首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four species of microalgae (Chaetoceros muelleri, Tetraselmis suecica, Tahitian Isochrysis sp. (T-iso) and Dunaliella tertiolecta) with distinctly different fatty acid profiles were grown in continuous culture and fed to prawn larvae (Penaeus japonicus, P. semisulcatus and P. monodon) as monospecific diets. The best two diets (C. muelleri and T. suecica) were also fed as a mixed diet. Experiments were run until the larvae fed the control diet of C. muelleri metamorphosed to Mysis 1. The survival and development (i.e. performance) of the larvae were affected by algal diet, and the diets were ranked in the order of decreasing nutritional value: C. muelleri ≥ T. suecica > T-iso > D. tertiolecta. Larvae fed a mixed diet of C. muelleri and T. suecica (2:3 by dry weight) performed as well or better than those fed C. muelleri, and the performance of both these groups of larvae was better than those fed T. suecica. The lipid and carbohydrate compositions of the algae had little or no effect on the lipid and carbohydrate compositions of the larvae or their performance. However, the larvae that performed best (i.e. those fed C. muelleri) had significantly more lipid and carbohydrate than those that performed worst (i.e. those fed D. tertiolecta). Larvae fed C. muelleri or the mixed-algae diet had higher proportions of the essential fatty acids eicosapentaenoic acid [EPA, 20:5(n-3)] and arachidonic acid [ARA, 20:4(n-6)] than the larvae fed on other diets. Furthermore, the larvae fed T. suecica, which showed intermediate performance between larvae fed C. muelleri and T-iso or D. tertiolecta, also had higher proportions of EPA and ARA. Both C. muelleri and T. suecica contained EPA and ARA, but T-iso and D. tertiolecta did not, except for trace amounts of EPA in T-iso. The fatty acid ARA appears to be much more important in the diet of larval prawns than has so far been considered. The level of the essential fatty acid docosahexaenoic acid [DHA, 22:6(n-3)] in the algal diet and the larvae was not related to the performance of the larvae; only C. muelleri and T-iso contained DHA. However, the nauplii contained large proportions of DHA, suggesting that these were sufficient to meet the larval requirements for DHA during their development to Mysis 1. Mixed-algae diets could improve the performance of larvae by providing a more comprehensive range of fatty acids. Received: 22 April 1998 / Accepted: 3 December 1998  相似文献   

2.
Lipid compositions of the dominant Antarctic copepods Calanoides acutus, Rhincalanus gigas and Calanus propinquus from the Weddell Sea have been investigated in great detail. Copepods were collected during summer in 1985 and late spring/early winter in 1986. The analyses revealed specific adaptations in the lipid biochemistry of these species which result in very different lipid components. The various copepodite stages of C. acutus synthesize wax esters with long-chain monounsaturated moieties and especially the alcohols consisted mainly of 20:1(n-9) and 22:1(n-11). R. gigas also generates wax esters, but with moieties of shorter chain length. The fatty alcohols consisted mainly of 14:0 and 16:0 components, while the major fatty acids were 20:5, 18:4 and 22:6, of which 18:4 probably originated from dietary input. In contrast, C. propinquus accumulates triacylglycerols, a very unusual depot lipid in polar calanoid copepods. Major fatty acids in C. propinquus were the long-chain monounsaturates 22:1(n-9) and 22:1(n-11), which may comprise up to 50% of total fatty acids. In C. acutus and C. propinquus there was a clear increase of long-chain fatty acids with increasing developmental stage. In contrast, the fatty acid and alcohol composition of the R. gigas copepodite stages were characterized by the dominance of the polyunsaturated fatty acids as well as high amounts of the monounsaturates 18:1(n-9) and 16:1(n-7). There was a considerable decrease of the dietary fatty acid 18:4(n-3) towards the older stages during summer; in late winter/early spring 18:4 was only detected in very low amounts. This tendency was also found in the other two species, but was less pronounced. In all three species dry weight and lipid content increased exponentially from younger to older stages. The highest portion of wax esters, or of triacylglycerols in C. propinquus, was found in the adults. Dry weight and lipid content were generally higher during summer. In late winter/early spring the variability was more pronounced and lipid-rich specimens showed a selective retention of long-chain monounsaturated fatty acids, whereas in lipid-poor specimens these fatty acids were very much depleted.  相似文献   

