首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
为了探究喷吹管开孔个数和开孔位置对长滤袋(160 mm×6 000 mm)清灰效果的差异,在自建脉冲喷吹实验台上,利用QSY8135压电式压力传感器,测试喷吹压力0.1~0.4 MPa,喷吹孔数4~8个时,不同开孔位置沿滤袋方向的侧壁压力。结果显示:脉冲喷吹压力0.2 MPa下的电磁阀一次喷吹实际耗气量是脉冲喷吹压力0.1 MPa的1.23倍,沿滤袋方向的平均侧壁压力是1.68倍,0.2 MPa的标准差为0.418 3,脉冲喷吹压力0.3 MPa下的电磁阀一次喷吹实际耗气量是喷吹压力0.1 MPa的1.48倍,沿滤袋方向的平均侧壁压力是2.34倍,0.3 MPa的标准差为2.430 4,得到本实验条件最佳喷吹压力0.2 MPa;喷吹压力0.2 MPa,当开孔个数不同时,沿喷吹管方向靠近电磁阀的第二个喷吹孔沿滤袋方向平均侧壁压力最小,开孔位置中最远离脉冲阀的孔沿滤袋方向平均侧壁压力最大,最小的侧壁压力是最大侧壁压力的0.539倍,当开孔数为8个,标准差0.170 5,值最小,清灰均匀性最好。对长滤袋喷吹管上开孔个数和喷吹位置的研究为袋式除尘器喷吹系统的改进和设计提供理论依据。  相似文献   

2.
对Φ120 mm×1 000 mm氟美斯滤袋的最大侧壁压力峰值、除尘器运行阻力进行实验测试,并结合滤袋破损情况探究高温滤袋的有效清灰强度。结果表明,最大侧壁压力峰值在一定范围内对滤袋有较好的清灰效果且对滤袋的损伤较小。对粉煤灰而言,滤袋沿长度方向的平均最大侧壁压力峰值为876 Pa时的强度能满足除尘器的清灰要求,随着滤袋的最大侧壁压力峰值增大,除尘器清灰效果越好,当平均最大侧壁压力峰值超过2 713 Pa时,清灰效果仅轻微提升;且局部最大侧壁压力峰值大于5 282 Pa时滤袋破损,造成过度清灰。  相似文献   

3.
在自建的脉冲喷吹实验装置上,利用MYD-1540A型压电式压力传感器,对尺寸规格120×2 000 mm聚酯无纺布覆PTFE膜滤袋在不同孔管截面积比条件下的滤袋侧壁压力进行测试,实验同时测试了使用不同阀时对应同一孔管截面积比滤袋的侧壁压力,并利用MYD-1380C型压电式压力传感器测试不同阀不同开孔面积时喷吹管内压力随时间的变化。对比分析了同一阀在不同孔管截面积比、不同阀同样孔管截面积比时滤袋的清灰强度,并结合喷吹管内压力随时间变化的曲线分析了孔管截面积比对滤袋清灰性能影响的原理。结果显示:随着孔管截面积比的增大,滤袋清灰强度先增大后减小,喷吹管的最佳孔管截面积比为73.8%,当孔管截面积比达到152.5%及以上或小于26.5%时,清灰强度明显降低;阀的性能会直接影响孔管截面积比对清灰效果的影响;孔管截面积比对滤袋清灰性能影响的本质原因是引起喷吹孔出口气流速度的变化,从而影响压缩空气二次诱导气流量,进而影响滤袋清灰性能。  相似文献   

