首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
探究外源性碳输入改变对森林土壤呼吸的影响是深入解析森林碳循环的基础.本研究基于植物残体添加和去除控制实验,设置5种不同碳输入(对照组、双倍凋落物组、去根组、去凋落物组和去根去凋落物组)处理,研究了天山雪岭云杉林(Picea Schrenkiana)生长季土壤呼吸对碳输入改变的短期响应.结果表明,整个实验期间对照、双倍凋落物、去根、去凋和去根去凋处理土壤呼吸速率均值分别为3.38、 3.94、 2.65、 2.87和2.01μmol·(m~2·s)~(-1);与对照处理相比,双倍凋落物处理使累计土壤呼吸通量增加402.65 g·m~(-2),去根、去凋和去根去凋处理分别减少了515.00、 354.73和967.15 g·m~(-2),减少幅度为去根去凋去根去凋.整个实验期间相对于对照组,双倍凋落物处理下土壤呼吸速率平均增加20.35%,去凋、去根、去根去凋处理下土壤呼吸速率分别平均降低14.40%、 20.78%和40.83%.土壤矿质呼吸、凋落物呼吸和根系呼吸对土壤总呼吸的相对贡献率由大至小依次为:土壤矿质呼吸(59.46%)根系呼吸(21.49%)凋落物呼吸(14.79%).由主成分分析可知,土壤呼吸速率的变化与土壤温度、土壤湿度、全磷、pH值、土壤有机碳正相关,与土壤容重负相关,而全氮、碳氮比和土壤电导率对土壤呼吸速率影响不大.  相似文献   

2.
模拟增温对冬小麦-大豆轮作农田土壤呼吸的影响   总被引:6,自引:4,他引:2  
刘艳  陈书涛  胡正华  任景全  沈小帅 《环境科学》2012,33(12):4205-4211
为研究模拟增温对冬小麦-大豆轮作农田土壤呼吸的影响,设置了随机试验,观测增温和对照处理的农田土壤呼吸速率.采用LI-8100开路式土壤碳通量测量系统对农田土壤呼吸速率进行观测,并采用气压过程分离技术(BaPS)测定土壤CO2产生速率.在观测土壤呼吸速率的同时,观测了两处理的土壤温度、湿度.结果表明,不同增温处理下土壤呼吸速率的季节变异趋势基本一致,其季节变异与土壤温度的变异具有一致性.冬小麦田增温和对照处理的平均土壤呼吸速率分别为(3.54±0.60)μmol·(m2·s)-1和(2.49±0.53)μmol·(m2·s)-1,大豆田增温和对照处理平均土壤呼吸速率分别为(4.80±0.46)μmol·(m2·s)-1和(4.14±0.29)μmol·(m2·s)-1.模拟增温显著促进了冬小麦田和大豆田的土壤呼吸作用,在冬小麦生长后期(抽穗-成熟期)增温和对照处理的土壤呼吸速率差异最为明显(P〈0.05);在大豆开花-结荚期以及鼓粒-成熟期增温与对照的土壤呼吸速率分别存在极显著性(P〈0.01)和显著性(P〈0.05)差异.进一步的研究表明,模拟增温和对照处理土壤呼吸均与土壤温度存在极显著(P〈0.01)的指数回归关系,但增温处理的土壤呼吸的温度敏感性明显高于对照,小麦生长季增温和对照处理的土壤呼吸温度系数Q10值分别为1.83和1.26,大豆生长季两处理的土壤呼吸温度系数Q10值分别为2.85和1.70.本研究表明,增温显著促进了农田土壤呼吸作用。  相似文献   