3.
As intermediaries, some heterotrophic protists can enhance the content of the long chain n-3 essential fatty acids (LCn-3EFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), of low food quality algae for subsequent use at higher trophic levels. However, the mechanisms that produce LCn-3EFAs are presently unknown, although LCn-3EFA production by heterotrophic protists at the phytoplankton–zooplankton interface may potentially affect the nutritional status of the pelagic system. We investigated whether the heterotrophic protists, Oxyrrhis marina and Gyrodinium dominans, produce LCn-3EFAs via elongation and desaturation of dietary LCn-3EFA precursors and/or synthesize LCn-3EFAs de novo by: (1) feeding the two heterotrophic protists with a prey deficient in n-3 fatty acids, (2) incubating them in medium containing 13C-labeled sodium acetate, and (3) feeding the two protists gelatin acacia microspheres (GAMs) containing a deuterium-labeled LCn-3EFA precursor, linolenic acid [18:3(n-3)-d4]. Both O. marina and G. dominans synthesized EPA and DHA when fed the n-3 fatty acid-deficient prey, Perkinsus marinus, a parasitic protozoan. O. marina, but not G. dominans utilized 13C-labeled acetate from the medium to produce uniformly labeled fatty acids, including DHA. Both heterotroph species consumed GAMs containing 18:3(n-3)-d4 and catabolized 18:3(n-3)-d4 to 16:3(n-3)-d4 and 14:3(n-3)-d4, while no 20 or 22 carbon metabolites of 18:3(n-3)-d4 were detected. These results suggest that O. marina and G. dominans do not elongate and desaturate dietary LCn-3EFA precursors to produce LCn-3EFAs, but rather they produce LCn-3EFAs de novo, possibly via a polyketide synthesis pathway.  相似文献   

4.
Three strains of the chain-forming diatom Skeletonema marinoi, differing in their production of polyunsaturated aldehydes (PUA) and nutritional food components, were used in experiments on feeding, egg production, hatching success, pellet production, and behavior of three common planktonic copepods: Acartia tonsa, Pseudocalanus elongatus, and Temora longicornis. The three different diatom strains (9B, 1G, and 7J) induced widely different effects on Acartia tonsa physiology, and the 9B strain induced different effects for the three copepods. In contrast, different strains induced no or small alterations in the distribution, swimming behavior, and turning frequency of the copepods. 22:6(n-3) fatty acid (DHA) and sterol content of the diet typically showed a positive effect on either egg production (A. tonsa) or hatching success (P. elongatus), while other measured compounds (PUA, other long-chain polyunsaturated fatty acids) of the algae had no obvious effects. Our results demonstrate that differences between strains of a given diatom species can generate effects on copepod physiology, which are as large as those induced by different algae species or groups. This emphasizes the need to identify the specific characteristics of local diatoms together with the interacting effects of different mineral, biochemical, and toxic compounds and their potential implications on different copepod species.  相似文献   

