首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Fresh leachate, generated in municipal solid waste incineration (MSWI) plants, contains various pollutants with extremely high strength organics, which usually requires expensive and complex treatment processes. This study investigated the feasibility of blending treatment of MSWI leachate with municipal wastewater. Fresh MSWI leachate was pretreated by coagulation–flocculation with FeCl3 2 g/L and CaO 25 g/L, plate-and-frame filter press, followed by ammonia stripping at pH above 12. After that, blending treatment was carried out in a full-scale municipal wastewater treatment plant (WWTP) for approximately 3 months. Different operational modes consisting of different pretreated leachate and methanol addition levels were tested, and their performances were evaluated. Results showed that throughout the experimental period, monitored parameters in the WWTP effluent, including COD (<60 mg/L), BOD5 (<20 mg/L), ammonium (<8 mg/L), phosphorus (<1.5 mg/L) and heavy metals, generally complied with the Chinese sewage discharged standard. Under the experimental conditions, a certain amount of methanol was needed to fulfill TN removal. An estimation of the operation cost revealed that the expenditure of blending treatment was much lower than the total costs of respective treatment of MSWI leachate and municipal wastewater. The outcomes indicated that blending treatment could not only improve the treatability of the MSWI leachate, but also reduce the treatment cost of the two different wastewaters.  相似文献   

2.
The bio-hydrogen generation potential of sugar industry wastes was investigated. In the first part of the study, acidogenic anaerobic culture was enriched from the mixed anaerobic culture (MAC) through acidification of glucose. In the second part of the study, glucose acclimated acidogenic seed was used, along with the indigenous microorganisms, MAC, 2-bromoethanesulfonate treated MAC and heat treated MAC. Two different COD levels (4.5 and 30 g/L COD) were investigated for each culture type. Reactors with initial COD concentration of 4.5 g/L had higher H2 yields (20.3–87.7 mL H2/g COD) than the reactors with initial COD concentration of 30 g/L (0.9–16.6 mL H2/g COD). The 2-bromoethanesulfonate and heat treatment of MAC inhibited the methanogenic activity, but did not increase the H2 production yield. The maximum H2 production (87.7 mL H2/g COD) and minimum methanogenic activity were observed in the unseeded reactor with 4.5 g/L of initial COD.  相似文献   

3.
The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10–5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10–5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass.  相似文献   

4.
This paper analyses the evolution of the physico-chemical characteristics of the leachate from the Central Landfill of Asturias (Spain), which has been operating since 1986, as well as different treatment options. The organic pollutant load of the leachate, expressed as chemical oxygen demand (COD), reached maximum values during the first year of operation of the landfill (around 80,000 mg/L), gradually decreasing over subsequent years to less than 5000 mg/L. The concentration of ammonium, however, has not decreased, presenting values of up to 2000 mg/L. When feasible, recirculation can greatly decrease the organic matter content of the leachate to values of 1500–1600 mg COD/L. Applying anaerobic treatment to leachates with a COD between 11,000 and 16,000 mg/L, removal efficiencies of 80–88% were obtained for organic loading rates of 7 kg COD/m3 d. For leachates with lower COD (4000–6000 mg/L), the efficiency decreased to around 60% for organic loading rates of 1 kg COD/m3 d.Applying coagulation–flocculation with iron trichloride or with aluminium polychloride, it was possible to reduce the non-biodegradable organic matter by 73–62% when treating old landfill leachate (COD: 4800 mg/L, BOD5: 670 mg/L), also reducing turbidity and colour by more than 97%. It is likewise possible to reduce the non-biodegradable organic matter that remains after biological treatment by adsorption with activated carbon, although adsorption capacities are usually low (from 15 to 150 mg COD/g adsorbent). As regards ammonium nitrogen, this can be reduced to final effluent values of 5 mg/L by means of nitrification/denitrification and to values of 126 mg/L by stripping at pH 12 and 48 h of stirring.  相似文献   

