
If volatile organoselenides are to be analyzed for their stable Se isotope composition to elucidate sources and formation processes, organoselenides need to be trapped quantitatively to avoid artificial Se isotope fractionation. We developed an efficient trap of organoselenides to be used in microcosms designed to determine the Se isotope fractionation by microbial transformation of inorganic Se to volatile organoselenides. The recoveries of volatilized dimethyldiselenide (DMDSe) from aqueous standard solutions by activated charcoal and alkaline peroxide solution with subsequent freeze-drying and purification via a cation exchange resin were tested. Microcosm experiments with the Se-methylating fungus in a growth medium were conducted, and tightness of the microcosm was assessed by comparing mass balances of total Se of the fungus, medium, and trapped organoselenides with the supplied Se mass. At the end of the experiment, we calculated δSe values of the whole microcosm and compared them with the δSe value of supplied Se(IV) and Se(VI). Our results demonstrated that activated charcoal cannot be used for quantitative trapping of organoselenides because generally <64% of the outgassed DMDSe were recovered. The mean recovery of Se volatilized from an aqueous DMDSe standard trapped in alkaline peroxide, in contrast, was 96 ± 11% (SD) after 2 h ( = 4). The mass balances of total Se in microcosm experiments with alkaline peroxide traps run for 11 to 15 d were 96 ± 15 and 102 ± 2.4% for Se(IV) and Se(VI) ( = 3), respectively. The mass-weighted mean δSe values for the Se(IV) and Se(VI) batch experiments were -0.31 ± 0.05‰ ( = 3) and -0.76 ± 0.07‰ ( = 3), compared with -0.20 ± 0.10‰ and -0.69 ± 0.10‰ in the supplied Se oxyanions, respectively. We conclude that the alkaline peroxide trap can reliably be used to determine the Se isotope composition of organoselenides.  相似文献   

10.
The capacity of anaerobic granular sludge to remove selenate from contaminated wastewater was investigated. The potential of different types of granular sludge to remove selenate from the liquid phase was compared to that of suspended sludge and contaminated soil and sediment samples. The selenate removal rates ranged from 400 to 1500 microg g VSS(-1) h(-1), depending on the source of biomass, electron donor, and the initial selenate concentration. The granular structure protects the microorganisms when exposed to high selenate concentrations (0.1 to 1 mM). Anaerobic granular sludge "Eerbeek," originating from a UASB reactor treating paper mill wastewater, removed about 90, 50, and 36% of 0.1, 0.5, and 1 mM of Se, respectively, from the liquid phase when incubated with 20 mM lactate at 30 degrees C and pH 7.5. Selenite, elemental Se (Se(o)), and metal selenide precipitates were the conversion products. Enrichments from the anaerobic granular sludge "Eerbeek" were able to convert 90% of the 10-mM selenate to Se(o) at a rate of 1505 microg Se(VI) g cells(-1) h(-1), a specific growth rate of 0.0125 g cells h(-1), and a yield of 0.083 g cells mg Se(-1). Both microbial metabolic processes (e.g dissimilatory reduction) as well as microbially mediated physicochemical mechanisms (adsorption and precipitation) contribute to the removal of selenate from the Se-containing medium.  相似文献   

11.
Removal of selenate from water by zerovalent iron   总被引:1,自引:0,他引:1  
Zerovalent iron (ZVI) has been widely used in the removal of environmental contaminants from water. In this study, ZVI was used to remove selenate [Se(VI)] at a level of 1000 microg L(-1) in the presence of varying concentrations of Cl-, SO(2-)4, NO(-)3, HCO(-)3, and PO(3-)4. Results showed that Se(VI) was rapidly removed during the corrosion of ZVI to iron oxyhydroxides (Fe(OH)). During the 16 h of the experiments, 100 and 56% of the added Se(VI) was removed in 10 mM Cl- and SO(2-)4 solutions under a closed contained system, respectively. Under an open condition, 100 and 93% of the added Se(VI) were removed in the Cl- and SO(2-)4 solutions, respectively. Analysis of Se species in ZVI-Fe(OH) revealed that selenite [Se(IV)] and nonextractable Se increased during the first 2 to 4 h of reaction, with a decrease of Se(VI) in the Cl- experiment and no detection of Se(VI) in the SO(2-)4 experiment. Two mechanisms can be attributed to the rapid removal of Se(VI) from the solutions. One is the reduction of Se(VI) to Se(IV), followed by rapid adsorption of Se(IV) to Fe(OH). The other is the adsorption of Se(VI) directly to Fe(OH), followed by its reduction to Se(IV). The results also show that there was little effect on Se(VI) removal in the presence of Cl- (5, 50, and 100 mM), NO(-)3 (1, 5, and 10 mM), SO(2-)4 (5 mM), HCO(-)3 (1 and 5 mM), or PO(3-)4 (1 mM) and only a slight effect in the presence of SO(2-)4 (50 and 100 mM), HCO(-)3 (10 mM), and PO(3-)4 (5 mM) during a 2-d experiment, whereas 10 mM PO(3-)4 significantly inhibited Se(VI) removal. This work suggests that ZVI may be an effective agent to remove Se from Se-contaminated agricultural drainage water.  相似文献   