5.
N. Reuss  L. Poulsen 《Marine Biology》2002,141(3):423-434
An investigation of the fatty acid composition of a natural arctic plankton community was carried out over two fishing banks located between 63°N and 65°N off the West Greenland coast. Samples for fatty acid analyses, species determination and biomass assessments of the plankton community were taken at the depth of fluorescence maximum. High biomass and diatom dominance during the spring bloom and low biomass and flagellate dominance in the post-bloom period were reflected by the fatty acid profiles. The total amount of fatty acid ranged from 55 to 132 µg l-1 during the spring bloom and from 1 to 5 µg l-1 during the post bloom. Analysis of the fatty acids showed that when the plankton was dominated by diatoms of the genera Thalassiosira and Chaetoceros, the proportions of C16:1(n-7) and C20:5(n-3) were correspondingly high. C18s, and particularly C18:1(n-9), were more abundant when the plankton was dominated by small autotrophic flagellates, primarily haptophytes. We found a good positive correlation between the common diatom marker, C16:1(n-7)/C16:0, and the biomass percentage of diatoms (r=0.742, P<0.001), as well as between the biomass percentage of flagellates and total C18 fatty acids (r=0.739, P<0.001). This supports the use of these specific fatty acids and fatty acid ratios as general biomarkers of the plankton community. However, the fatty acids are not specific enough to sufficiently characterise the composition of the plankton community, and microscopical support is needed to verify observed trends.  相似文献   

6.
The marine copepod Calanus hyperboreus accumulates large quantities of lipids and essential fatty acids during summer months in Northern oceans. However, few data exist regarding their winter fatty acid profiles, which could be informative regarding the use of lipids by C. hyperboreus to successfully survive and reproduce during times of ice-cover and limited food. The present study compared fatty acids of C. hyperboreus between summer (August 2007 and 2008) and winter (early April 2008 and 2009) in Cumberland Sound, Canada. Summer samples from both years had significantly higher ∑polyunsaturated fatty acids and unsaturation indices (based on μg fatty acid mg dry tissue−1) than winter samples and separated on a principal component analysis due to higher 18:2n-6, 18:4n-3, and 20:5n-3, consistent with phytoplankton consumption. Winter C. hyperboreus had significantly higher ∑monounsaturated fatty acids (MUFA) versus summer samples and separated on the principal component analysis due to higher proportions of 16:1n-7, 20:1n-9, and 22:1n-9, suggesting they were not actively feeding. Based on the seasonal fatty acid comparison, C. hyperboreus was catabolizing specific fatty acids (e.g. 20:5n-3), conserving others (e.g. 22:6n-3), and maintaining or increasing biosynthesis of certain MUFA (e.g. 18:1n-9) during winter. These findings provide insight into the seasonal strategy of acquisition (summer) and utilization (winter) of specific fatty acids by a key Arctic organism and could become important for monitoring changes in fatty acids associated with decreased ice-cover duration due to climate warming.  相似文献   

7.
The effect of feeding the flagellate Isochrysis galbana (Parke; clone T-Iso) of modified lipid composition on the growth and lipid composition of juvenile scallops [Placopecten magellanicus (Gmelin)] was investigated in the spring of 1993. I. galbana grown in 85-liter cage culture turbidostats under conditions of nitrogen limitation had a significantly higher total lipid content than when grown under nutrient-replete conditions. This was due mainly to a doubling in the amount of less unsaturated triacylglycerol in the cells. The concentrations of methyl and ethyl ketones were also greater in nitrogen-limited cells. Diets of nitrogen-limited I. galbana and nutrient-replete I. galbana grown in continuous and semi-continuous cultures were compared. Scallop juveniles were batch fed daily, and measurements of ingestion were determined. Samples of juveniles were removed periodically for determination of organic weight. The juveniles did not grow when fed nitrogen-limited or nutrient-replete I. galbana alone; however, when each diet was supplemented with 20% of the diatom Chaetoceros muelleri (Lemm.), there was a significant increase in growth in the juveniles receiving the nitrogen-limited I. galbana compared with juveniles on other diets. In comparison with I. galbana,  C. muelleri provided a rich source of carbohydrates and the essential fatty acid 20:4ω6. This study shows the importance of providing optimal dietary levels of ω3 and ω6 polyunsaturated fatty acids, as well as less unsaturated fatty acids and carbohydrates. Received: 29 September 1997 / Accepted: 2 October 1998  相似文献   