4.
金属纤维滤袋可直接过滤高温烟气粉尘,解决高温烟气粉尘导致的环境、安全问题,对高温烟气的余热能源回收利用有非常重要的意义。目前,金属滤袋除尘器脉冲喷吹参数是依照传统纤维滤袋器设计的,存在着脉冲瞬时气流导致喷吹清灰失效问题。针对此问题,在脉冲喷吹实验平台上,通过改变喷吹压力、喷吹距离以及喷吹孔径,针对?130 mm×2 000 mm的金属滤袋,利用压力数据采集系统测试喷吹压力0.2~0.6 MPa、喷吹孔径6~14 mm、喷吹距离50~250 mm时,金属滤袋距顶部80、200、600、1 000、1 400和1 800 mm 6个部位的侧壁压力峰值,以探求针对金属滤袋的脉冲喷吹的合理参数。结果表明:2 m金属滤袋的最佳脉冲喷吹孔径为8 mm,最佳喷吹距离为200 mm,最佳喷吹压力为0.5 MPa;此条件下的P1(80 mm)、P2(200 mm)、P3(600 mm)、P4(1 000 mm)、P5(1 400 mm)、P6(1 800 mm)的侧壁压力峰值分别为1 000、1 686、839、746、749和2 005 Pa。金属滤袋的侧壁压力峰值大小排列呈下上中的规律。随着喷吹孔径的增大,最优喷吹距离有逐渐减小的趋势。金属滤袋的中、下部(距滤袋口600~1 400 mm)清灰将是未来金属滤袋清灰的重点关注部位。上述研究结果可为金属滤袋的推广发展提供参考。  相似文献   

5.
大型电袋复合除尘器脉冲滤袋清灰   总被引:1,自引:0,他引:1  
郑奎照 《环境工程学报》2014,(12):5419-5423
建立了大型脉冲喷吹实验系统,进行8 m滤袋长度、76 mm以上不同规格和型号的脉冲阀、未使用的干净滤袋和使用过带粉尘滤袋的喷吹性能实验研究,测试喷吹管上的压力峰值、滤袋上的加速度和压力峰值。实验结果表明,喷吹管上高速回流气流产生二次压力峰值。测试结果也证明,带粉尘的滤袋由于其透气性的降低与干净滤袋相比,其最小压力峰值较大,且随着滤料透气性的降低整条滤袋的压力峰值变化值变小,同时滤袋的透气性与工程使用时间成反比,但不同的烟气工况由于粉尘特性造成滤袋的透气性不同。实验也表明,为保证单个脉冲阀能有效地喷吹滤袋应根据最小压力峰值进行滤袋数量的限制和脉冲阀规格的选取。  相似文献   

6.
在电改袋除尘器中,为更好地利用原静电除尘器的内部空间,可采用长袋及脉冲喷吹清灰方式。利用CFX软件对脉冲喷吹系统进行模拟优化,结果表明,通过在喷嘴侧壁开设20 mm小孔,可有效增大喷吹气体流量,且以开设2个或者3个为佳。在喷嘴侧壁开孔数量、喷吹压力、喷吹距离、喷吹孔直径和滤袋长度等因素中,喷吹压力和喷吹孔直径对清灰的影响较大,增大喷吹压力和喷吹孔直径均有利于改善清灰效果,喷嘴侧壁开孔数量对清灰的影响较喷吹压力和喷吹孔直径小,喷吹距离仅对滤袋上部清灰效果有影响,而滤袋长度主要影响滤袋中下部的清灰效果,且影响较小,选择长袋具有可行性。  相似文献   

7.
为探究2 000 mm长滤筒滤筒在脉冲清灰时,不同喷吹条件(喷吹孔径、喷吹距离)对滤筒清灰性能的影响及沿长滤筒长度方向上侧壁压力峰值分布规律,设计脉冲喷吹实验,测定ф147 mm×2 000 mm(覆PTFE膜)长滤筒在不同喷吹条件下的侧壁压力峰值。实验结果表明,2 000 mm长滤筒的最佳喷吹孔径为15 mm,最佳喷吹距离为240 mm,在0.5MPa条件下,沿滤筒长度方向上各测点的侧壁压力峰值分别为P0 1 084、P1 1 898、P2 1 276、P3 1 556、P4 1 302和P5 3 258。并得出最佳喷吹距离随着喷吹孔径的减小而逐渐增大,以及沿长滤筒长度方向上侧壁压力峰值分布呈现先增加再减小再增加的分布规律。研究成果旨在为长滤筒过滤系统优化设计及滤筒除尘器代替滤袋除尘器的应用上提供指导。  相似文献   

