首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sacoglossans use chloroplasts taken from algal food for photosynthesis (kleptoplasty), but the adaptive significance of this phenomenon remains unclear. Two con-generic sacoglossans (Elysia trisinuata and E. atroviridis) were collected in 2009–2011 from Shirahama (33.69°N, 135.34°E) and Mukaishima (34.37°N, 133.22°E), Japan, respectively. They were individually maintained for 16 days under four experimental conditions (combination of light/dark and with/without food), and their survival rate and relative (=final/initial) weights were measured. Both light and food had positive effects on the survival in E. trisinuata, whereas no positive effects of light or food on survival were detected in E. atroviridis. Both light and food had positive effects on relative weights in both species, but light had smaller effects than food. A significant interaction term between light and food was detected in E. trisinuata (but not in E. atroviridis) in that only the presence of both resulted in weight gains. This result suggests that E. trisinuata can obtain sufficient additional energy from photosynthesis for sustaining growth when fresh chloroplasts are continuously supplied from algal food. In addition, fluorescence yield measurements showed that unfed individuals of both E. trisinuata and E. atroviridis lost photosynthetic activity soon (<4 and 4–8 days, respectively). In conclusion, photosynthesis may function to obtain supplementary nutrition for sustaining growth when food is available in sacoglossans with short-term functional kleptoplasty.  相似文献   

2.
Arsenic bioavailability in rock, soil and water resources is notoriously hazardous. Geogenic arsenic enters the body and adversely affects many biochemical processes in animals and humans, posing risk to public health. Chelpu is located in NE Iran, where realgar, orpiment and pyrite mineralization is the source of arsenic in the macroenvironment. Using cluster random sampling strategy eight rocks, 23 soils, 12 drinking water resources, 36 human urine and hair samples and 15 adult sheep urine and wool samples in several large-scale herds in the area were randomly taken for quantification of arsenic in rock/soil/water, wool/hair/urine. Arsenic levels in rock/soil/water and wool/hair/urine were measured using inductively coupled plasma spectroscopy and atomic absorption spectrophotometry, respectively. While arsenic levels in rocks, soils and water resources hazardously ranged 9.40–25,873.3 mg kg?1, 7.10–1448.80 mg kg?1 and 12–606 μg L?1, respectively, arsenic concentrations in humans’ hair and urine and sheep’s wool and urine varied from 0.37–1.37 μg g?1 and 9–271.4 μg L?1 and 0.3–3.11 μg g?1 and 29.1–1015 μg L?1, respectively. Local sheep and human were widely sick and slightly anemic. Hematological examination of the inhabitants revealed that geogenic arsenic could harm blood cells, potentially resulting in many other hematoimmunological disorders including cancer. The findings warn widespread exposure of animals and human in this agroecologically and geopolitically important region (i.e., its proximity with Afghanistan, Pakistan and Turkmenistan) and give a clue on how arsenic could induce infectious and non-infectious diseases in highly exposed human/animals.  相似文献   

3.
Regions of high primary production along the oligotrophic west coast of Australia between 34 and 22°S in May–June 2007 (midway through the annual phytoplankton bloom) were found around mesoscale features of the Leeuwin Current. At 31°S, an anticyclonic eddy-forming meander of the Leeuwin Current had a mixed layer depth of >160 m, a depth-integrated chlorophyll a (Chl a)-normalised primary production of 24 mg C mg Chl a ?1 day?1 compared to the surrounding values of <18 mg C mg Chl a ?1 day?1. In the north between 27 and 24°S, there were several stations in >1,000 m of water with a shallow (<100 m) and relatively thin layer of high nitrate below the mixed layer but within the euphotic zone. These stations had high primary production at depths of ~100 m (up to 7.5 mg C m?3 day?1) with very high rates of production per unit Chl a (up to 150 mg C mg Chl a ?1 day?1). At 27–24°S, the majority of the phytoplankton community was the ubiquitous tropical picoplankters, Synechococcus and Prochlorococcus. There was a decline in the dominance of the picoplankters and a shift towards a more diverse community with more diatoms, chlorophytes, prasinophytes and cryptophytes at stations with elevated production. Photosynthetic dinoflagellates were negligible, but heterotrophic dinoflagellate taxa were common. Haptophytes and pelagophytes were also common, but seemed to contribute little to the geographical variation in primary production. The mesoscale features in the Leeuwin Current may have enhanced horizontal exchange and vertical mixing, which introduced nitrate into the euphotic zone, increasing primary production and causing a shift in phytoplankton community composition in association with the annual winter bloom.  相似文献   