8.
Ecological and physiological studies focused on dietary preferences, lipid biochemistry and energetics within the three Antarctic chaetognaths Eukrohnia hamata, E. bathypelagica and E. bathyantarctica from meso- and bathypelagic depths. Eukrohnia hamata and E. bathypelagica respired 0.15 μL O2 mg dry mass (DM)−1 h−1, which translates to an average metabolic loss of only <1.1% of body carbon per day. Lipid storage was not substantial in E. bathypelagica (mean 11.5 ± 6.5% DM) and E. bathyantarctica (mean 15.4 ± 4.1% DM) during summer and winter, suggesting year-round feeding of these predators mainly on copepods. In E. bathypelagica, total fatty acids were dominated by the fatty acids 16:0, 20:5(n-3) and 22:6(n-3) and in E. bathyantarctica also by 18:1(n-9), a fatty acid usually found in storage lipids. Only the latter species was characterized by significant amounts of wax esters, consisting largely of the common fatty alcohols 16:0, 20:1(n-9) and the unusual fatty alcohol isomer 22:1(n-9).  相似文献   

9.
The effect of the chemical composition of food on the reproductive success of the copepods Acartia tonsa Dana and A. hudsonica Pinhey was studied in the laboratory. Laboratory-reared individuals were fed one of three monoalgal diets at different stages of growth: the diatom Thalassiosira weissflogii, the flagellate Rhodomonas lens and the dinoflagellte Prorocentrum minimum. The diet was analyzed for carbon, nitrogen, protein, carbohydrate and fatty acid content. Reproductive success was measured as eggs female-1 day-1 (E r) and as the hatching success of the eggs. The E r of Acartia spp. was correlated with protein and specific fatty acids [16:17 (negative), 20:53, 22:63, and 18:0 (positive)] and, especially, the fatty acid composition of the algae expressed as the 3:6 and 20:22 fatty acid ratios. The youngest diatom cultures and exponentially-growing flagellates displayed the highest E r; the lowest E r was recorded for females fed the senescent diatom cultures. The development time of eggs was affected by the age of the phytoplankton culture fed to the female. Hatching success of eggs decreased with the age of the algal culture, but no correlation was found with the meansured chemical components of the food.  相似文献   

10.
The lipid composition of tropical marine reef fishes is poorly known, despite their use as food by local human populations and recent interest in health-related benefits of fish lipids. We examined the composition of lipids from epaxial muscle, liver, and two storage sites [mesenteries surrounding the gut (intraperitoneal fat, IPFs) and retroperitoneal fat bodies (FBs) posterior to the peritoneal cavity] in three species of surgeonfishes from Ishigaki Island, Japan: Naso lituratus (Bloch and Schneider, 1801), Acanthurus lineatus (Linnaeus, 1758), and A. bariene (Lesson, 1830). Triacylglycerols dominated all samples of neutral lipid and constituted ≥ 99% of FBs and IPFs. Polar lipids generally contained large fractions of phosphatidylethanolamine and phosphatidylcholine. Quantified fatty acids ranged in length from C14 to C24. C16 fatty acids prevailed (>35% of neutral fatty acids, >23% of polar fatty acids), although C18 (>16 and >14%, respectively) and C20 acids (>8 and >19%, respectively) were also common. Saturated fatty acids, dominated by palmitic acid (16:0), comprised 38.7 to 50.7% of acids from neutral lipids and 30.8 to 41.1% from polar lipids. The most common monounsaturated acids were 18:1n9 and 20:1n9. Polyunsaturated acids were prevalent in polar lipids (especially 20:4n6, 20:5n3, 22:2n3, 22:5n3, 22:5n6 and 22:6n3). Common polyunsaturated acids of neutral lipids were 18:2n6, 18:4n3, several n-3 and n-6 C20 acids, 22:2n3 and 22:5n3. IPF and FB were almost identical across species, and lipids of fat bodies (IPFs, FBs) were more similar to those of muscle than those of liver for all three species. The FBs appear to constitute an accessory storage site, which overcomes constraints on lipid storage imposed by a small, inflexible abdominal cavity that contains both viscera and consistently voluminous gut contents. Fatty acid signatures indicate that largely overlooked epiphytic or epilithic diatoms contribute significantly to lipid acquisition. The combination of large quantities of both saturated and n-3 and other polyunsaturated fatty acids in surgeonfishes, in contrast to low saturates and high polyunsaturated acids in lipids of commercially important cool-water fishes, suggests that a study of dietary effects of fish lipids on human inhabitants of the tropics may be instructive insofar as human health and nutrition are concerned. Received: 16 March 1998 / Accepted: 6 August 1998  相似文献   