8.
以袋式除尘器装置为研究对象,考虑射流偏移,建立了脉冲喷吹清洁的三维CFD数值模型,并进行实验验证;对喷嘴与文丘里管优化设计,修改数值模型,研究了低能耗下的脉冲喷吹清灰效果;在将改进的喷嘴与文丘里管进行工程应用的过程中,研究了其对大气粉尘排放的影响。结果表明,建立的三维CFD模型展现出了高瞬态行为和可压缩效应,即在射流中表现出涡流环与冲击单元现象。与孔喷嘴相比,改进后的喷嘴设计对射流偏移进行了调整,并且使滤袋内脉冲压力增加了5.1%~13.3%,提升了清灰效果。对比喉部直径为85 mm的文丘里管,无文丘里管的设计使得射流不易进入滤袋中,导致滤袋内脉冲压力降低了41.4%~46.3%,引起清灰效果的下降;减小文丘里管喉部直径,可以减少回流,提升滤袋内脉冲压力,改善清灰效果。对比原始装置,安装了改进喷嘴与文丘里管的袋式除尘器能明显降低大气粉尘排放,以上研究结果可为脉冲喷吹清灰除尘器的优化设计提供参考。  相似文献   

9.
响应面法优化袋式除尘器脉冲清灰性能   总被引:1,自引:0,他引:1  
基于计算流体动力学的方法采用三维、可压缩、非稳态流动数学模型对袋式除尘器脉冲清灰过程进行了数值模拟,得到了滤袋内外压差,并与文献实验值进行了比较,验证了仿真模型的可靠性。基于响应面法研究了喷吹压力、喷吹高度、滤袋直径和滤袋长度对脉冲清灰性能的影响,得到这4个影响因子的二次多项式预测模型,并进行优化。结果表明,喷吹压力为0.3 MPa,喷吹高度为0.2 m,滤袋直径为0.16 m,滤袋长度为6 m时,内外压差峰值最优,优化结果与仿真模拟结果相差小于3%。研究结果为袋式除尘器脉冲清灰系统的设计与优化提供了重要参考。  相似文献   

10.
针对除尘滤筒脉冲反吹清灰均匀性差、强度不足的缺点,构建了脉冲喷吹滤筒除尘器CFD数值模型,考察了文丘里喷嘴和金锥滤筒组合条件下的清灰性能.结果 表明,无论是文丘里喷嘴还是金锥滤筒的使用或二者组合使用,滤筒内喷吹压力均为底部大而上部小;文丘里喷嘴和金锥滤筒可单独或组合式优化喷吹性能;在喷吹高度为150~550 mm时,喷...  相似文献   

11.
Pulse-jet fabric filters rely on the filtration of dirty flue gas by the outside surface of the bags, which are then cleaned by a shock wave generated by an air pulse entering each bag from the top. As it travels down the length of the bag, the shock wave flexes the fabric and dislodges the dust cake. Enhancement of the pulse may be achieved by using a venturi, and cleaning may be on-line or off-line. This paper summarizes the results of an exhaustive study conducted for the Electric Power Research Institute to provide a convenient and versatile information base about the use of pulse-jet fabric filters on coal-fired boilers. Predominant features of the many pulse-jet installations identified by vendor survey and literature survey are shown in graphical and tabular form.  相似文献   