4.
Extant sirenians are restricted to warm waters, presumably due to their low metabolism and poor thermoregulatory capacity, including thin blubber. When subjected to winter waters, Florida manatees (Trichechus manatus latirostris) migrate to warm areas, but dugongs (Dugong dugon) do not and instead live year-round in winter waters as cool as 15–18 °C. Dugongs appear to be more active than manatees and may have higher metabolic rates, but little is known about thermal energetics or the insulative properties of their integument. This study investigated the physical and thermal properties of whole samples of dugong integument, i.e. epidermis, dermis and hypodermis (blubber) sampled from fresh dugong carcasses collected from 2004 to 2012 in Moreton Bay (27.21°S, 153.25°E). Physico-chemical properties (thickness, density and lipid content) of each component tissue layer were measured. Thermal conductance (C) and conductivity (k) were measured for each tissue layer through in vitro temperature flux experiments within an insulated chamber. C and k were higher for dermis (25.7 ± 1.2 W m?2 K?1, 0.43 ± 0.02 W m?1 K?1, respectively, n = 21) than blubber (24.3 ± 2.4 W m?2 K?1, 0.31 ± 0.01 W m?1 K?1, n = 21), suggesting that blubber, with higher density and lipid content, affords better insulation. However, because the dermis contributes 65 % of integumentary thickness, both layers contribute significantly to insulation. The integument of dugongs is a poorer insulator compared to many cold-water marine mammals, but the greater thickness of its dermal layer means that despite its relatively thin blubber, its integumentary insulation is similar to warm-water dolphins of similar body size.  相似文献   

5.
We investigated the effects of ethyl 2-methyl acetoacetate (EMA) on growth of the marine diatom algae Phaeodactylum tricornutum (P. tricornutum) and Skeletonema costatum (S. costatum). Growth of P. tricornutum was significantly inhibited by the minimum concentration (3.5 mmol·L ?1) of EMA at lower initial algal densities (IADs) (3.6×104 and 3.3×105 cells·mL ?1). However, at the highest IAD, significant growth inhibition was found at above 7 mmol·L ?1 of EMA exposure. In S. costatum, EMA concentrations of 10.5 mmol·L ?1 or more significantly inhibited growth at lower IAD (3×104 and 1.8×105 cells·mL ?1); at the highest IAD, only EMA concentrations above 14 mmol·L ?1 obviously inhibited the growth of S. costatum. Changes in specific growth rates and pigment were consistent with algal growth, but only at higher EMA concentrations or lower IAD values was the ratio of chlorophyll a (Chla) to carotenoid significantly lower than the control. Medium effective concentration (EC 50) values were in the order 4.07, 8.03 and 12.27 mmol·L ?1 for P. tricornutum and 7.48, 11.92 and 17.22 mmol·L ?1 for S. costatum. All these results show that the effect of EMA on the growth of algae was species specific and mainly depended on IAD, which might be an important factor to influence algal growth.  相似文献   