5.
The mechanically sorted dry fraction (MSDF) and Fines (<20 mm) arising from the mechanical biological treatment of residual municipal solid waste (RMSW) contains respectively about 11% w/w each of recyclable and recoverable materials. Processing a large sample of MSDF in an existing full-scale mechanical sorting facility equipped with near infrared and 2-3 dimensional selectors led to the extraction of about 6% w/w of recyclables with respect to the RMSW weight. Maximum selection efficiency was achieved for metals, about 98% w/w, whereas it was lower for Waste Electrical and Electronic Equipment (WEEE), about 2% w/w. After a simulated lab scale soil washing treatment it was possible to extract about 2% w/w of inert exploitable substances recoverable as construction materials, with respect to the amount of RMSW. The passing curve showed that inert materials were mainly sand with a particle size ranging from 0.063 to 2 mm. Leaching tests showed quite low heavy metal concentrations with the exception of the particles retained by the 0.5 mm sieve. A minimum pollutant concentration was in the leachate from the 10 and 20 mm particle size fractions.  相似文献   

6.
The feasibility of the anaerobic treatment of an industrial polymer synthesis plant effluent was evaluated. The composition of the wastewater includes acrylates, styrene, detergents, a minor amount of silicates and a significant amount of ferric chloride. The average chemical oxygen demand (COD) corresponding is about 2000 mg/l. The anaerobic biodegradability of the effluent is shown and the toxicity effect on the populations of anaerobic bacteria is evaluated. The results of the anaerobic biodegradation assays show that 62% of the wastewater compounds, measured as COD, could be consumed. An upflow anaerobic sludge blanket (UASB) reactor was used in the evaluation, it has a diameter–height ratio of 1:7, and 4-liter volume. The inoculum was obtained from a UASB pilot plant that treats brewery wastewaters. At the beginning of the operation, the biomass showed an anaerobic activity of 0.58 gCOD/(gVSS×d), it decreased only 2.5% in the subsequent 4 months. After 35 days of continuous operation, the reactor was operated at different steady states for 140 days. The COD was maintained at 2200 mg/l in the feed. The results were: organic loading rate (OLR): 4.3 kg COD/(m3×d), hydraulic retention time: 12 h, superficial velocity: 1 m/h, average biogas productivity: 290 L CH4/kg COD fed, biogas composition: 70–75% methane and a COD removal percentage >75%. ©  相似文献   

7.
Leachate contains amounts of non-biodegradable matters with COD range of 400–1500 mg/L after the biological treatment, and should be removed further to attain the Chinese discharge standards. Hydration reaction has the potential to combine and solidify some recalcitrant substances, and thus could be applied as the advanced leachate treatment process. It was found that COD and NH3N decreased from 485 to <250 mg/L and 91 to 10 mg/L, with the removal rate over 50% and 90% in the first 6 d, respectively, and COD and NH3N removal capacity were around 23.7 and 9.2 mg/g under the test conditions. The percentage of the substances with low Mn range of <1000 decreased from 32.9% to 3.2% in leachate after hydration reaction. Tricalcium aluminate, tricalcium silicate and dicalcium silicate were the most activity compounds successively for the pollutant removal in leachate, and hydration reaction could be the option for the advanced wastewater treatment process thereafter.  相似文献   

8.
This study evaluated the scientific and technical basis of the dissolved organic carbon (DOC) limitation imposed on municipal sludge for landfilling, mainly for assessing the attainability of the implemented numerical level. For this purpose, related conceptual framework was analyzed, covering related sewage characteristics, soluble microbial products generation, and substrate solubilization and leakage due to hydrolysis. Soluble COD footprint was experimentally established for a selected treatment plant, including all the key steps in the sequence of wastewater treatment and sludge handling. Observed results were compared with reported DOCs in other treatment configurations. None of the leakage tests performed or considered in the study could even come close to the prescribed limitation. All observed results reflected 10–20 fold higher DOC levels than the numerical limit of 800 mg/kg (80 mg/L), providing conclusive evidence that the DOC limitation imposed on municipal treatment sludge for landfilling is not attainable, and therefore not justifiable on the basis of currently available technology.  相似文献   

