首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediments of El-Mex Bay estuary on the southern Mediterranean Sea have been analyzed for trace metals after sediment fractionation by sequential leaching. A sequential extraction procedure was applied to identify forms of Mn, Cu, Cd, Cr, Zn and Fe. The five steps of the sequential extraction procedure partitioned metals into: CH3COONH4 extractable (F1); NaOAC carbonate extractable (F2); NH2OH.HCl/CH3COOH reducible extractable (F3); H2O2–HNO3 organic extractable (F4) and NHO3/HClO4/HF acid soluble residue (F5). Extracted concentrations of trace metals analyzed after all five steps, were found to be (μg/g) for Mn: 1930.2, Cu: 165.3, Cd: 60.9, Cr: 386.3, Zn: 2351.3 and Fe: 10895. Most of elements were found in reducible fraction except Fe found in acid soluble residue, characterizing stable compounds in sediments. Labile (non-residual) fractions of trace elements (sum of the first four fractions) were analyzed because they are more bioavailable than the residual amount. Correlation analysis was used to understand and visualize the associations between the labile fractions of trace metals and certain forms, since Fe-and Mn-oxides play an important role in trace metals sorption within aquatic systems, especially within El-Mex Bay sediments that characterized by varying metal bioavailability.  相似文献   

2.
3.
Water and sediment quality was monitored at four sites of Óbidos coastal lagoon (Portugal) in February, May, July and October 2006, covering different hydrological conditions. Concentrations of nutrients and metals increased in autumn/winter, particularly in an inner branch with symptoms of eutrophication that receives a small tributary contaminated by agro-industrial activities. Moreover, concentrations of PO4 3?, Si(OH)4 and Mn (diffusive gradients of thin films (DGT)-measured) varied inversely with salinity. Additionally, that branch was monitored over 26-h in July 2006 to assess variations of water quality parameters, nutrients and metals on short timescale. During the night, O2 in water reached a minimum of 40% saturation followed by a pronounced increase of DGT-measured metals and nutrients in water column: Fe and Mn (ten times); Cr, Co, PO4 3? and Si(OH)4 (six times). Enhancements were also registered for metal/Al ratios in suspended particulate matter: Mn, Cr and Cd (four to six times); Fe, Ni and Co (1.5 times). The metal distribution coefficients calculated along the 26-h survey showed a maximum at daylight suggesting a preferential association of metals with suspended particles. Data recorded under different hydrological conditions and over the 26-h survey allowed to address the influence of external and internal sources on water quality. The results of this study highlight the importance of day/night cycles on the availability of nutrients and metals in eutrophic environments.  相似文献   

4.
A loamy soil contaminated with 137CsCl 40 years ago was investigated by a sequential extraction technique to determine the effect of ageing on chemical availability of 137Cs. The soil samples were sequentially extracted with H2O, NH4Ac, NH2OH·HCl, H2O2, and HNO3. Extractability of 137Cs decreased in the order: HNO3 > Residual > H2O2 > NH4Ac > NH2OH·HCl > H2O. Only 0.94% in labile fractions (H2O and NH4Ac), while more than 96% was found in the strongly bound fraction (HNO3 and residual). However, the activity percentage in labile fractions was increased to 1.34% after autoclaving treatment, while those in the other fractions did not significantly differ. This indicates that the microbial activity played a role in the 137Cs retention. In the subsequent pot experiments with ryegrass and leek, specific activities in both plants were significantly higher in autoclaved soil than in non-autoclaved soil, and uptake of 137Cs in the five cuts by ryegrass was 25% of the labile 137Cs in the soil. In addition, a positive correlation was found between the amount of 137Cs in labile fractions and that by plant uptake.  相似文献   