6.
This paper documents the concentration of total arsenic and individual arsenic species in four soft-bottom benthic polychaetes (Perenereis cultifera, Ganganereis sootai, Lumbrinereis notocirrata and Dendronereis arborifera) along with host sediments from Sundarban mangrove wetland, India. An additional six sites were considered exclusively for surface sediments for this purpose. Polychaetes were collected along with the host sediments and measured for their total arsenic content using inductively coupled plasma mass spectrometry. Arsenic concentrations in polychaete body tissues varied greatly, suggesting species-specific characteristics and inherent peculiarities in arsenic metabolism. Arsenic was generally present in polychaetes as arsenate (AsV ranges from 0.16 to 0.50 mg kg?1) or arsenite (AsIII ranges from 0.10 to 0.41 mg kg?1) (30–53 % as inorganic As) and dimethylarsinic acid (DMAV <1–25 %). Arsenobetaine (AB < 16 %), and PO4-arsenoriboside (8–48 %) were also detected as minor constituents, whilst monomethylarsonic acid (MAV) was not detected in any of the polychaetes. The highest total As (14.7 mg kg?1 dry wt) was observed in the polychaete D. arborifera collected from the vicinity of a sewage outfall in which the majority of As was present as an uncharacterised compound (10.3 mg kg?1 dry wt) eluted prior to AB. Host sediments ranged from 2.5 to 10.4 mg kg?1 of total As. This work supports the importance of speciation analysis of As, because of the ubiquitous occurrence of this metalloid in the environment, and its variable toxicity depending on chemical form. It is also the first work to report the composition of As species in polychaetes from the Indian Sundarban wetlands.  相似文献   

7.
The morphology and shape of algae can affect their survival in wave-swept environments because of the hydrodynamic drag created by water flow. Studies of morphology and drag are typically conducted at relatively low water velocities, and the influence of algal morphology on drag, over the range of water velocities algae must cope with in their natural environment, remains unclear. Here, we tested the link between morphological variation and hydrodynamic drag for a dominant kelp with complex morphology (Ecklonia radiata), over a range of water velocities representative of conditions on wave-swept reefs. Our results indicated that kelps on subtidal reefs must withstand maximal orbital water velocities in excess of 2–3 m s?1. Our measurements of drag, resulting from flows ranging from 1 to 3 m s?1, revealed that shape- and width-related thallus and lamina characters were important to drag at low speed, but that total thallus area (or biomass) was the main determinant of drag at high flow. Drag coefficients converged at increasing speed suggesting that, at high flow, significant thallus reconfiguration (more streamlined shape) decoupled drag from morphology. This implies that, at peak velocities, only size (total area), not morphology, is important to drag and the probability of dislodgment.  相似文献   

8.
Four different methods were used in the control conditions of laboratory to estimate the ingestion rate of a female meiobenthic harpacticoid copepod Amonardia normani: (1) reduction of algal biomass, (2) the quantification of total pigments in fecal pellets, (3) the gut fluorescence method, (4) the percentage of assimilation and the total egestion rate. The food used during all experiments was the diatom Nitzschia constricta in an axenic condition at the concentration of 0.13 μg Chl-a mL?1 at stationary growth phase. All experiments were made at 20 °C and 30 salinity. All tested methods excepted the quantification of total pigments in fecal pellets resulted in similar estimatives. The gut fluorescence method indicated that during the day gut contents are smaller than during the night but the gut passage time was faster, resulting in similar ingestion rates during the day and the night. The reduction of algal biomass and the percentage of assimilation and the total egestion rate also indicated similar ingestion rates in the day and in the night. The daily ingestion rate represents 107 % of female carbon weight per day (903 ng C cop?1day?1).  相似文献   