3.
为研究亚热带次生林不同土壤呼吸组分对土壤呼吸的贡献率及土壤呼吸组分的温度敏感性,于2010-03-2014-02进行了4 a的野外观测试验.设置了4个随机区组,每个区组设置断根和不断根处理,在断根小区四周挖壕沟以防止根系进入断根小区.采用Li-8100便携式土壤碳通量测定系统观测不同处理的土壤呼吸,并同步观测土壤温度和土壤湿度.结果表明,不断根小区的土壤呼吸速率和断根小区的异养呼吸速率均具有明显的季节变异规律,不断根小区的土壤呼吸速率量值极显著(P0.001)高于断根小区的异养呼吸速率量值.4 a观测期间不断根处理平均土壤呼吸速率为(2.59±0.48)μmol·(m2·s)-1,而断根处理平均土壤呼吸速率为(1.74±0.28)μmol·(m2·s)-1.不同年份观测的土壤呼吸速率的年平均值之间无显著差异(P0.05),各年份异养呼吸速率的年平均值之间亦无显著差异(P0.05).土壤呼吸中的异养组分与土壤呼吸之间的关系可用比例函数方程拟合,异养呼吸占土壤呼吸的比例为65.9%,自养呼吸占土壤呼吸的比例为34.1%,异养呼吸是土壤呼吸的主要组成部分.随着观测时间的延长,异养呼吸占土壤呼吸的比例呈线性下降趋势.异养呼吸速率和自养呼吸速率与土壤温度之间的关系均可用指数方程拟合,异养呼吸的温度敏感系数Q10值低于自养呼吸的Q10值.  相似文献   

4.
在田间条件下研究土壤微生物呼吸及其温度敏感性(Q10)的变化特征及其影响因素对准确理解地区的气候变暖潜力具有重要意义。本研究依托长武农田生态试验站的裸地处理,利用土壤碳通量系统(Li~8100)连续6a(2008~2013年)监测裸地处理下的呼吸速率、土壤温度和水分,探究土壤微生物呼吸及其温度敏感性的变化特征及其影响因素。在日变化尺度上,土壤微生物呼吸速率的变化特征呈单峰曲线,且这种变化趋势主要与土壤温度有关(P0.05),然而日平均土壤微生物呼吸速率和Q10在不同土壤水分含量条件下不同,均呈现出适度的土壤水分条件较高的土壤水分条件较低土壤水分条件的趋势[土壤微生物呼吸速率:1.20?mol·(m2·s)-1vs.0.95?mol·(m2·s)-1vs.0.79?mol·(m2·s)-1;Q10:2.12vs.1.93 vs.1.59]。在季节尺度上,土壤微生物呼吸速率和Q10均呈现出雨季大于非雨季的趋势[土壤微生物呼吸速率:1.11?mol·(m2·s)-1vs.0.90?mol·(m2·s)-1;Q10:1.96 vs.1.59],且这种变化趋势与土壤温度和水分的变化有关(P0.05),然而土壤温度和土壤水分的双变量模型比土壤温度或者土壤水分的单变量模型能解释更多的土壤微生物呼吸季节变异性(R2:0.45~0.82 vs.0.32~0.67 vs.0.35~0.86;模拟值和实测值的拟合系数:0.76 vs.0.64 vs.0.58)。在年际尺度上,年累积土壤微生物呼吸变化于226 g·(m2·a)-1和298 g·(m2·a)-1之间,Q10变化于1.48~1.94之间,而年累积土壤微生物呼吸和Q10的年际变异性主要与年平均土壤水分含量有关(P0.05),且年平均土壤水分别可以解释39%和54%的年累积土壤微生物呼吸和Q10年际变异性。在裸地处理上,土壤有机碳由试验初的6.5 g·kg-1下降到目前的5.5 g·kg-1,但是年累积土壤微生物呼吸却高达255 g·(m2·a)-1,即裸地处理的呼吸流失量比土壤有机碳的流失量高达20倍以上。  相似文献   

