首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
Changes in the chemical and chemical-structural composition of the organic matter of two different sewage sludges (aerobic and anaerobic) mixed with sawdust (1:1 and 1:3, v/v) during composting were determined by monitoring chemical and microbiological parameters as well as by pyrolysis-gas chromatography. Composting was carried out in periodically turned outdoor piles, which were sampled for analysis 1, 30, 60 and 90 days after the beginning of the composting process. Both volatile organic matter and the water soluble C fraction decreased during composting, indicating that the more labile C fractions are mineralized during the process. Microbial activity as measured by microbial respiration (CO(2) evolved from compost samples during incubation) also decreased with composting, reflecting the more stable character of the resulting compost. No major differences were observed between the four composts studied as regards their chemical-structural characteristics. The acetonitrile, acetic acid and phenol pyrolytic fragment tended to increase with composting. Although the final composts were more aromatic in nature than the starting materials, a low degree of humification was observed in all four composts studied, as determined by their high proportion of polysaccharides and alkyl compounds. For this reason, the relationship between pyrolytic fragments, such as benzene/toluene or benzene+toluene/pyrrol+phenols, which are used as indices of humification for soil organic matter, are not of use for such poorly evolved sludge composts; instead, ratios that involve carbohydrate derivatives and aromatic compounds, such as furfural+acetic/benzene+toluene or acetic/toluene, are more sensitive indices for reflecting the transformations of these materials during composting. Both the chemical and microbiological parameters and pyrolytic analysis provided valuable information concerning the nature of the compost's organic matter and its changes during the composting process.  相似文献   

2.
Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a “green” surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured.Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.  相似文献   

3.
The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60 °C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (EC), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., EC = 10% and 20%). It was found that the larger the EC, the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions.  相似文献   

4.
Modelling of organic matter dynamics during the composting process   总被引:1,自引:0,他引:1  
Composting urban organic wastes enables the recycling of their organic fraction in agriculture. The objective of this new composting model was to gain a clearer understanding of the dynamics of organic fractions during composting and to predict the final quality of composts. Organic matter was split into different compartments according to its degradability. The nature and size of these compartments were studied using a biochemical fractionation method. The evolution of each compartment and the microbial biomass were simulated, as was the total organic carbon loss corresponding to organic carbon mineralisation into CO2. Twelve composting experiments from different feedstocks were used to calibrate and validate our model. We obtained a unique set of estimated parameters. Good agreement was achieved between the simulated and experimental results that described the evolution of different organic fractions, with the exception of some compost because of a poor simulation of the cellulosic and soluble pools. The degradation rate of the cellulosic fraction appeared to be highly variable and dependent on the origin of the feedstocks. The initial soluble fraction could contain some degradable and recalcitrant elements that are not easily accessible experimentally.  相似文献   

5.
This study investigated the feasibility of a bulking agent of granular porous media (GPM) for the composting of swine manure. Two lab-scale composting reactors were operated to evaluate the general performances and maturity parameters using GPM made of wastes from the Portland cement manufacturing processes as an alternative bulking agent. The overall volatile solid (VS) removal was 38.5% (dry basis). During the experiments, moisture content ranged between 41% and 53%, ensuring feasibility of microbial activity in composting. Cured compost showed proper maturity and low phytotoxicity, despite the slight decreases of CO(2) production and VS removal at the second batch operation. Various physico-chemical parameters of the cured compost met the regulatory standards reported elsewhere. The pH, carbon-to-nitrogen ratio, ammonia nitrogen and soluble organic carbon (SOC) of the cured compost were significantly correlated to the germination index (GI) using the seeds of Chinese cabbage and lettuce, indicating the progressive biodegradation of phytotoxins as well as organic matter. Consequently, the results obtained in this study demonstrate that GPM could contribute to the environmentally friendly and economical composting of problematic swine manure as a recyclable bulking agent.  相似文献   

6.
The influence of bulking agents on organic matter (OM) stability and nitrogen (N) availability in sewage sludge composts was investigated. The same sludge was composted on an industrial plant with different mixtures of bulking agents. The composting process included an active phase and a curing phase, both lasting 6 weeks, separated by the screening of composts. The OM evolution was characterised by carbon (C) and N mass balances in biochemical fractions. The OM stability and N potential availability of final composts were measured during soil incubations. During composting, the C and N losses reached more than 62% of the initial C and more than 45% of the initial N, respectively, due to C mineralisation or N volatilisation and screening. The bulking materials mostly influenced OM evolution during the active phase. They contributed to the mitigation of N losses during the active phase where N immobilisation through active microbial activity was favoured by bulking agents increasing the C:N ratio of the initial mixtures. However, the influence of bulking agents on OM evolution was removed by the screening; this induced the homogenisation of compost characteristics and led to the production of sludge composts with similar organic matter characteristics, C degradability and N availability.  相似文献   