9.
Trachurus capensis is an important fisheries resource in the degraded Namibian upwelling ecosystem. Food supply and shoaling of hypoxic zones are hypothesised to influence the species’ recruitment success. This paper is the first to quantify energy requirements and hypoxia tolerance of larval and juvenile stages of a Trachurus species. We measured normoxic respiration rates of T. capensis with a size range from 0.001 to 20.8 g wet mass (WM) collected off Cape Town (33.9°S, 18.5°E, 12/2009) and in the northern Benguela (17–24°S, 11–15°E, 02/2011). Routine metabolic rate (RMR) and standard routine rate (SRR) (mg O2 h?1) followed the allometric functions RMR = 0.418 WM0.774 and SRR = 0.275 WM0.855, respectively. Larvae and juveniles had comparatively high metabolic rates, and the energy demand of juveniles at the upper end of the size range appeared too high to be fuelled by a copepod diet alone. T. capensis’ early life stages showed a high tolerance to hypoxic conditions. RMR in larvae did not change until 30 % O2sat at 18 °C. In juveniles, critical oxygen saturation levels were low (PC for SRR = 11.2 ± 1.7 % O2sat and PC for RMR = 13.2 ± 1.6 % O2sat at 20 °C) and oxy-regulation effective (regulation index = 0.78 ± 0.09). A high hypoxia tolerance may facilitate the retention of larvae in near-shore waters providing favourable feeding conditions and allowing juveniles to exploit food resources in the oxygen minimum zone. These mechanisms seem to well adapt T. capensis to a habitat affected by spreading hypoxic zones and probably enhance its recruitment success.  相似文献   

10.
The photosynthetic functionality in chloroplasts in the two sacoglossan molluscs Placida dendritica and Elysia viridis from the Trondheim fjord in Norway was studied. P. dendritica and E. viridis with no functional chloroplasts in their digestive system were introduced to the green macroalgae Codium fragile. Our results showed that P. dendritica was not able to retain functional (photosynthetic) chloroplasts. Transmission electron microscopy (TEM) showed that chloroplasts were directly digested when phagocytosed into the digestive cells. Four stages of chloroplast degradation were observed. A corresponding operational quantum yield of chl a fluorescence (ΦPSII ~ 0) indicated autofluorescence, and the presence of highly degraded chl a supported these observations. In contrast, E. viridis was able to retain functional chloroplasts. For this species it took only 1 week for the chloroplasts inside the digestive cells to acquire the same ΦPSII and light utilisation coefficient (α) as C. fragile kept under the same light conditions. Data for 8 days showed a 2–6-fold increase in the maximum photosynthetic rate (P max) and light saturation index (E k) relative to C. fragile. This increase in available light was probably caused by a reduced package effect in the digestive gland of E. viridis relative to C. fragile, resulting in a partial photoacclimation response by reducing the turnover time of electrons (τ). Isolated pigments from C. fragile compared to E. viridis showed the same levels of photosynthetic pigments (chl a and b, neoxanthin, violaxanthin, siphonaxanthin, siphonein and β,ε-carotene) relative to μg chl a (w:w), indicating that the chloroplasts in E. viridis did not synthesise any new pigments. After 73 days of starvation, it was estimated that chloroplasts in E. viridis were able to stay photosynthetic 5–9 months relative to the size of the slugs, corresponding to an RFC of level 8 (a retention ability to retain functional chloroplasts (RFC) for more than 3 months). The reduction in ΦPSII, P max and α as a function of time was caused by a reduction in chloroplast health and number (chloroplast thylakoid membranes and PSII are degraded). These observations therefore conclude that chloroplasts from C. fragile cannot divide or synthesise new pigments when retained by E. viridis, but are able to partially photoacclimate by decreasing τ as a response to more light. This study also points to the importance of siphonaxanthin and siphonein as chemotaxonomic markers for the identification of algal sources of functional chloroplasts.  相似文献   

11.
In July 2012, a ship-board double-platform line-transect survey was conducted to assess harbour porpoise (Phocoena phocoena) abundance in the Kattegat, Belt Seas and the Western Baltic. A total of 826 km of track lines were surveyed between the 2nd and 21st of July 2012, and 169 observations were made by the primary observers, comprising a total of 230 porpoises. Fifty-seven observations were identified as duplicate sightings observed by both tracker and primary observers and were used to correct for availability and perception bias of the primary detections. Using Mark–Recapture Distance Sampling analysis, we produced a model using the half-normal key function, including sightability as the only covariate to estimate the density and abundance of harbour porpoise within the 51,511 km2 survey area. Estimated detection probability on the transect line, known as g(0), was at 0.571 (±0.074; CV = 0.130). Using a point independence model of the detection function, the abundance of harbour porpoises within the survey area was estimated at 40,475 animals (95 % CI 25,614–65,041, CV = 0.235) with an associated density of 0.786 animals km?2 (95 % CI 0.498–1.242, CV = 0.235) and an average group size of 1.488 animals. These results reflect densities obtained during the SCANS surveys in 1994 and 2005, indicating no significant population trend in the area. However, it should be noted that the survey area covers more than one population and that results are therefore not necessarily reflecting local population trends. Until proper population borders are obtained, the abundance estimate provides baseline data for future monitoring and is an important input to the assessment of the conservation status of harbour porpoises in the area.  相似文献   