12.
Removal of selenium (Se) from agricultural drainage water is important in protecting wetland wildlife. Three flow-through bioreactor channel systems (BCSs), each with three channels filled with rice (Oryza sativa L.) straw, were set in the laboratory to determine removal of selenate [Se(VI)] (1020 microg L(-1)) from drainage water with a salinity of 10.4 dS m(-1), a pH of 8.1, and a nitrate (NO3-) range of 0 to 100 mg L(-1). Results showed that the rice straw effectively reduced Se(VI) during 122 to 165 d of the experiments. Calculation of Se mass in the three BCSs showed that 89.5 to 91.9% of the input Se(VI) was reduced to red elemental Se [Se(0)], where 96.6 to 98.2% was trapped in the BCSs. Losses of each gram of rice straw were almost equal to the removal of 1.66 mg of Se from the drainage water as a form of red Se(0), indicating that rice straw is a very effective organic source for removing Se(VI) from drainage water.  相似文献   

13.
Effect of organic material on field-scale emissions of 1,3-dichloropropene   总被引:1,自引:0,他引:1  
Soil fumigation is important for growing many fruits and vegetable crops, but fumigant emissions may contaminate the atmosphere. A large-scale field experiment was initiated to test the hypothesis that adding composted municipal green waste to the soil surface in an agricultural field would reduce atmospheric emissions of the 1,3-dichloropropene (1,3-D) after shank injection at a 133 kg ha(-1) application rate. Three micrometeorological methods were used to obtain fumigant flux density and cumulative emission values. The volatilization rate was measured continuously for 16 d, and the daily peak volatilization rates for the three methods ranged from 12 to 24 μg m(-2) s(-1). The total 1,3-D mass that volatilized to the atmosphere was approximately 14 to 68 kg, or 3 to 8% of the applied active ingredient. This represents an approximately 75 to 90% reduction in the total emissions compared with other recent field, field-plot, and laboratory studies. Significant reductions in the volatilization of 1,3-D may be possible when composted municipal green waste is applied to an agricultural field. This methodology also provides a beneficial use and disposal mechanism for composted vegetative material.  相似文献   

14.
Agricultural wastewater treatment is important for maintaining water quality, and constructed wetlands (CW) can be an effective treatment option. However, some of the N that is removed during treatment can be volatilized to the atmosphere as ammonia (NH(3)). This removal pathway is not preferred because it negatively impacts air quality. The objective of this study was to assess NH(3) volatilization from surface flow (SF) and subsurface flow (SSF) CWs. Six CWs (3 SF and 3 SSF; 6.6 m(2) each) were loaded with dairy wastewater ( approximately 300 mg L(-1) total ammoniacal nitrogen, TAN = NH(3)-N + NH(4)(+)-N) in Nova Scotia, Canada. From June through September 2006, volatilization of NH(3) during 12 or 24 h periods was measured using steady-state chambers. No differences (p > 0.1) between daytime and nighttime fluxes were observed, presumably due in part to the constant airflow inside the chambers. Changes in emission rates and variability within and between wetland types coincided with changes in the vegetative canopy (Typha latifolia L.) and temperature. In SSF wetlands, the headspace depth also appeared to affect emissions. Overall, NH(3) emissions from SF wetlands were significantly higher than from SSF wetlands. The maximum flux densities were 974 and 289 mg NH(3)-N m(-2) d(-1) for SF and SSF wetlands, respectively. Both wetland types had similar TAN mass removal. On average, volatilization contributed 9 to 44% of TAN removal in SF and 1 to 18% in SSF wetlands. Results suggest volatilization plays a larger role in N removal from SF wetlands.  相似文献   