11.
We measured development, growth and juvenile mortality of the common copepod Temora longicornis on 11 different monospecific diatom diets in order to estimate (1) how common the negative effects of diatoms are on the development of this copepod and (2) whether the arrested development is connected to deleterious polyunsaturated aldehydes (PUA) or food nutritional quality. Four diatom species (Thalassiosira weissflogii, Thalassiosira rotula CCMP1647, Leptocylindricus danicus CCPM469 and Skeletonema costatum CCMP1281) supported complete development, whereas development failed in or before metamorphosis on seven diatom species/strains (Chaetoceros affinis CCMP158, C. decipiens CCMP173, C. socialis, T. rotula CCMP1018, Thalassiosira pseudonana CCMP1010 and CCMP1335). However, four out of these seven species were not ingested by nauplii, either due to morphology (Chaetoceros spp.) or large size (T. pseudonana CCMP1010). The growth rate did not correlate with the ingestion rate of PUA, neither with ingestion of food mineral (nitrogen) nor with biochemical (polyunsaturated fatty acids, sterols) components. We show that, although some diatoms are of inferior food quality, this is unlikely to be connected to toxicity or due to a direct limitation by a single food nutritional compound.  相似文献   

12.
The spring zooplankton community in the Strait of Georgia (British Columbia, Canada) is characterized by the presence of several calanoid copepod species which collectively make up ~90% of the mezozooplankton biomass. Here, we investigate interspecific, interannual, and geographic variability in the diets and trophic positions of these copepods using a combination of fatty acids and stable isotopes. To characterize geographic variability in diet, we compare our findings from the Strait of Georgia with similar data from Ocean Station P in the subarctic northeast Pacific. Both fatty acid and stable isotope signatures indicate the existence of three trophic levels, even within the limited size range of these copepods: Neocalanus plumchrus and Calanus marshallae are primarily omnivorous, while Euchaeta elongata is carnivorous and Eucalanus bungii is herbivorous. Fatty acid markers of trophic position (e.g., DHA/EPA, 18:1n-9/18:1n-7) correlate significantly with δ15N, while markers indicating the proportion of diatoms to flagellates in the diet (e.g., 16PUFA/18PUFA and DHA/EPA) correlate significantly with δ13C, after the effect of lipid concentration on δ13C is accounted for. Despite the general correlation between stable isotopes and fatty acids, the former are not sensitive enough to capture the range of interannual variability observed in the latter, and can only capture substantial shifts in the diet over geographic scales. However, regardless of variability in food quality, the relative trophic positions of these copepods do not change significantly either spatially or temporally.  相似文献   