5.
Determination of solid-bound element concentrations is an important initial step in environmental studies especially for assessment of contamination level, and of origin, relative mobility, and fate of contaminants. This study revealed that a relatively new collision/reaction cell inductively coupled plasma-mass spectrometry is a potent tool for determining total and partially extractable solid-bound element (V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Pb) concentrations in a complex matrix solution containing HF and/or HCl. Six different extraction methods commonly used for environmental monitoring studies were tested for their bias and variability using estuarine and marine standard reference materials. Microwave-assisted methods based on concentrated [HNO3] or [HNO3?+?HF (4:1)] and [HNO3?+?HF?+?HCl (10:3:2)] were applied for determining pseudo-total and total element concentrations, respectively. Dilute-acids (1 M HNO3, 1 M HCl, and 0.5 M HCl) were utilized in single-step partial extraction protocols. Except the 0.5 M HCl cold-extraction method which was performed at room temperature, other partial extraction protocols used microwave-digestion. This study demonstrated that the use of microwave-assisted methods in studies aimed at determining the non-residual, non-specific extractable fractions of elements in solid environmental samples may result in overestimation, and thus needs to be re-examined. We believe that the cold extraction method will play a significant role in future environmental monitoring studies. Nevertheless, results of the cold extraction method not accompanied with total element concentrations have limited value, as the amount of extraction may vary significantly with the nature (origin) of the elements, and with the types of the samples. Therefore, we suggest combining microwave-assisted total digestion and 0.5 M HCl cold-extraction methods as a relatively cost- and time-effective, environmentally sound screening procedure for routine environmental monitoring programs involving a large number of samples from diverse geological and anthropogenic settings.  相似文献   

6.
Chemical fractionation of heavy metals in urban soils of Guangzhou, China   总被引:5,自引:0,他引:5  
Knowledge of the total concentration of heavy metals is not enough to fully assess the environmental impact of urban soils. For this reason, the determination of metal speciation is important to evaluate their environment and the mobilization capacity. Sequential extraction technique proposed by the former European Community Bureau of Reference (BCR) was used to speciate Cd, Cu, Fe, Mn, Ni, Pb, and Zn in urban soils from Guangzhou into four operationally defined fractions: HOAc extractable, reducible, oxidizable, and residual. The Cu, Fe, Ni, and Zn were predominately located in the residual fraction, Pb in the reducible fraction, and Cd and Mn within the HOAc extractable fraction. The order of Cd in each fraction was generally HOAc extractable > reducible > residual > oxidizable; Cu and Fe were residual > reducible > oxidizable > HOAc extractable; Mn was HOAc extractable > residual > reducible > oxidizable; Ni and Zn were residual > reducible > HOAc extractable > oxidizable; and Pb was reducible > residual > oxidizable > HOAc extractable. Cadmium was identified as being the most mobile of the elements, followed by Mn, Zn, Ni, Cu, Pb and Fe. Iron–Mn oxides can play an important role in binding Cd, Cu, Ni, Pb, and Zn and in decreasing their proportion associated with the residual fraction in the soils. With total concentrations of Cd, Cu, Ni, Pb, Zn, and Mn increase, these metals more easily release and may produce more negative effects on the urban environment.  相似文献   

7.
Leachate and groundwater samples were collected from Gazipur landfill-site and its adjacent area to study the possible impact of leachate percolation on groundwater quality. Concentration of various physico-chemical parameters including heavy metal (Cd, Cr, Cu, Fe, Ni, Pb and Zn) and microbiological parameters (total coliform (TC) and faecal coliform (FC)) were determined in groundwater and leachate samples. The moderately high concentrations of Cl, NO 3, SO2− 4, NH+ 4, Phenol, Fe, Zn and COD in groundwater, likely indicate that groundwater quality is being significantly affected by leachate percolation. Further they proved to be as tracers for groundwater contamination. The effect of depth and distance of the well from the pollution source was also investigated. The presence of TC and FC in groundwater warns for the groundwater quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce further groundwater contamination via leachate percolation, the present study demand for the proper management of waste in Delhi.  相似文献   

8.
Sequential fractionation of phosphorus in lake sediments of Northern Greece   总被引:9,自引:0,他引:9  
The amounts and forms of potentially mobile P in surface sediments from two lakes, Volvi and Koronia, located in Northern Greece were evaluated using a sequential chemical extraction. Five sedimentary P reservoirs were separately quantified: loosely sorbed P (NH4Cl-P); iron associated P (BD-P); calcium bound P (HCl-P); metal oxide bound P (NaOH-P) and residual P (organic and refractory P). Samples were taken in two seasons and the average concentration of the fractions of phosphorus were calculated. The results indicated that the TP content and chemically extractable phosphorus in the sediments of Koronia Lake were higher than those of Volvi Lake. Sediment TP was also strongly and positively correlated with sediment Fe. Fine-sized sediments exhibited significantly higher concentrations for both lakes than the sand fraction. The P in the surface sediment mainly consisted of HCl-P and Res-P, while NH4Cl-P and BD-P only constituted a minor part. The rank order of the different P extracts was the same for the two lakes and was Residual-P > HCl-P > NaOH-P > BD-P > NH4Cl-P.  相似文献   