12.
To reveal the formation mechanism of a pulse-jet airflow’s cleaning effect in a filter bag, a theoretical model is built by using the theory of the gas jet and unitary adiabatic flow according to given specifications and dimensions of the bags and resistance characteristics of the cloth and dust layer. It is about the relationship between cleaning system structure and operating parameters. The model follows the principle that the flow and kinetic energy of jet flow injected into a filter bag should be consistent with the flow of cleaning airflow in the bag and the pressure drop flowing through the filter cloth and dust layer. The purpose of the model is to achieve the peak pressure of cleaning airflow, which dominates the effect of the pulse-jet cleaning process. The cleaning system structure includes air pressure in the nozzle, structure and size of nozzle, exit velocity of nozzle, jet distance, and diameter of jet cross section. Based on the condition of the cleaning system structure and operating parameters established by using the theoretical model, Fluent software is applied to carry out a numerical simulation of the jet airflow field at the nozzle’s outlet, jet airflow field between nozzle and bag top, and cleaning airflow field in the filter bag. Experimental results are used to verify the reliability of the theoretical model. They are obtained in a pilot-scale test filter with a single bag, with length 2 m and in general full-scale dimensions of the cleaning system. The results show that when any rectification measure is not installed at the bag opening, the cross-sectional area covered by the jet gas is hardly sufficient to cover the entire area of the bag opening. A large portion of the gases injected into the filter bag will overflow reversely upward from the edge due to pressure differences between the upper area and lower area inside the bag opening. This led to a serious shortage of the cleaning airflow and ar limited increase in static pressure. When a venturi-type rectifier tube is installed at the bag opening, the jet flow is converted to funnel flow for which the cross-section velocity distribution is more uniform at the throat of the rectifier tube due to the guided effects of the upper tapered pipe. Then it is transited to stressful flow below the bag opening via rectified effects of the lower dilated pipe. The results show that the gap between the static pressure of gas in the bag and the expected value is significantly reduced. The theoretical value of the nozzle diameter is enlarged to compensate for two aspects of adverse effects of cleaning airflow and energy. This is because the flow is not a purely free-form jet from the nozzle to the entrance of the rectifier tube and because the gas suffers from local resistance while flowing through the rectifier tube. The numerical simulation and experiment show that the peak pressure of cleaning airflow in the filter bag is able to reach the expected value. The results confirm that the mechanism of the pulse-jet cleaning airflow and the calculation method of the pulse-jet cleaning system structure and operating parameters offered in this study are correct. The study results provide a scientific basis for designing the system of pulse-jet fabric filters.

Implications: Pulse-jet cleaned fabric filters are commonly used for air pollution control in many industries. Pulse-jet cleaning is widely used for this purpose as it enables frequent cleaning while the filter is operating. However, the theoretical system of the forming mechanism of the pulse-jet cleaning has not formed so far. This indicates the theoretical model plays an important role in designing effective pulse-jet cleaned fabric filters.  相似文献   


13.
Pulse-jet filter cleaning is ineffective to the extent that collected dust redeposits rather than falls to the hopper. Dust tracer techniques were used to measure the amount of redeposition in a pilot scale pulse-jet filter. A mathematical model based on experimental results was developed to describe dust transfer from bag to bag, redeposition on the pulsed bag itself, and migration to the dust hopper. Dust redeposition upon the pulsed bag increased markedly with increasing filtration velocity, whereas migration and redeposition on bags adjacent to the pulsed bag decreased. For high velocity pulse-jet filters to operate at lowest possible pressure drop, filter cake redeposition must be minimized.  相似文献   

14.
Dust deposit profiles in a pilot-scale pulse-jet fabric filter were measured using a beta gauge. Fly ash was collected on polyester needled felt bags, and the dust profiles were measured after the test system was operated to equilibrium at superficial filtration velocities of 50, 75,100,125, and 150 mm/s. The profiles measured show that a large mass of dust is retained on the fabric of a pulse-jet filter when operated at high filtration velocities. This dust mass retention can be caused by two mechanisms: the failure to remove dust from the fabric during a cleaning pulse, and the redeposition of suspended dust onto the fabric after a cleaning pulse. The dust deposit measured at the highest test velocity was found to be much different from the deposits measured at all other velocities. The deposit found at 150 mm/s had almost twice the average areal density and was more evenly distributed than the deposits found at lower velocities.  相似文献   