13.
Lipids of the Arctic ctenophore Mertensia ovum, collected from Kongsfjorden (Svalbard) in 2001, were analysed to investigate seasonal variability and fate of dietary lipids. Total lipids, lipid classes and fatty acid and alcohol compositions were determined in animals, which were selected according to age-group and season. Changes in lipids of age-group 0 animals were followed during growth from spring to autumn. Total lipids increased from May to September. Lipids as percentage of dry mass were lowest in August indicating their use for reproduction. Higher values occurred in September, which may be due to lipid storage for overwintering. Wax esters were the major lipid class accounting for about 50% of total lipids in age-group 0 animals from July and August. Phospholipids were the second largest lipid fraction with up to 46% in this age-group. The principal fatty acids of M. ovum from all age-groups were 22:6(n-3), 20:5(n-3) and 16:0. Wax ester fatty alcohols were dominated by 22:1(n-11) and 20:1(n-9) followed by moderate proportions of 16:0. The unique feature of M. ovum lipids was the high amount of free fatty alcohols originating probably from the dietary wax esters. In May, free alcohols exhibited the highest mean proportion with 14.6% in age-group 0 animals. We present the first data describing a detailed free fatty alcohol composition in zooplankton. This composition was very different from the alcohol composition of M. ovum wax esters because of the predominance of the long-chain monounsaturated 22:1(n-11) alcohol accounting for almost 100% of total free alcohols in some samples. The detailed lipid composition clearly reflected feeding of M. ovum on the herbivorous calanoid species, Calanus glacialis and C. finmarchicus, the abundant members of the zooplankton community in Kongsfjorden. Other copepod species or prey items seem to be less important for M. ovum.  相似文献   

14.
During austral summer of 1985 different developmental stages (CIII, CIV, CV, females, males) of the Antarctic copepod Euchaeta antarctica and females of Euchirella rostromagna were collected in the southeastern Weddell Sea to determine their lipid contents and compositions. For E. antarctica the analyses revealed a strong ontogenetic accumulation of lipids towards the older copepodids with highest lipid contents in late CV stages and adults. The females of E. rostromagna had moderate lipid levels. The most striking difference between these two species concerns their lipid class compositions. E. antarctica deposited predominantly wax esters, whereas in E. rostromagna the major lipid class consisted of triacylglycerols, an unusual storage lipid in polar marine copepods. Principal fatty acids in E. antarctica were the monounsaturates 18:1(n-9) and 16:1(n-7), especially in the lipid-rich stages, while the polyunsaturated fatty acids 20:5(n-3) and 22:6(n-3), usually membrane lipids, dominated in the lipid-poor stages. The wax ester moieties in E. antarctica consisted almost entirely of 14:0 and 16:0 fatty alcohols. Major components in E. rostromagna were the fatty acids 18:1(n-9), 16:0, 20:5(n-3) and 22:6(n-3). The potential of fatty acids and alcohols as typical trophic markers is rendered largely insignificant in the two species due to catabolic processes.  相似文献   

15.
The lipid profiles of a few species of marine unicellular algae and yeast were studied with emphasis on fatty acids as part of a search for the nutritional value of plankton to the diet of marine fish larvae commonly used in marine hatcheries. The general proximate chemistry of rotifers was closely related to the proximate chemistry of the diet organism, exhibiting a higher content of protein and carbohydrate and a lower content of lipid. Major lipids in all algae, yeast and rotifers comprised mono-, di- and tri-glycerides and polar lipids. The algae Chaetoceros gracilis Schutt, Isochrysis galbana Parke and their respective algaefed rotifers exhibited higher amounts of neutral lipids, consisting mainly of cyclic and branched polyunsaturated components. Fatty acid composition of the algae was species-specific, with the highest ratio of polyethylenic to saturated and monoethylenic acid in I. galbana and Phaeodactylum tricornutum Bohlin, and the highest content (15%) of n-3 highly unsaturated fatty acids in Nannochloropsis salina and P. tricornutum. A closely mirrored distribution of the fatty acids, but with a lower amount of n-3 highly unsaturated fatty acids, was present in the respective algae-fed rotifers. Comparison of the fatty acid spectrum of Artemia sp. and Euterpina acutifrons grown in the laboratory on I. galbana with zooplankton samples of E. acutifrons and Oitona nana collected from the sea showed a higher concentration of docosahexaenoic acid (22:6 n-3) in the naturally collected sample. The results indicate that the efficacy of the food algae C. gracilis and I. galbana in increasing the survival of fish larvae in marine hatcheries is not obvious on the sole basis of fatty acid composition.  相似文献   