9.
The pollution of aquifer sediments by heavy metals has assumed serious concern due to their toxicity and accumulative behavior. Changes in environmental conditions can strongly influence the behavior of both essential and toxic elements by altering the forms in which they occur and therefore quantification of the different forms of metal is more meaningful than total metal concentrations. In this study, fractionation of metal ions in aquifer sediments of Semria Ojhapatti area, Bhojpur district, Bihar has been studied to determine the ecotoxic potential of metal ions. The investigations suggest that iron, copper, and arsenic have a tendency to remain associated in the following order residual > reducible > acid-soluble > oxidizable; manganese and zinc have tendency to be associated as residual > acid-soluble > reducible > oxidizable. The risk assessment code reveals that manganese and zinc occur in significant concentration in acid-soluble fraction and therefore comes under the high risk category and can easily enter the food chain. Most of the iron, copper, and arsenic occur as immobile fraction (i.e. residual) followed by its presence in reducible fraction and would pose threat to the water quality due to changing redox conditions. The metal enrichment factor in the study area shows moderate to significant metal enrichment in the aquifer sediments which may pose a real threat in near future. The geo-accumulation index of metals also shows that the metals lie in the range of strongly contaminated (for iron at shallow depths) to moderately contaminated to uncontaminated values.  相似文献   

10.
The distribution and accumulation of heavy metals in the sediments, especially those nearest of wastewater discharges of south of Spain, were investigated. Sediment samples from 14 locations were collected and characterised for metal content (e.g. Ni, Cu, Zn, Cr, Pb, Mn, Cd and Hg), organic carbon, total nitrogen, total phosphorous, n-hexane-extractable material, carbonates and grain size. Concentration data were processed using correlation analysis and factor analysis. The correlation analysis of concentrations data showed important positive correlations among organic carbon, total phosphorus, Cu, Zn, Cd and Hg, otherwise weak correlations among Mn, Cr, Ni and CO3 2???, indicating that these metals have complicated geochemical behaviours. The use of statistical factor analysis also confirmed these results. Sediments pollution assessment was carried out using geoaccumulation and metal pollution indexes (MPI8). The results revealed that sediments of Cádiz bay and Sancti Petri channel were uncontaminated with the studied metals.  相似文献   

11.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

12.
The heavy metals (Fe, Zn, Pb, Ni, Cr, Co, and Cd) burden in wastewater, soil, and vegetable samples from a wastewater irrigated farm located at KorleBu, Accra has been investigated. Flame atomic absorption spectrometry after microwave digestion using a combination of HNO3, HCl, and H2O2 (for water), and HNO3 and HCl (for soil and vegetables). The mean concentrations (in milligrams per kilogram) of heavy metals in the soil samples were in the order of Fe (171?±?5.22)?>?Zn (36.06?±?4.54)?>?Pb (33.35?±?35.62)?>?Ni (6.31?±?8.15)?>?Cr (3.40?±?3.63)?>?Co (1.36?±?0.31)?>?Cd (0.43?±?0.24), while the vegetables were in the order of Fe (183.11?±?161.2)?>?Zn (5.38?±?3.50)?>?Ni (3.52?±?1.27)?>?Pb (2.49?±?1.81)?>?Cr (1.46?±?0.51)?>?Co (0.66?±?0.25)?>?Cd (0.36?±?0.15). The bioconcentration factors suggest environmental monitoring for the heavy metals as follows: Cd (0.828), Cr (0.431), Ni (0.558), Co (0.485), and Fe (1.067). Estimated daily intakes were very low for both children and adults except Fe (0.767 mg/kg/day) in children. The population that consume vegetables from the study area were, however, estimated to be safe based on the results obtained from the health risk index, which were all?<?<1. The sodium absorption ratio according to FAO (1985) classifications indicate that the wastewater in the study area is unsuitable for irrigation purposes.  相似文献   