15.
Bioalkylation and colloid formation of selenium during selenate removal in upflow anaerobic sludge bed (UASB) bioreactors was investigated. The mesophilic (30 degrees C) UASB reactor (pH = 7.0) was operated for 175 d with lactate as electron donor at an organic loading rate of 2 g COD L(-1) d(-1) and a selenium loading rate of 3.16 mg Se L(-1) d(-1). Combining sequential filtration with ion chromatographic analysis for selenium oxyanions and solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) for alkylated selenium compounds allowed to entirely close the selenium mass balance in the liquid phase for most of the UASB operational runtime. Although selenate was removed to more than 98.6% from the liquid phase, a less efficient removal of dissolved selenium was observed due to the presence of dissolved alkylated selenium species (dimethylselenide and dimethyldiselenide) and colloidal selenium particles in the effluent. The alkylated and the colloidal fractions contributed up to 15 and 31%, respectively, to the dissolved selenium concentration. The size fractions of the colloidal dispersion were: 4 to 0.45 mum: up to 21%, 0.45 to 0.2 mum: up to 11%, and particles smaller than 0.2 mum: up to 8%. Particles of 4 to 0.45 mum were formed in the external settler, but did not settle. SEM-EDX analysis showed that microorganisms form these selenium containing colloidal particles extracellularly on their surface. Lowering the temperature by 10 degrees C for 6 h resulted in drastically reduced selenate removal efficiencies (after a delay of 1.5 d), accompanied by the temporary formation of an unknown, soluble, organic selenium species. This study shows that a careful process control is a prerequisite for selenium treatment in UASB bioreactors, as disturbances in the operational conditions induce elevated selenium effluent concentrations by alkylation and colloid formation.  相似文献   

16.
Ammonia volatilization from the mineralization of uric acid and urea has a major impact on the poultry industry and the environment. Dry acids are commonly used to reduce ammonia emissions from poultry houses; however, little is known about how acidification affects the litter biologically. The goal of this laboratory incubation was to compare the microbiological and physiochemical effects of dry acid amendments (Al+Clear, Poultry Litter Treatment, Poultry Guard) on poultry litter to an untreated control litter and to specifically correlate uric acid and urea contents of these litters to the microbes responsible for their mineralization. Although all three acidifiers eventually produced similar effects within the litter, there was at least a 2-wk delay in the microbiological responses using Poultry Litter Treatment. Acidification of the poultry litter resulted in >3 log increases in total fungal concentrations, with both uricolytic (uric acid degrading) and ureolytic (urea degrading) fungi increasing by >2 logs within the first 2 to 4 wk of the incubation. Conversely, total, uricolytic, and ureolytic bacterial populations all significantly declined during this same time period. While uric acid and urea mineralization occurred within the first 2 wk in the untreated control litter, acidification resulted in delayed mineralization events for both uric acid and urea (2 and 4 wk delay, respectively) once fungal cell concentrations exceeded a threshold level. Therefore, fungi, and especially uricolytic fungi, appear to have a vital role in the mineralization of organic N in low-pH, high-N environments, and the activity of these fungi should be considered in best management practices to reduce ammonia volatilization from acidified poultry litter.  相似文献   

17.
Selenium (Se) associated with reclaimed uranium (U) mine lands may result in increased food chain transfer and water contamination. To assess post-reclamation bioavailability of Se at a U mine site in southeastern Wyoming, we studied soil Se distribution, dissolution, speciation, and sorption characteristics and plant Se accumulation. Phosphate-extractable soil Se exceeded the critical limit of 0.5 mg/kg in all the samples, whereas total soil Se ranged from a low (0.6 mg/kg) to an extremely high (26 mg/kg) value. Selenite was the dominant species in phosphate and ammonium bicarbonate-diethylenetriamine pentaacetic acid (AB-DTPA) extracts, whereas selenate was the major Se species in hot water extracts. Extractable soil Se concentrations were in the order of KH2PO4 > AB-DTPA > hot water > saturated paste. The soils were undersaturated with respect to various Se solid phases, albeit with high levels of extractable Se surpassing the critical limit. Calcium and Mg minerals were the potential primary solids controlling Se dissolution, with dissolved organic carbon in the equilibrium solutions resulting in enhanced Se availability. Adsorption was a significant (r2 = 0.76-0.99 at P < 0.05) mechanism governing Se availability and was best described by the initial mass isotherm model, which predicted a maximum reserve Se pool corresponding to 87% of the phosphate-extractable Se concentrations. Grasses, forbs, and shrubs accumulated 11 to 1800 mg Se/kg dry weight. While elevated levels of bioavailable Se may be potentially toxic, the plants accumulating high Se may be used for phytoremediation, or the palatable forage species may be used as animal feed supplements in Se-deficient areas.  相似文献   