7.
During composting, the degradation of organic waste is accompanied and driven by a succession of microbial populations exhibiting a broad range of functional capabilities. Detailed inventories of the microbial communities in mature compost, however, are not available. Mature composts, originating from biowaste as well as sewage sludge and anaerobic sludge, were studied by denaturing gradient gel electrophoresis-fingerprints after polymerase chain reaction (PCR) amplification of the 16S rRNA genes using three different universal primer pairs, as well as by differential scanning calorimetry and thermogravimetry. The composts of different origin had different bacterial communities. The influence of different 16S rDNA primer sets on the same batches of compost DNA was evaluated. The clearest separation of different compost types was obtained by using the PCR primer pair 338f + 518r which is suggested for future applications. Communities from the different biowaste compost samples clustered together and could be separated from sewage sludge communities indicating the establishment of different microbial consortia. A similar differentiation of composts was found with the thermogavimetric analyses. It may thus be concluded that the resulting humus quality is closely linked to the microbial communities involved.  相似文献   

8.
Composting was applied as a bioremediation methodology for the reclamation of dredged sediments of Isnapur, Khazipally and Gandigudem lakes polluted with industrial wastes. The present study is an attempt to elaborate upon organic matter transformations and define the parameters for product maturity adapting chemical and spectroscopic methods during composting. The stability and maturity of sediments were evaluated by assessing parameters like C/N ratio, nitrification index (NH(4)-N/NO(3)-N), water-soluble organic carbon concentration, CO(2) evolution rate, cation exchange capacity and indices such as humification index, E4/E6 ratio, compost mineralization index (ash content/oxidizable carbon), germination index, dehydrogenase, polyphenoloxidase activities and FTIR spectroscopy. The results showed that the changes in the above chemical and biological parameters can be employed as reliable indicators of stability and maturity. The FTIR spectra revealed enrichment in the aromatic groups and a degradation of the aliphatic groups indicating stabilization of the final compost.  相似文献   

9.
The degradation of fats during thermophilic composting was investigated by adding lard of four different mixing ratios (0, 33.3, 42.9 and 50% on a dry weight basis) to dog food used as a model substrate for organic waste. The lard added at the mixing ratio of 33.3% did not inhibit the decomposition of organic matter in the dog food, with lard itself beginning decomposition after decay of more easily decomposable organic compounds of the dog food, 84 h from the start of composting. The percentage of lard decomposition reached as high as 29.3% by the end of 8 days of composting. By contrast, the decomposition of organic matter in the processed dog food was apparently inhibited when the portion of lard was greater than 33.3%, especially at the earliest stage of composting. It is possible, however, that lard would decompose vigorously once decomposition has begun, even when the ratio of lard is as high as 50%. The percentages of lard decomposition in composting mixtures with 42.9 and 50% lard were 15.7 and 9.50%, respectively, thus the higher the mixing ratio of lard, the lower the percentage of lard decomposition. However, it was found that the maximum decomposition rate of the lard was similar for all of the ratios tested; that is, approximately 5.0 x 10(-3) g carbon h(-1).  相似文献   

10.
Composting in small laboratory pilots: performance and reproducibility   总被引:1,自引:0,他引:1  
Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creating artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O2 consumption and CO2 emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures.  相似文献   

11.
An alternative approach for cattle manure management on intensive livestock farms is the composting process. An industrial-scale composting plant has been set up in northwest Spain for producing compost from cattle manure. Manure composting involved an increase in pH, electrical conductivity (EC), cation exchange capacity (CEC) and NO3(-)--N concentration, and a decrease in temperature, moisture content, organic matter (OM) content, NH4+--N concentration and C/N ratio. Cu, Zn and Ni concentrations increased due to the reduction of pile mass during the composting process. The resulting compost was applied to a field to study the viability of applying this compost combined with a nitrogen mineral fertilizer as a replacement for the mineral fertilization conventionally used for maize (Zea mays L.). The thermophilic phase of the composting process was very prolonged in the time, which may have slowed down the decomposition of the organic matter and reduced the nitrification process, leading to an over-short maturation phase. The humification and respirometric indexes, however, determined immediately after compost application to the soil, showed it to be stable. Compost application did not decrease the grain yield. A year later, soil pH, OM content and CEC were higher with the compost treatment. Total P, K, Ca and Na concentrations in compost-amended plots were higher than in mineral-fertilized ones, and no significant differences between treatments were found in soil concentrations of NH4+--N,NO3- --N, available P, Mg and B. Compost caused no heavy metal pollution into the soil. Therefore, this compost would be a good substitute for the mineral fertilizers generally used for basal dressing in maize growing.  相似文献   