5.
在田间条件下研究土壤微生物呼吸及其温度敏感性(Q10)的变化特征及其影响因素对准确理解地区的气候变暖潜力具有重要意义。本研究依托长武农田生态试验站的裸地处理,利用土壤碳通量系统(Li~8100)连续6a(2008~2013年)监测裸地处理下的呼吸速率、土壤温度和水分,探究土壤微生物呼吸及其温度敏感性的变化特征及其影响因素。在日变化尺度上,土壤微生物呼吸速率的变化特征呈单峰曲线,且这种变化趋势主要与土壤温度有关(P0.05),然而日平均土壤微生物呼吸速率和Q10在不同土壤水分含量条件下不同,均呈现出适度的土壤水分条件较高的土壤水分条件较低土壤水分条件的趋势[土壤微生物呼吸速率:1.20?mol·(m2·s)-1vs.0.95?mol·(m2·s)-1vs.0.79?mol·(m2·s)-1;Q10:2.12vs.1.93 vs.1.59]。在季节尺度上,土壤微生物呼吸速率和Q10均呈现出雨季大于非雨季的趋势[土壤微生物呼吸速率:1.11?mol·(m2·s)-1vs.0.90?mol·(m2·s)-1;Q10:1.96 vs.1.59],且这种变化趋势与土壤温度和水分的变化有关(P0.05),然而土壤温度和土壤水分的双变量模型比土壤温度或者土壤水分的单变量模型能解释更多的土壤微生物呼吸季节变异性(R2:0.45~0.82 vs.0.32~0.67 vs.0.35~0.86;模拟值和实测值的拟合系数:0.76 vs.0.64 vs.0.58)。在年际尺度上,年累积土壤微生物呼吸变化于226 g·(m2·a)-1和298 g·(m2·a)-1之间,Q10变化于1.48~1.94之间,而年累积土壤微生物呼吸和Q10的年际变异性主要与年平均土壤水分含量有关(P0.05),且年平均土壤水分别可以解释39%和54%的年累积土壤微生物呼吸和Q10年际变异性。在裸地处理上,土壤有机碳由试验初的6.5 g·kg-1下降到目前的5.5 g·kg-1,但是年累积土壤微生物呼吸却高达255 g·(m2·a)-1,即裸地处理的呼吸流失量比土壤有机碳的流失量高达20倍以上。  相似文献   

6.
在田间条件下研究土壤微生物呼吸及其温度敏感性(Q10)的变化特征及其影响因素对准确理解地区的气候变暖潜力具有重要意义。本研究依托长武农田生态试验站的裸地处理,利用土壤碳通量系统(Li~8100)连续6a(2008~2013年)监测裸地处理下的呼吸速率、土壤温度和水分,探究土壤微生物呼吸及其温度敏感性的变化特征及其影响因素。在日变化尺度上,土壤微生物呼吸速率的变化特征呈单峰曲线,且这种变化趋势主要与土壤温度有关(P0.05),然而日平均土壤微生物呼吸速率和Q10在不同土壤水分含量条件下不同,均呈现出适度的土壤水分条件较高的土壤水分条件较低土壤水分条件的趋势[土壤微生物呼吸速率:1.20?mol·(m2·s)-1vs.0.95?mol·(m2·s)-1vs.0.79?mol·(m2·s)-1;Q10:2.12vs.1.93 vs.1.59]。在季节尺度上,土壤微生物呼吸速率和Q10均呈现出雨季大于非雨季的趋势[土壤微生物呼吸速率:1.11?mol·(m2·s)-1vs.0.90?mol·(m2·s)-1;Q10:1.96 vs.1.59],且这种变化趋势与土壤温度和水分的变化有关(P0.05),然而土壤温度和土壤水分的双变量模型比土壤温度或者土壤水分的单变量模型能解释更多的土壤微生物呼吸季节变异性(R2:0.45~0.82 vs.0.32~0.67 vs.0.35~0.86;模拟值和实测值的拟合系数:0.76 vs.0.64 vs.0.58)。在年际尺度上,年累积土壤微生物呼吸变化于226 g·(m2·a)-1和298 g·(m2·a)-1之间,Q10变化于1.48~1.94之间,而年累积土壤微生物呼吸和Q10的年际变异性主要与年平均土壤水分含量有关(P0.05),且年平均土壤水分别可以解释39%和54%的年累积土壤微生物呼吸和Q10年际变异性。在裸地处理上,土壤有机碳由试验初的6.5 g·kg-1下降到目前的5.5 g·kg-1,但是年累积土壤微生物呼吸却高达255 g·(m2·a)-1,即裸地处理的呼吸流失量比土壤有机碳的流失量高达20倍以上。  相似文献   