12.
In August 2000 high concentrations of the dominant herbivorous copepod Calanus hyperboreus were detected in the Arctic Fram Strait, west of Spitsbergen, 1 m above the seafloor at 2,290 m water depth. Individuals from that layer were sampled by a hyper-benthic net attached to the frame of an epi-benthic sledge. For comparison, the vertical distribution of C. hyperboreus in the water column was studied simultaneously by a multiple opening/closing net haul from 2,250 m depth to the surface. Maximum abundance was found close to the surface with 6.6 and 10.0 ind. m?3 at 0–50 m and 50–100 m depth, respectively. However, the major fraction of the population (>40%) occurred between 1,000 and 1,500 m depth. In the deepest layer (2,000–2,250 m) abundance measured 2.2 ind. m?3 and was twice as high as between 100 and 1,000 m depth. In comparison to individuals from surface waters, copepods from the hyper-benthic layer were torpid and did not react to mechanical stimuli. Stage CV copepodids and females from the deep sample contained 4–10% less lipid and showed significantly reduced respiration rates of 0.24 and 0.26 ml O2 h?1 g?1 dry mass (DM) as compared to surface samples (0.49 and 0.43 ml O2 h?1 g?1 DM). All these observations indicate that the hyper-benthic part of the population had already started a dormant overwintering phase at great depth. Based on the lipid deposits and energy demands, the potential maximum duration of the non-feeding dormant phase was estimated at 76–110 days for females and at 98–137 days for CV copepodids, depending on what indispensable minimum lipid content was assumed. In any case, the estimated times could not meet the necessary requirements for a starvation period of >6 months until the next phytoplankton bloom in the following spring. The ecological implications of these results are discussed with respect to the life cycle and eco-physiological adaptations of C. hyperboreus to its high-Arctic habitat.  相似文献   

13.
Rates and direction of movement in the sand dollar Peronella lesueuri were measured in summer and winter in Cockburn Sound, a large coastal embayment in south-western Australia. P. lesueuri was found to have a diurnal activity pattern throughout the year and had a greater movement rate in the summer (mean of 5.3 cm h?1, day; 3.9 cm h?1, night) than in the winter (mean of 2.7 cm h?1, day; 2.0 cm h?1, night). Seasonal change in temperature and physiological requirements by the sand dollar are the most likely reason for the seasonal differences. Reasons for diurnal variation were not clear. Direction of movement was found to be random at both times of the year. Based on these movement rates, one sand dollar can bioturbate an approximate area of 0.1 m2 day?1 and 36.4 m2 year?1. At a conservative density estimate of 0.5 sand dollars per m2 it takes approximately 20 days for the sand dollars to rework the entire area of the sediments in the habitats they occupy.  相似文献   

14.
Seaweed baths containing Fucus serratus Linnaeus are a rich source of iodine which has the potential to increase the urinary iodide concentration (UIC) of the bather. In this study, the range of total iodine concentration in seawater (22–105 µg L?1) and seaweed baths (808–13,734 µg L?1) was measured over 1 year. The seasonal trend shows minimum levels in summer (May–July) and maximum in winter (November–January). The bathwater pH was found to be acidic, average pH 5.9 ± 0.3. An in vivo study with 30 volunteers was undertaken to measure the UIC of 15 bathers immersed in the bath and 15 non-bathers sitting adjacent to the bath. Their UIC was analysed pre- and post-seaweed bath and corrected for creatinine concentration. The corrected UIC of the population shows an increase following the seaweed bath from a pre-treatment median of 76 µg L?1 to a post-treatment median of 95 µg L?1. The pre-treatment UIC for both groups did not indicate significant difference (p = 0.479); however, the post-treatment UIC for both did (p = 0.015) where the median bather test UIC was 86 µg L?1 and the non-bather UIC test was 105 µg L?1. Results indicate the bath has the potential to increase the UIC by a significant amount and that inhalation of volatile iodine is a more significant contributor to UIC than previously documented.  相似文献   