12.
Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment.Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed in bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.  相似文献   

13.
The effect of land application of biosolids on an agricultural soil was studied in a 2-month incubation experiment. The soil microbial biomass and the availability of heavy metals in the soil was monitored after the application of four different composting mixtures of sewage sludge and cotton waste, at different stages of composting. Land application caused an increase of both size and activity of soil microbial biomass that was related to the stabilization degree of the composting mixture. Sewage sludge stabilization through composting reduced the perturbance of the soil microbial biomass. At the end of the experiment, the size and the activity of the soil microbial biomass following the addition of untreated sewage sludge were twice those developed with mature compost. For the mature compost, the soil microbial biomass recovered its original equilibrium status (defined as the specific respiration activity, qCO2) after 18 days of incubation, whereas the soil amended with less stabilized materials did not recover equilibrium even after the two-month incubation period. The stabilization degree of the added materials did not affect the availability of Zn, Ni, Pb, Cu, Cr and Cd in the soil in the low heavy metal content of the sewage sludge studied. Stabilization of organic wastes before soil application is advisable for the lower perturbation of soil equilibria status and the more efficient C mineralization.  相似文献   

14.
The goal of this research was to investigate the effect of the C/N ratio on the in-vessel composting, under air pressure, of organic fraction of municipal solid waste in Morocco. Firstly, an in-vessel bioreactor was designed and used to evaluate the appropriate initial pressure for the composting process. Secondly, five bioreactors were run with C/N ratios of 26 (control; no C supplement), 32.2, 38.4, 44.6, and 50.8. Parameters monitored included internal air pressure, C/N ratio, temperature, volatile solids reduction, and maturity of the obtained composts. The relative microbial activity was observed indirectly using volatile solids removal and the relative heat generation data. The experimental results showed that organic waste could be composted within 10?days and the operating initial parameters that converted the most volatile solids and carbons in the feedstock were as follows: 0.6?×?105 Pa for the initial air pressure and 26 for the C/N ratio. Maturity tests, in optimal conditions, showed that the final compost has characteristics of stable compost and can be used as a soil conditioner. In addition, compost obtained from the experiment that considered a C/N ratio of 32.2 showed good maturity levels and may also be used for agricultural applications.  相似文献   

15.
Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.  相似文献   

16.
Since the indiscriminate disposal of pig slurry can cause not only air pollution and bad odours but also nutrient pollution of ground waters and superficial waters, composting is sometimes used as one environmentally acceptable method for recycling pig manure. The aim of this study was to evaluate the effect of composting pig slurry on its sanitation (evaluated by ecotoxicity assays and pathogen content determination), as well as to determine the effect of a carbon-rich bulking agent (wood shavings, WS) and the starting C/N ratio on the changes undergone by different chemical (volatile organic matter, C and N fractions) and microbiological (microbial biomass C, ATP, dehydrogenase activity, urease, protease, phosphatase, and beta-glucosidase activities) parameters during composting. Pig slurry mixed with bulking agent (P+WS) and the solid faction separated from it, both with (PSF+WS) and without bulking agent (PSF), were composted for 13 weeks. Samples for analysis were taken from composting piles at the start of the process and at 3, 6, 9, and 13 weeks after the beginning of composting. The total organic carbon, water soluble C and ammonium content decreased with composting, while Kjeldahl N and nitrate content increased. The nitrification process in the PSF+WS pile was more intense than in the PSF or P+WS composting piles. The pathogen content decreased with composting, as did phytotoxic compounds, while the germination index increased with compost age. Piles with bulking agent showed higher values of basal respiration, microbial biomass carbon, ATP and hydrolase activities during the composting process than piles without bulking agent.  相似文献   