15.
The analysis of pressure loss characteristics for pulse jet filters suggests that the relationship between dust adhesion to the fabric and the opposing force generated by pulse jet action plays a major role in dust removal. Hence, fabric cleanability is examined in terms of the adhesion-cohesion forces bonding the dust to the fabric vs. the intensity and frequency of the dust dislodgement forces produced by the high energy air pulses. The effect of jet size and location, jet air volume, and the intensity (pressure) and duration of the jet pulses is related to operating pressure loss.

The mechanics of energy transfer from the jet pulse to the dustladen fabric are explored in terms of jet pressure, solenoid valve action, the ratio of delivered pulse air volume to bag (tube) volume, and the elastic and flex properties of the felt bags. Effective and actual fabric dust holdings before and after cleaning are discussed with respect to steady-state dust deposition and removal rates, and operating pressure losses. Finally, predictive equations are proposed for estimating pressure loss over a broad range of design and operating parameters.  相似文献   

16.
This paper documents the variation in pressure drop and collection efficiency for fiberglass/fly ash fabric filter systems caused by variations in cleaning intensity (reverse air and reverse pulse), air to cloth ratio, and dust loading. Reverse air rates greater than 2 fpm were required to produce stable pressure characteristics. Pulse jet pressure greater than 50 psi reduced collection efficiency. Increased air to cloth ratios produced decreased collection efficiency.  相似文献   

17.
Presently, there is no effective way to interpret or predict dust penetration through a pulse-jet cleaned fabric filter. This paper presents a model which considers penetration straight through the filter and penetration by seepage. A considerable number of studies have been devoted to penetration by the straight through process; however, a comparison of data from the literature with the present model indicates that seepage and not straight through penetration accounts for virtually all penetrating dust. Although insufficient information is presently available to use the model to predict penetration, the model does show trends that should occur with changes in filter operating variables such as filtration velocity and pulse pressure, and suggests areas in which further research is necessary.  相似文献   

18.
The fly ash collection characteristics of a pulse-jet fabric filter have been studied. Fly ash penetration was found to decrease as the dust deposit increased from 0 to 60 micrometers in thickness, to increase as face velocity through the bags increased from 5 to 15 cm/s, and to remain relatively constant for particles from 0.3 to 4.0 µm in diameter. Experiments employing chemically tagged fly ash were performed to investigate three dust penetration mechanisms. On resumption of filtering after cleaning, penetration by straight through dust loss declined rapidly from its maximum, reached a minimum, and then increased. Seepage of dust through the fabric was found to be constant throughout the filtration cycle. Dust lost as pinhole plugs increased after cleaning, passed through a maximum, and then declined. The pinholes appeared to open the way for further penetration by the straight through mechanism.  相似文献   

19.
This paper documents operation of reverse air fabric filters on Baltimore Gas and Electric’s C. P. Crane Units 1 and 2 cyclone boilers. Beginning immediately after startup, tubesheet pressure drop increased to high levels. Following stabilization with sonic horns and spare reverse air fans, an investigation was mounted. Diagnostic tools included both laboratory and slipstream pilot baghouses to determine cause and evaluate candidate methods of reducing pressure drop. Fundamental ash properties determined through laboratory pilot testing were in conformance with predictions. Alternate fabrics and coatings did not eliminate the problem. The root cause of the problem was that the amount of variable cake, i.e. that ash removed during cleaning, plays an important role in the dynamics of bag cleaning. These dynamics were absent in the C. P. Crane filters. Confirmation was obtained in the full scale baghouse through modification of the variable cake weight using ash reinfection. Finally, offsetting pressure drop and power consumption reductions have been obtained to achieve satisfactory operation of the baghouses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号