13.
The migration pathways of heavy metals derived from an area previously in agricultural use was investigated in the Wielkopolski National Park (mid-western Poland). The heavy metals involved (Cd, Cu, Cr, Pb, Ni and Zn) were determined in groundwater, the springs that feed Lake Góreckie and the lake itself. In order to show how the heavy metals may be set free and what is their biological availability, soil and sediment samples were subjected to single-stage extraction, using 0.01 M CaCl2, 0.02 M EDTA, 0.005 M DTPA, 0.1 M HCl, 1 M HCl and de-ionised water. Varying metal concentrations were recorded in the water samples during the study period (from November 2009 to July 2010), usually with higher values in winter and lower ones in summer. The seasonal changes may be ascribed to natural processes taking place in the ground- and surface waters of Lake Góreckie. On the other hand, the concentration levels (mostly of Cd, Pb and Cr) are indicative of anthropogenic activity. It should be mentioned in this context that the highest metal concentrations were found in the soil layer. The concentrations were also found to exceed both the Polish and the World Health Organization water-quality standards. It appears that the soils are highly contaminated, mostly with cadmium. The long-lasting effect of acid precipitation in the area makes it possible for immobile forms to become mobile, thus facilitating further migration into the environment.  相似文献   

14.
The Odiel salt marshes (Marismas del Odiel) are an important nature area declared a Biosphere Reserve, but they are greatly affected by pollution from the Odiel River. Surface sediments from this area were analysed using the latest version of the BCR sequential extraction procedure to determine the fractionation of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn among four geochemical phases (acid-soluble, reducible, oxidisable and residual). The total content of each of the metals and As was also determined. The results showed high concentrations of As, Cd, Cu, Pb and Zn, with maximums of 791 mg kg−1 of As, 8.5 mg kg−1 of Cd, 2,740 mg kg−1 of Cu, 1,580 mg kg−1 of Pb and 3,920 mg kg−1 of Zn. The concentrations of Cr, Mn and Ni were low since there are no sources of pollution by them in the area. A comparison of the metal and As levels with the sediment quality guidelines showed that the pollution is sufficient to produce noxious effects in aquatic organisms in most of the Odiel salt marshes. Based on the chemical distribution of the elements, it was found that Cd and Zn were the most mobile (i.e., elements that can pass easily into the water under changing environmental conditions). However, Cr, Fe, Ni and As were present in the greatest percentages in the residual fraction, which implies that these elements are strongly linked to the sediments.  相似文献   

15.
A five-stage sequential extraction procedure was used to fractionate heavy metals (Cd, Cu, Pb, Cr, Zn, Fe, Mn, Ni, Co, As, V and Ba) in a biosludge from the biological wastewater treatment plant of Stora Enso Oyj Veitsiluoto Mills at Kemi, Northern Finland, into the following fractions: (1) water-soluble fraction, (2) exchangeable fraction, (3) easily reduced fraction, (4) oxidizable fraction, and (5) residual fraction. The biosludge investigated in this study is a combination of sludge from the primary and secondary clarifiers at the biological wastewater treatment plant. Extraction stages (2)–(4) follow the protocol proposed by the Measurements and Testing Program (formerly BCR Programme) of the European Commission, which is based on acetic acid extraction (stage 2), hydroxylamine hydrochloride extraction (stage 3), and hydrogen peroxide digestion following the ammonium acetate extraction (stage 4). The residual fraction (stage 5) was based on digestion of the residue from stage 4 in a mixture of HF + HNO3 + HCl. Although metals were extractable in all fractions, the highest concentrations of most of the metals occurred in the residual fraction. From the environmental point of view, it was notable that the total heavy metal concentrations in the biosludge did not exceed the maximal allowable heavy metal concentrations for sewage sludge used in agriculture, set on the basis of environmental protection of soil by European Union Directive 86/278/EEC, and by the Finnish legislation. The Ca (98.6 g kg−1; dry weight) and Mg (2.2 g kg−1; dry weight) concentrations in the biosludge were 62 and 11 times higher than the typical values of 1.6 and of 0.2 g kg−1 (dry weight), respectively, in arable land in Central Finland. The biosludge had a slightly alkaline pH (∼8.30), a high loss-on-ignition value (∼78%) and a liming effect of 10.3% expressed as Ca equivalents (dry weight). This indicates its potential as a soil conditioner and improvement agent, as well as a pH buffer.  相似文献   