17.
Mass balances and life cycle inventory of home composting of organic waste   总被引:1,自引:0,他引:1  
A comprehensive experimental setup with six single-family home composting units was monitored during 1 year. The composting units were fed with 2.6-3.5 kg organic household waste (OHW) per unit per week. All relevant consumptions and emissions of environmental relevance were addressed and a full life-cycle inventory (LCI) was established for the six home composting units. No water, electricity or fuel was used during composting, so the major environmental burdens were gaseous emissions to air and emissions via leachate. The loss of carbon (C) during composting was 63-77% in the six composting units. The carbon dioxide (CO(2)) and methane (CH(4)) emissions made up 51-95% and 0.3-3.9% respectively of the lost C. The total loss of nitrogen (N) during composting was 51-68% and the nitrous oxide (N(2)O) made up 2.8-6.3% of this loss. The NH(3) losses were very uncertain but small. The amount of leachate was 130 L Mg(-1) wet waste (ww) and the composition was similar to other leachate compositions from home composting (and centralised composting) reported in literature. The loss of heavy metals via leachate was negligible and the loss of C and N via leachate was very low (0.3-0.6% of the total loss of C and 1.3-3.0% of the total emitted N). Also the compost composition was within the typical ranges reported previously for home composting. The level of heavy metals in the compost produced was below all threshold values and the compost was thus suitable for use in private gardens.  相似文献   

18.
The use of respiration indices in the composting process: a review.   总被引:1,自引:0,他引:1  
Respiration is directly related to the metabolic activity of a microbial population. Micro-organisms respire at higher rates in the presence of large amounts of bioavailable organic matter while respiration rate is slower if this type of material is scarce. In the composting process respiration activity has become an important parameter for the determination of the stability of compost. It is also used for the monitoring of the composting process and it is considered an important factor for the estimation of the maturity of the material. A wide range of respirometric protocols has been reported based either on CO2 production, O2 uptake or release of heat. The most common methods are those based on O2 uptake. Respirometric assays are affected by a number of parameters including temperature, humidity, and both incubation and pre-incubation conditions. Results from respirometries are generally expressed as 'respiration indices', most of them with their own units and basis. In consequence, some confusion exists when referring and comparing respiration indices. This is particularly important because current and future legislations define and measure the biological stability of waste on the basis of respiration activity of the material. This paper discusses and compares most common respiration indices currently used.  相似文献   

19.
In this paper, the evolution of organic matter (OM) during composting of different mixtures of various organic wastes was assessed by means of chemical analyses and CPMAS 13C NMR spectroscopy measured during composting. The trends of temperatures and C/N ratios supported the correct evolution of the processes. The CPMAS 13C NMR spectra of all composting substrates indicated a reduction in carbohydrates and an increase in aromatic, phenolic, carboxylic and carbonylic C which suggested a preference by microorganisms for easily degradable C molecules. The presence of hardly degradable pine needles in one of the substrates accounted for the lowest increase in alkyl C and the lowest reduction in carbohydrates and carboxyl C as opposite to another substrate characterized by the presence of a highly degradable material such as spent yeast from beer production, which showed the highest increase of the alkyl C/O-alkyl C ratio. The highest increase of COOH deriving by the oxidative degradation of cellulose was shown by a substrate composed by about 50% of plant residues. The smallest increases in alkyl C/O-alkyl C ratio and in polysaccharides were associated to the degradation of proteins and lipids which are major components of sewage sludge. Results obtained were related to the different composition of fresh organic substrates and provided evidence of different OM evolution patterns as a function of the initial substrate composition.  相似文献   

20.
The concentration and bioavailability of heavy metals in composted organic wastes have negative environmental impacts following land application. Aerobic composting procedures were conducted to investigate the influences of selected parameters on heavy metal speciation and phytotoxicity. Results showed that both of sewage sludge (SSC) and swine manure (SMC) composting systems decreased the pH, the content of organic matter (OM) and dissolved organic carbon (DOC), and total amounts of Cu, Zn and Pb. Sequential extraction showed that readily extractible fractions of exchangeable and carbonate in Cu and Zn increased during SSC composting but decreased during SMC composting, thus their bioavailability factors (BF) enhanced in SSC but declined in SMC. The fraction of reducible iron and manganese (FeMnOX) of Cu and Zn in SSC and FeMnOX-Cu in SMC decreased, but FeMnOX-Zn in SMC gradually increased in the process of compost. In contrast, the changes of Pb distributions were similar in two organic wastes. Pb was preferentially bound to the residual fraction and its BF decreased. The evolution of heavy metal distributions and BF depended on not only total metal concentrations but also the other properties, such as pH, decomposition of OM and decline of DOC. The germination rate (RSG), root growth (RRG) and germination index (GI) of pakchoi (Brassica Chinensis L.) increased during the composting process. Linear regression analysis demonstrated that GI, which could represent phytotoxic behavior to the plants, could be poorly predicted by BF or total amount of metals, i.e., BF-Zn, T-Cu. However, the inclusion of other physicochemical parameters (pH, OM and DOC) could enhance the linear regression significances (R).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号