7.
张彦军  郭胜利 《环境科学》2019,40(3):1446-1456
在田间条件下研究土壤微生物呼吸及其温度敏感性(Q10)的变化特征及其影响因素对准确理解地区的气候变暖潜力具有重要意义.本研究依托长武农田生态试验站的裸地处理,利用土壤碳通量系统(Li~8100)连续6 a (2008~2013年)监测裸地处理下的呼吸速率、土壤温度和水分,探究土壤微生物呼吸及其温度敏感性的变化特征及其影响因素.在日变化尺度上,土壤微生物呼吸速率的变化特征呈单峰曲线,且这种变化趋势主要与土壤温度有关(P 0. 05),然而日平均土壤微生物呼吸速率和Q10在不同土壤水分含量条件下不同.均呈现出:适度的土壤水分条件较高的土壤水分条件较低土壤水分条件的趋势[土壤微生物呼吸速率:1. 20μmol·(m~2·s)~(-1)、0. 95μmol·(m~2·s)~(-1)、0. 79μmol·(m~2·s)~(-1); Q10:2. 12、1. 93、1. 59].在季节尺度上,土壤微生物呼吸速率和Q10均呈现出雨季大于非雨季的趋势[土壤微生物呼吸速率:1. 11μmol·(m~2·s)~(-1)、0. 90μmol·(m~2·s)~(-1); Q10:1. 96、1. 59],且这种变化趋势与土壤温度和水分的变化有关(P 0. 05),然而土壤温度和土壤水分的双变量模型比土壤温度或者土壤水分的单变量模型能解释更多的土壤微生物呼吸季节变异性(R~2:0. 45~0. 82、0. 32~0. 67、0. 35~0. 86;模拟值和实测值的拟合系数:0. 76、0. 64、0. 58).在年际尺度上,年累积土壤微生物呼吸变化于226 g·(m~2·a)~(-1)和298 g·(m~2·a)~(-1)之间,Q10变化于1. 48~1. 94之间,而年累积土壤微生物呼吸和Q10的年际变异性主要与年平均土壤水分含量有关(P 0. 05),且年平均土壤水分别可以解释39%和54%的年累积土壤微生物呼吸和Q10年际变异性.在裸地处理上,土壤有机碳由试验初的6. 5 g·kg~(-1)下降到目前的5. 5 g·kg~(-1),但是年累积土壤微生物呼吸却高达255 g·(m~2·a)~(-1),即裸地处理的呼吸流失量比土壤有机碳的流失量高20倍以上.  相似文献   

8.
黄土区农田和草地生态系统土壤呼吸差异及其影响因素   总被引:6,自引:5,他引:1  
明确土地利用方式变化对土壤呼吸速率的影响,对预测黄土区退耕还草条件下的土壤碳循环变化具有重要的意义.于2010年7月~2011年12月,利用Li-8100系统(Li-COR,Lincoln,NE,USA)监测黄土高原沟壑区塬坡上相邻农田和草地的土壤呼吸速率,用以验证不同土地利用方式是否导致土壤呼吸速率的变化.结果发现,土地利用方式的改变导致了土壤呼吸速率的显著(P<0.05)变化,试验期间草地平均土壤呼吸速率[1.67μmol·(m2.s)-1]较相邻农田[1.35μmol·(m2.s)-1]提高24%(P<0.05),累积土壤呼吸草地(856 g·m-2)较农田(694 g·m-2)提高了23%(P<0.05).农田与草地的土壤温度差异显著,草地平均土壤温度(14.9℃)较农田(12.4℃)高2.5℃(P<0.05).农田和草地生态系统土壤温度与土壤呼吸均呈显著的指数关系(P<0.000 1).但农田和草地生态系统中土壤呼吸对温度响应存在本质差异(α=0.05),农田土壤呼吸的Q10(2.30)高于草地(1.74).土壤温度能够很好地解释农田和草地生态系统之间土壤呼吸的差异.  相似文献   