15.
Swarms of the pelagic tunicate, Thalia democratica, form during spring, but the causes of the large interannual variability in the magnitude of salp swarms are unclear. Changes in asexual reproduction (buds per chain) of T. democratica populations in the coastal waters of south-east Australia (32–35°S) were observed in three austral springs (October 2008–2010). T. democratica abundance was significantly higher in 2008 (1,312 individuals m?3) than 2009 and 2010 (210 and 92 individuals m?3, respectively). There was a significant negative relationship (linear regression, r 2 = 0.61, F 1,22 = 33.83, P < 0.001) between abundance and asexual reproduction. Similarly, relative growth rates declined with decreasing abundance. Generalised additive mixed modelling showed that T. democratica abundance was significantly positively related to preferred food >2 μm in size (P < 0.05) and negatively related to the proportion of non-salp zooplankton (P < 0.001). Salp swarm magnitude, growth, and asexual reproduction may depend on the abundance of larger phytoplankton (prymnesiophytes and diatoms) and competition with other zooplankton.  相似文献   

16.
The presence of organochlorine compounds (OC) such as DDT and their metabolites in the environment have created a significant environmental concern over the years due to adverse effects. Consequently, DDT has been banned in many countries. However, it is still used in some countries including South Africa, particularly for vector-borne disease eradication programmes. Since the presence of DDT and its metabolites may provide an indication of the general exposure and use of these compounds, there was a need for such a study. Human breast milk samples (n = 30) were collected from mothers within the age range of 19–40 years from the Thohoyandou area, South Africa. The liquid–liquid extraction method was used to extract DDT and its metabolites from the samples. The crude extracts were subjected to column chromatography for measurements of OC levels. The concentration ranges of the contaminants were as follows: not detected (ND) to1770 ng g?1 (2,4′-DDE); ND to 3977 ng g?1 (4,4′-DDE); ND to 3250 ng g?1 (2,4′-DDD); ND to 2580 ng g?1 (4,4′-DDD) and ND to 2847 ng g?1 (4,4′-DDT). The mean ΣDDE, ΣDDD and ΣDDT obtained from the villages were 1180 ng g?1, 830 ng g?1 and 690 ng g?1, respectively. The total DDT ranged from 820–7473 ng g?1. The estimated daily intake varied from 260 to 4696 ng g?1, ND-10551 ng g?1 and ND-4237 ng g?1 for DDE, DDD and DDT, respectively. These values are significantly higher than the FAO/WHO acceptable daily intake (ADI) of 20 ng g?1. The ΣDDT was found to decrease with increasing age of the mothers. The observed high levels of DDE compared to DDT indicated chronic exposure of the mothers to DDT, which is metabolized to DDE and retained in the body.  相似文献   

17.
Alcyonium acaule (Cnidaria, Octocorallia) is a common, hard-bottom soft coral in the northwestern Mediterranean Sea. This study describes sexual reproduction and the gamete development cycle of this soft coral. A population at 15–18 m depth in the Marine Protected Area of the Medes Islands (42º02′55″ N, 3º13′30″ E) was sampled from July 1994–August 1995. A. acaule is gonochoristic and a surface brooder, spawning once a year in early summer. The mean diameter of ripe spermatic sacs was 400 ± 91 (SD) μm, and the mean diameter of mature oocytes was 473 ± 37 (SD) μm. There were 30 spermatic sacs polyp?1 in males and 14 oocytes polyp?1 in females. Different phases of gametogenesis in female and male colonies were examined separately with respect to seasonal changes in bottom temperature and solar irradiance. The data suggest that the relatively constant temperatures in January–April are probably not related to oocyte maturation, but that rising temperatures in May could affect sperm maturation. Rapidly increasing solar irradiance in March may be the trigger for vitellogenesis and oocyte maturation, although the mechanism for this in anthozoans is not understood.  相似文献   