16.
Abstract: Lethal control, which has been used to reduce local abundances of animals in conflict with humans or with endangered species, may not achieve management goals if animal movement is not considered. In populations with emigration and immigration, lethal control may induce compensatory immigration, if the source of attraction remains unchanged. Within the Columbia River Basin (Washington, U.S.A.), avian predators forage at dams because dams tend to reduce rates of emigration of juvenile salmonids (Oncorhynchus spp.), artificially concentrating these prey. We used differences in fatty acid profiles between Caspian Terns (Hydroprogne caspia) at coastal and inland breeding colonies and terns culled by a lethal control program at a mid‐Columbia River dam to infer dispersal patterns. We modeled the rate of loss of fatty acid biomarkers, which are fatty acids that can be traced to a single prey species or groups of species, to infer whether and when terns foraging at dams had emigrated from the coast. Nonmetric multidimensional scaling showed that coastal terns had high levels of C20 and C22 monounsaturated fatty acids, whereas fatty acids of inland breeders were high in C18:3n3, C20:4n6, and C22:5n3. Models of the rate of loss of fatty acid showed that approximately 60% of the terns collected at Rock Island Dam were unlikely to have bred successfully at local (inland) sites, suggesting that terns foraging at dams come from an extensive area. Fatty acid biomarkers may provide accurate information about patterns of dispersal in animal populations and may be extremely valuable in cases where populations differ demonstrably in prey base.  相似文献   

17.
To test whether heterotrophic protists modify precursors of long chain n−3 polyunsaturated fatty acids (LCn−3PUFAs) present in the algae they eat, two algae with different fatty acid contents (Rhodomonas salina and Dunaliella tertiolecta) were fed to the heterotrophic protists Oxyrrhis marina Dujardin and Gyrodinium dominans Hulbert. These experiments were conducted in August 2004. Both predators and prey were analyzed for fatty acid composition. To further test the effects of trophic upgrading, the calanoid copepod Acartia tonsa Dana was fed R. salina, D. tertiolecta, or O. marina that had been growing on D. tertiolecta (OM-DT) in March 2005. Our results show that trophic upgrading was species-specific. The presence of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the heterotrophic protists despite the lack of these fatty acids in the algal prey suggests that protists have the ability to elongate and desaturate 18:3 (n−3), a precursor of LCn−3PUFAs, to EPA and/or DHA. A lower content of these fatty acids was detected in protists that were fed good-quality algae. Feeding experiments with A. tonsa showed that copepods fed D. tertiolecta had a significantly lower content of EPA and DHA than those fed OM-DT. The concentration of EPA was low on both diets, while DHA content was highest in A. tonsa fed R. salina and OM-DT. These results suggest that O. marina was able to trophically upgrade the nutritional quality of the poor-quality alga, and efficiently supplied DHA to the next trophic level. The low amount of EPA in A. tonsa suggests EPA may be catabolized by the copepod.  相似文献   

18.
Three species of phytoplankton grown at high (HL) or low light (LL) were fed as saturating rations to laboratory-reared larval Crassostrea gigas. Larval C. gigas fed diets of HL grown Chaetoceros gracilis and HL grown Isochrysis aff. galbana grew faster than those fed LL grown cells of the same phytoplankton species. Faster growth of C. gigas larvae was consistently associated with increases in the percent composition of short chain saturated fatty acids (FA) 14:0+16:0 in the HL grown cells. There were no consistent and significant differences between HL and LL grown phytoplankton cells in their content of carbon, nitrogen, protein, lipid or carbohydrate. Intraspecific increases in percent composition of essential fatty acids (EFAs), 20:53 and 22:63, in the phytoplankton were not associated with improvements in the growth or survival of the oyster larvae. Oyster larvae fed diets of Phaeodactylum tricornutum with a relatively high proportion of EFAs grew more slowly than those fed C. gracilis. In this experiment the proportion of dietary EFA 20:53 was negatively correlated with oyster growth rates. The faster growing oyster larvae contained relatively more of the FAs 14:0+16:0 which may be useful as measures of larval oyster condition. After a diet of one phytoplankton species for ca. 10 d, oyster larvae acquired distinctive FA profiles resembling that of their phytoplankton prey.  相似文献   