9.
保护性耕作下小麦田土壤呼吸及碳平衡研究   总被引:12,自引:7,他引:5  
为了研究小麦农田生态系统土壤碳排放与作物碳蓄积特征,采用LI6400-09在重庆北碚西南大学教学试验农场对平作(T)、垄作(R)、平作+覆盖(TS)、垄作+覆盖(RS)这4种处理下的西南紫色土丘陵区小麦/玉米/大豆套作体系中小麦生长季节的土壤呼吸及植株生长动态进行了观测.利用根系生物量外推法(root biomass regression,RBR)和根排除法(root exclusion,RE)这2种方法比较分析根系呼吸对土壤总呼吸的贡献,并估算小麦农田碳收支状况.结果表明,土壤呼吸介于0.62~2.91μmol·(m2·s)-1,平均值为1.71μmol·(m2·s)-1.T、R、TS、RS各处理日均土壤呼吸速率分别为1.29、1.59、1.99、1.96μmol·(m2·s)-1,表现为T相似文献   

10.
北京西山侧柏人工林土壤呼吸组分及其影响因素   总被引:1,自引:1,他引:0  
采用挖壕法,利用LI-8100土壤CO2通量自动观测系统,确定了北京西山侧柏人工林土壤呼吸中异养呼吸和根系自养呼吸的贡献率及其影响因子,分析了土壤呼吸的日、月际时间尺度的变异特征,并利用经验模型分析了土壤温度、土壤体积含水量对土壤呼吸的影响.结果表明:1土壤呼吸速率、异养呼吸速率的昼夜变化呈现单峰变化趋势,峰值出现在14:00—15:00;月际变化也呈单峰变化趋势,峰值出现在7—8月;观测期内土壤呼吸速率日均值变化范围在0.09~12.16μmol·m-2·s-1,异养呼吸速率日均值变化范围在0.02~10.86μmol·m-2·s-1,年均贡献率为69.59%;自养呼吸速率日均值为0.01~6.79μmol·m-2·s-1,年均贡献率为30.41%.2土壤温度的日、月际变化均呈单峰形曲线变化而土壤体积含水量变化规律不明显;整个观测期间土壤呼吸速率的温度敏感系数Q10为2.91,异养呼吸速率的Q10为3.52.3模型研究表明,相对于土壤温度、土壤体积含水量单因素模型,土壤温度与土壤体积含水量的复合模型对土壤呼吸速率变化解释能力为86.8%,对异养呼吸速率的解释能力为74.4%.该研究为森林生态系统碳收支估测及碳循环提供数据依据.  相似文献   

11.
大兴安岭地区是林火多发区,论文比较了未火烧兴安落叶松林与火烧20 a后兴安落叶松(轻度、中度、重度火烧兴安落叶松林)土壤pH值、土壤养分以及土壤养分比值之间的差异。研究结果表明:重度、中度、轻度火烧森林土壤的pH值为4.79、4.76、4.63,高于对照森林土壤的pH值(4.53);重度、中度、轻度火烧森林土壤的C含量(55.19、84.63、127.91 g.kg-1)、N含量(2.32、3.97、5.27 g.kg-1)、P含量(0.22、0.21、0.25g.kg-1)和K含量(31.97、32.56、34.65g.kg-1)都低于对照森林土壤(137.67、5.61、0.27、37.96g.kg-1);重度、中度、轻度火烧森林土壤的C/N值(23.68、21.54、24.27)也低于对照土壤(24.63);轻度火烧土壤的C、N含量与中度、重度火烧土壤的C、N含量差异明显。说明了火烧20 a后,其森林土壤与对照森林土壤之间仍然有差异。  相似文献   