18.
Pesticides can volatilize into the atmosphere, which affects the air quality. The ability to predict pesticide volatilization is an essential tool for human risk and environmental assessment. Even though there are several mathematical models to assess and predict the fate of pesticides in different compartments of the environment, there is no reliable model to predict volatilization. The objectives of this study were to evaluate pesticide volatilization under agricultural conditions using malathion [ O,O-dimethyl-S-(1,2-dicarbethoxyethyl)-dithiophosphate], ethoprophos (O-ethyl S,S-dipropylphosphorodithioate), and procymidone [N-(3,5-dichlorophenyl)-1,2-dimethylcyclopropane-1,2-dicarboximide] as test compounds and to evaluate the ability of the Pesticide Leaching Model (PELMO) to calculate the predicted environmental concentrations of pesticides in air under field conditions. The volatilization rate of procymidone, malathion, and ethoprophos was determined in a field study during two different periods (December 1998 and September 1999) using the Theoretical Profile Shape (TPS) method. The experiments were performed on bare silty soil in the Bologna province, Italy. Residues in the air were continuously monitored for 2 to 3 wk after the pesticide applications. The amount of pesticide volatilized was 16, 5, and 11% in December 1998 and 41, 23, and 19% in September 1999 for procymidone, malathion, and ethoprophos, respectively. In both these experiments, the PELMO simulations of the concentration of ethoprophos and procymidone were in good agreement with the measured data (factor +/- 1.1 on average). The volatilization of malathion was underestimated by a factor of 30 on average. These results suggest that volatilization described by PELMO may be reliable for volatile substances, but PELMO may underpredict volatilization for less-volatile substances.  相似文献   

19.
Sediment from a storage facility for coal tailings solids was assessed for its capacity to reduce selenium (Se) by native bacterial community. One Se(6+)-reducing bacterium Enterobacter hormaechei (Tar11) and four Se(4+)-reducing bacteria, Klebsiella pneumoniae (Tar1), Pseudomonas fluorescens (Tar3), Stenotrophomonas maltophilia (Tar6), and Enterobacter amnigenus (Tar8) were isolated from the sediment. Enterobacter hormaechei removed 96% of the added Se(6+) (0.92 mg L(-1)) from the effluents when Se(6+) was determined after 5 d of incubation. Analysis of the red precipitates showed that Se(6+) reduction resulted in the formation of spherical particles (<1.0 microm) of Se(0) as observed under scanning electron microscope (SEM) and confirmed by EDAX. Selenium speciation was performed to examine the fate of the added Se(6+) in the sediment with or without addition of Enterobacter hormaechei cells. More than 99% of the added Se(6+) (approximately 2.5 mg L(-1)) was transformed in the nonsterilized sediment (without Enterobacter hormaechei cells) as well as in the sterilized (heat-killed) sediment (with Enterobacter hormaechei cells). The results of this study suggest that the lagoon sediments at the mine site harbor Se(6+)- and Se(4+)-reducing bacteria and may be important sinks for soluble Se (Se(6+) and Se(4+)). Enterobacter hormaechei isolated from metal-contaminated sediment may have potential application in removing Se from industrial effluents.  相似文献   

20.
Selenium (Se) contamination of groundwater is an environmental concern especially in areas where aquifer systems are underlain by Se-bearing geologic formations such as marine shale. This study examined the influence of nitrate (NO?) on Se species in irrigated soil and groundwater systems and presents results from field and laboratory studies that further clarify this influence. Inhibition of selenate (SeO?) reduction in the presence of NO? and the oxidation of reduced Se from shale by autotrophic denitrification were investigated. Groundwater sampling from piezometers near an alluvium-shale interface suggests that SeO? present in the groundwater was due in part to autotrophic denitrification. Laboratory shale oxidation batch studies indicate that autotrophic denitrification is a major driver in the release of SeO? and sulfate. Similar findings occurred for a shale oxidation flow-through column study, with 70 and 31% more reduced Se and S mass, respectively, removed from the shale material in the presence of NO? than in its absence. A final laboratory flow-through column test was performed with shallow soil samples to assess the inhibition of SeO? reduction in the presence of NO?, with results suggesting that a concentration of NO? of approximately 5 mg L or greater will diminish the reduction of SeO?. The inclusion of the fate and transport of NO? and dissolved oxygen is imperative when studying or simulating the fate and transport of Se species in soil and groundwater systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号