19.
The nutritional value of Artemia sp. as food for marine fish and crustacean larvae has been linked to the level of its polyunsaturated fatty acid (PUFA) content. Experiments in August 1984 were conducted to determine the effects of various artificial diets and algae on fatty acid composition of PUFA-deficient Artemia sp. (Utah GSL strain) and their resulting value as food for postlarvae of the prawn Penaeus monodon (Fabricius). Nauplii of the brine shrimp were grown on extracts of corn, copra, soybean and rice bran containing precursors (C18) to long-chain PUFA and also on algal species containing different levels of long-chain PUFA (C20). The nauplii were then used as food for P. monodon postlarvae. The results revealed that absence of C20 polyunsaturates from the feeds and their presence in the algae were reflected in the polyunsaturated fatty acid content of the tissues of Artemia sp. When fed with brine shrimp fed on algae, P. monodon displayed better postlarval survival and significantly higher growth; related to the content of polyunsaturated fatty acids in Artemia sp. A practical feeding approach in prawn hatcheries would be to grow Artemia sp. on a cheap diet such as rice bran, and then to enhance its nutritional value with a diet high in PUFA prior to harvesting, in order to improve hatchery production.  相似文献   

20.
A 6-week feeding trial was conducted with 44-d-old European sea bass (Dicentrarchus labrax L.) in order to examine the effect of various dietary phospholipid (PL) sources on the incorporation of n-3 highly unsaturated fatty acids (HUFA) in tissue lipids. From weaning onwards the fish received diets prepared by coating different lipid fractions (7.5% diet) on an extruded basal diet (92.5% diet). The two PL-free control diets contained 0.5 and 2% of an emulsifier blend, respectively. Seven other diets contained 2% PL, differing by their purity and origin (vegetable or animal). All diets were rendered isolipidic by the addition of hydrogenated coconut oil. Feeding the PL-supplemented diets, except the diet containing hydrolyzed soybean PL (lyso PL), resulted in a higher survival and a 10 to 30% better growth as compared to the PL-free diets. No difference according to the PL origin was observed. The sea bass final lipid content increased with increasing body weight. Also the lipid class composition of the fish was clearly correlated with the final weight gain. Total neutral lipid increased from 51% of total lipid (initial fish) to 76% for fish fed the PL-free diets, and up to 88% for fish fed the sunflower PL. Weaning the fish on the experimental diets induced important changes in their fatty acid profiles characterized by a decrease in 18:3n-3, 20:5n-3 and 20:4n-6 and an increase in saturated fatty acids and 22:6n-3 (DHA). According to the fatty acid composition of both total and polar lipid, the weaned fish could be divided into three groups reflecting the dietary fatty acids: a group fed the vegetable PL, a group fed the animal PL and a PL-deprived group. An effect of dietary PL on the incorporation of dietary n-3 HUFA, more particularly DHA, was noticed. For a similar supply of DHA through the neutral lipids in the diet, fish fed PL-supplemented diets (except for the lyso PL diet) had 10 to 25% higher DHA levels in total and polar lipid than PL-deprived fish. This PL effect was already clear at the end of the weaning and was not related to the presence of n-3 HUFA in the PL source, as suspected in a previous study when feeding egg yolk PL. A better incorporation of DHA was not obtained by replacing the PL by an emulsifier or by lyso PL with higher emulsifying properties. Present results confirm a role of dietary PL in the absorption of dietary neutral lipids, by a mechanism other than emulsification. Received: 27 May 1997 / Accepted: 30 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号