18.
The kinetics of the oxidation of endocrine disruptor nonylphenol (NP) by potassium ferrate(VI) (K2FeO4) in water as a function of pH 8.0–10.9 at 25°C is presented. The observed second-order rate constants, k obs, decrease with an increase in pH 269–32 M?1 s?1. The speciation of Fe(VI) (HFeO 4 ? and FeO 4 2? ) and NP (NP–OH and NP–O?) species was used to explain the pH dependence of the k obs values. At a dose of 10 mg L?1 (50 μM) K2FeO4, the half-life for the removal of NP by Fe(VI), under water treatment conditions, is less than 1 min.  相似文献   

19.
Controlled laboratory experiments were conducted to examine how photosynthesis and growth occur in Potamogeton wrightii Morong under different photoperiods and nutrient conditions. The experiment was based on a 3×2 factorial design with three photoperiods (16, 12 and 8 h) of 200 μE · m?2·s?1 irradiance and two nutrient conditions, high (90 μmol N · L?1·d?1 and 9 μmol P · L?1·d?1) and low (30 μmol N L?1·d?1 and 3 μmol P · L?1·d?1). After 14, 28, 56 and 70 days of growth, plants were harvested to determine net photosynthesis rate and various growth parameters. Above- and below-ground biomass were investigated on days 56 and 70 only. Plants under low nutrient conditions had greater leaf area, more chlorophyll a, a higher rate of net photosynthesis and accumulated more above- and below-ground biomass than plants in the high nutrient condition. Plants with an 8 h photoperiod in the low nutrient condition had a significantly higher rate of net photosynthesis, whereas 8 h photoperiod plants in the high nutrient condition had a lower rate of net photosynthesis and their photosynthetic capacity collapsed on day 70. We conclude that P. wrightii has the photosynthetic plasticity to overcome the effects of a shorter photoperiod under a tolerable nutrient state.  相似文献   

20.
Due to its potential toxic properties, metal mobilization is of major concern in areas surrounding Pb–Zn mines. In the present study, metal contents and toxicity of soils, aqueous extracts from soils and mine drainage waters from an abandoned F–Ba–Pb–Zn mining area in Osor (Girona, NE Spain) were evaluated through chemical extractions and ecotoxicity bioassays. Toxicity assessment in the terrestrial compartment included lethal and sublethal endpoints on earthworms Eisenia fetida, arthropods Folsomia candida and several plant species, whereas aquatic tests involved bacteria Vibrio fischeri, microalgae Raphidocelis subcapitata and crustaceans Daphnia magna. Total concentrations of Ba (250–5110 mg kg?1), Pb (940 to >5000 mg kg?1) and Zn (2370–11,300 mg kg?1) in soils exceeded intervention values to protect human health. Risks for the aquatic compartment were identified in the release of drainage waters and in the potential leaching and runoff of metals from contaminated soils, with Cd (1.98–9.15 µg L?1), Pb (2.11–326 µg L?1) and Zn (280–2900 µg L?1) concentrations in filtered water samples surpassing US EPA Water Quality Criteria (2016a, b). Terrestrial ecotoxicity tests were in accordance with metal quantifications and identified the most polluted soil as the most toxic. Avoidance and reproduction tests with earthworms showed the highest sensitivity to metal contamination. Aquatic bioassays performed in aqueous extracts from soils confirmed the results from terrestrial tests and also detected toxic effects caused by the mine drainage waters. Algal growth inhibition was the most sensitive aquatic endpoint. In view of the results, the application of a containment or remediative procedure in the area is encouraged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号