12.
云南松林资源动态研究   总被引:10,自引:6,他引:4  
利用云南省森林资源监测数据对云南松林资源的动态变化进行了研究,结果表明:在1987-2007 年的20 a 间,云南松林资源总体呈增长趋势,尤其是蓄积量在1997-2002 年得益于天然林保护工程,出现了快速上升,5 a 净增20.57%,与此同时,过熟林资源一直处于较低水平,优质可用云南松林资源的数量持续减少,濒临枯竭。云南松林分单位面积蓄积量20 a 间提高了27.05%,而大径组和特大径组林木蓄积所占比例则呈下降趋势,近、成、过熟林的单株材积从每株0.77 m3降至0.22 m3,表明云南松林质量在总体上提高的同时,可用资源数量仍在快速减少,材种结构低质化倾向加剧。云南松林分林龄结构一直呈现出显著的低龄化特征,林龄结构现状迫切要求加强对云南松林的抚育管理,科学开展森林经营。20 a间,云南松林主导利用方向波动较大,难以实现长期经营目标。监测期间,以保护为主导的森林经营政策使云南松林资源得到了休养生息,但仍然存在着粗放经营、经营目标随意调整和对成过熟林资源过度利用等森林经营管理问题,这些因素相互交织,成为云南松林资源数量、林分质量和林龄结构变化的主要原因。  相似文献   

13.
中国森林土壤微生物动态变化研究进展   总被引:1,自引:0,他引:1  
土壤微生物是森林生态系统的基本组成部分,在物质能量循环中起着十分重要的作用。根据目前中国森林土壤微生物的研究现状,分别在土壤微生物的分布特征、区系组成特征和动态变化影响因素等方面进行归纳和总结,以期发现森林环境下土壤微生物的动态变化规律,为今后的土壤微生物生态学的研究和发展奠定基础。  相似文献   

14.
典型酸雨地区森林土壤中不同形态铝的分析   总被引:6,自引:3,他引:3       下载免费PDF全文
对2个典型酸雨地区森林土壤样品中不同形态的铝进行了检测,结果表明:两地土壤中无定形铝和有机结合铝占主导地位,弱有机结合铝和可交换铝的含量相对较低(约为10%).有机配位体会减弱铝的交换能力,而且这些有机铝配合物大部分是强有机结合态铝;Al3+对其他碱基阳离子有较强的置换能力.土壤的酸度增大,可交换铝和弱有机结合铝的含量增高,不同土层中可交换铝和弱有机结合铝的垂直变化与相应的pH变化相一致.用复合草酸铵法提取无定形和有机态铝的方法机理尚待进一步研究.   相似文献   

15.
石灰石和菱镁矿对酸化森林土壤修复作用的研究   总被引:9,自引:8,他引:1  
以重庆铁山坪马尾松林下典型的酸化土壤为修复介质,将土壤溶液pH值和主要阴阳离子浓度作为测试指标,对石灰石和菱镁矿这2种化学修复剂的修复效果进行了为期1a的野外实验研究.结果表明:与未投加修复剂的土壤相比,投加石灰石和菱镁矿后土壤溶液的pH值和相应阳离子(Ca2+或Mg2+)浓度显著上升,而且无机单体铝(Ali)浓度明显下降,从而起到了缓解土壤酸化并降低其对植被危害的效果.但是,修复剂的投加导致NO3-相似文献   

16.
红松阔叶混交林林隙极端地面温度的地统计学分析   总被引:3,自引:1,他引:2  
以小兴安岭原始红松阔叶混交林林隙为研究对象,采用网格法布点,通过对生长季内林隙各样点极端地面温度的连续观测,利用经典统计学和地统计学的方法分析并揭示了林隙极端地面温度的时空分布格局。研究结果表明:林隙极端地面温度不同空间样点之间存在异质性,而且异质性的强度、 尺度和空间结构组成随时间而改变,各月平均极端地面温度斑块形状复杂,最高地面温度大小顺序均为6月>7月>8月>9月,最低地面温度大小顺序为7月>8月>6月>9月,月平均地温的最大值和最小值分布位置不固定,同一月份地面最高温度的大小顺序是空旷地>林隙>郁闭林分,地面最低温度大小顺序是郁闭林分>林隙>空旷地。研究旨在为红松阔叶混交林的可持续经营提供基础数据和理论参考。  相似文献   