16.
The Shenyang Zhangshi Irrigation Area (SZIA) was used for the spreading of municipal and industrial waste water, which is an economic way of irrigating crops, recycling nutrients and water treatment. Long-term irrigation resulted in a severe metal contamination of soils. To identify the soil phases implicated in retaining the metals, sequential extractions were performed. The most predominant metal was cadmium which was mainly associated with mobile, easily soluble and easily reducible fractions. Copper was mainly associated with the residual, EDTA extractable and moderately reducible fractions. Lead was bound to organic matter and poorly crystalline Fe-oxides. Nickel and zinc were mainly associated with the residual and strongly reducible fractions. Although copper, lead, nickel and zinc concentrations were of minor importance mobile metal concentrations of these metals as well as of cadmium exceeded German trigger values for plant production and plant growth.  相似文献   

17.
In the North Bohemian forest soils the total content and EDTA, HAc and H2O-extractable portions of Cr, Co, Ni, Cu, Pb and Zn were investigated. Increased concentration of Pb in topsoils, in comparison with subsoils, is the result of air pollution. The extractable portion of all studied heavy metals is higher in topsoil than in subsoil.  相似文献   

18.
The Lower Ponnaiyar River Basin forms an important groundwater province in South India constituted by Tertiary formations dominated by sandstones and overlain by alluvium. The region enjoyed artesian conditions 50 years back but at present frequent failure of monsoon and over exploitation is threatening the aquifer. Further, extensive agricultural and industrial activities and urbanization has resulted in the increase in demand and contamination of the aquifer. To identify the sources and quality of groundwater, water samples from 47 bore wells were collected in an area of 154 km2 and were analysed for major ions and trace metals. The results reveal that the groundwater in many places is contaminated by higher concentrations of NO3, Cl, PO4 and Fe. Four major hydrochemical facies Ca–Mg–Cl, Na–Cl, Ca–HCO3 and Na–HCO3 were identified using Piper trilinear diagram. Salinity, sodium adsorption ratio, and sodium percentage indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standards. The most serious pollution threat to groundwater is from nitrate ions, which are associated with sewage and fertilizers application. The present state of the quality of the lower part of Ponnaiyar River Basin is of great concern and the higher concentration of toxic metals (Fe and Ni) may entail various health hazards.  相似文献   

19.
We present diurnal variation of ambient ammonia (NH3) in relation with other trace gases (O3, CO, NO, NO2, and SO2) and meteorological parameters at an urban site of Delhi during winter period. For the first time, ambient ammonia (NH3) was monitored very precisely and continuously using ammonia analyzer, which operates on chemiluminescence method. NH3 estimation efficiency of the chemiluminescence method (>90%) is much higher than the conventional chemical trapping method (reproducibility 4.5%). Ambient NH3 concentration reaches its maxima (46.17 ppb) at night and minimum during midday. Result reveals that the ambient ammonia (NH3) concentration is positively correlated with ambient NO (r 2?=?0.79) and NO2 (r 2?=?0.91) mixing ratio and negatively correlated with ambient temperature (r 2?=???0.32). Wind direction and wind speed indicates that the nearby (~500 m NW) agricultural fields may be major source of ambient NH3 at the observational site.  相似文献   

20.
Assessment Of A Natural Wetland For Use In Wastewater Remediation   总被引:1,自引:0,他引:1  
An environmental study was conducted to assess various aspects of the water and sediment quality of a natural wetland to determine its feasibility for advanced wastewater treatment in Louisiana. Nitrate (NO3), nitrite (NO2), ammonia (NH4), total Kjeldahl nitrogen (TKN), total phosphorus, chloride, total organic carbon, pH, trace metals, fecal coliform, dissolved oxygen (DO), and biochemical oxygen demand (BOD) were monitored. Productivity of a dominant shrub, Iva frutescens, in the wetland was also assessed. Research results indicated that gradients of chloride and salinity concentrations showed a broad mixing of the discharged fresh water into the more saline natural brackish waters. This provided an ideal pattern for nutrient assimilation by the receiving marsh. NH4 was reduced in the range of 50–100% when all combinations of sources and outflows were considered. For total phosphorus and TKN, reduction ranged from 0–95.1% and 11.2–89.7%, respectively. Some nutrient concentrations in the effluent outlet, NO3 in particular, were lower than background concentrations found in the reference wetland. Sediment and water showed no significant deficiency or toxicity problems for the major nutrients and metals analyzed. The secondary effluent discharges had little demonstrable negative impact on the wetland during the study period from 1995 to 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号