17.
2000年8月对湖南省张家界国家森林公园森林土壤进行了土壤动物调查,获各类动物1972个,分隶属于4门8纲24目,其中螨类和弹尾类为优势类群,双翅目和膜翅目为常见类群。初步研究表明,森林旅游对土壤动物类群和个体数目都有较大的影响。  相似文献   

18.
井冈山重要森林生态系统碳密度对比   总被引:4,自引:3,他引:1       下载免费PDF全文
采用生物量模型与实际测量相结合的方法,从植被层(包括乔木与林下植被)、枯落层和土壤层(表层1 m)比较了井冈山5种重要森林生态系统碳密度. 结果表明:①森林生态系统平均碳密度为29.047 kg/m2,常绿阔叶林>针阔混交林>人工杉木林>落叶阔叶林>毛竹林;②土壤碳密度平均值为22.453 kg/m2,占森林总碳密度的77.3%,5种森林类型土壤碳密度排序与总碳密度相同,且差异较小;③植被层碳密度差异最大,针阔混交林碳密度最大(12.039 kg/m2),是碳密度最小的落叶阔叶林(1.322 kg/m2)的9.1倍;④乔木层碳密度排序为针阔混交林>常绿阔叶林>人工杉木林>毛竹林>落叶阔叶林,乔木地上碳密度占乔木总碳密度的61.4%(人工杉木林)~75.8%(落叶阔叶林);⑤灌木层总碳密度差异大,常绿阔叶林和落叶阔叶林的灌木总碳密度分别为最大(0.153 kg/m2)和最小(0.027 kg/m2),前者是后者的5.6倍,灌木地上碳密度占灌木总碳密度的78.3%(针阔混交林)~81.0%(常绿阔叶林);⑥草本层总碳密度差异较小,在0.074 kg/m2(人工杉木林)~0.108 kg/m2(毛竹林)之间,地下碳密度略高于地上;⑦枯落层碳密度最低,不同森林类型间枯落层碳密度差异不大,在0.064~0.084 kg/m2之间.   相似文献   

19.
酸沉降对重庆南山森林生态系统土壤和植被的影响   总被引:13,自引:1,他引:12       下载免费PDF全文
酸沉降现象在重庆南山地区已造成长期严重的环境污染.笔者根据东亚酸雨监测网土壤和植被监测技术规范方法,研究了酸沉降对森林生态系统土壤和植被的影响和危害.通过对土壤的分析表明:5个采样点的土壤pH值较低,A层均值为3.74,B层均值为4.20,盐基饱和度(BS)的均值小于10%,盐基离子交换量(CEC)A层为78.1~88.6 mmol/kg,B层为61.1~65.1 mmol/kg,土壤中含有较高的Al3+<\sup>可能与大气中S和N的输入有关,并导致了土壤酸化.土壤中C/N较低,A层接近12.0,并且随土层的加深而下降,说明在亚热带湿润气候条件下有机质层分解良好.通过对植被的分析表明,酸沉降可能对杉木和柳杉这两种酸敏感性植物有一定的危害作用.   相似文献   

20.
酸化森林土壤投加石灰石和菱镁矿5 a后的化学性质变化   总被引:3,自引:2,他引:1  
2003年在重庆铁山坪森林土壤上一次性投加石灰石和菱镁矿,研究它们对酸化土壤的修复效果.对土壤和土壤溶液连续5 a化学变化的观测结果表明,投加碱性修复剂能提高土壤和土壤溶液pH值,增加土壤盐基饱和度和可交换盐基含量,从而有效地缓减土壤酸化.修复剂粒径是影响起效快慢的重要因素,由于投加石灰石的粒径远细于菱镁矿,所以石灰石...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号