9.
Worldwide, the amount of end-of-life vehicles (ELVs) reaches 50 million units per year. Once the ELV has been processed, it may then be shredded and sorted to recover valuable metals that are recycled in iron and steelmaking processes. The residual fraction, called automotive shredder residue (ASR), represents 25% of the ELV and is usually landfilled. In order to deal with the leachable fraction of ASR that poses a potential threat to the environment, a washing treatment before landfilling was applied. To assess the potential for full-scale application of washing treatment, tests were carried out in different conditions (L/S = 3 and 5 L/kgTS; t = 3 and 6 h). Moreover, to understand whether the grain size of waste could affect the washing efficiency, the treatment was applied to ground (<4 mm) and not-ground samples. The findings obtained revealed that, on average, washing treatment achieved removal rates of more than 60% for dissolved organic carbon (DOC), chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN). With regard to metals and chlorides, sulphates and fluoride leachable fraction, a removal efficiency of approximately 60% was obtained, as confirmed also by EC values. The comparison between the results for ground and not-ground samples did not highlight significant differences.  相似文献   

10.
The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552–62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8–99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2–4.8% in the 1st digester and 1.8–7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49–60% and 48.6–64.7%, respectively. Methane production rate was in the range of 0.02–0.04, 0.04–0.07, and 0.02–0.04 L/g CODrem for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.  相似文献   

11.
Oxidation of landfill leachate wastewater was studied in a transpiring-wall SCWO reactor, operated under varied temperature and pressure 320–430 °C, 18–30 MPa. Effect of temperature and pressure on COD and BOD removal efficiency was investigated. COD and BOD removal efficiency being 99.23%, 98.06% were achieved at 430 °C, 30 MPa, which increased with temperature and pressure. The modified pseudo first-order rate model was regressed from experimental data, taking into account the induction time (tind) effect. The resulting pre-exponential factor A and activation energy Ea were 34.86 s?1 and 32.1 kJ mol?1, respectively, assuming that the reaction order for feed wastewater (based on COD) and oxidant were first order and zero order, respectively.  相似文献   

12.
A pilot-scale study was completed to determine the feasibility of high-solids anaerobic digestion (HSAD) of a mixture of food and landscape wastes at a university in central Pennsylvania (USA). HSAD was stable at low loadings (2 g COD/L-day), but developed inhibitory ammonia concentrations at high loadings (15 g COD/L-day). At low loadings, methane yields were 232 L CH4/kg COD fed and 229 L CH4/kg VS fed, and at high loadings yields were 211 L CH4/kg COD fed and 272 L CH4/kg VS fed. Based on characterization and biodegradability studies, food waste appears to be a good candidate for HSAD at low organic loading rates; however, the development of ammonia inhibition at high loading rates suggests that the C:N ratio is too low for use as a single substrate. The relatively low biodegradability of landscape waste as reported herein made it an unsuitable substrate to increase the C:N ratio. Codigestion of food waste with a substrate high in bioavailable carbon is recommended to increase the C:N ratio sufficiently to allow HSAD at loading rates of 15 g COD/L-day.  相似文献   

13.
A pot experiment is described with a fast-growing poplar clone and two native willows (Populus deltoides Bartr. cl. I-69/55 (Lux)), Salix viminalis L. and Salix purpurea L.), irrigated with landfill leachate and compost wastewater over a 1-year growing period. The use of leachate resulted in up to 155% increased aboveground biomass compared to control water treatments and in up to 28% reduced aboveground biomass compared to a complete nutrient solution. The use of compost wastewater resulted in up to 62% reduced aboveground biomass compared to the control treatments and in up to 86% reduced aboveground biomass compared to the complete nutrient solution. Populus was the most effective in biomass production due to the highest leaf production, whereas S. purpurea was the least effective in biomass accumulation, but less sensitive to high ionic strength of the irrigation water compared to S. viminalis. The results showed a high potential for landfill leachate application (with up to 2144 kg N ha?1, 144 kg P ha?1, 709 kg K ha?1, 1010 kg Cl ha?1, and 1678 kg Na ha?1 average mass load in the experiment). High-strength compost wastewater demonstrated less potential for application as irrigation and fertilization source even in high water-diluted treatments (1:8 by volume).  相似文献   

14.
There are numerous non-biodegradable organic materials in the mature landfill leachate. To meet the new discharge standard of China, additional advanced treatment is needed for the effluent from the biological treatment processes of leachate. In this study, a combined process including two stages of “Fenton-biological anaerobic filter (BANF)–biological aerated filter (BAF)” was evaluated to address the advanced treatment need. The Fenton oxidation was applied to reduce chemical oxygen demand (COD) and enhance biodegradability of refractory organics, and the BANF–BAF process was then applied to remove the total nitrogen (TN). The treatment achieved effluent concentrations of COD < 70 mg/L, TN < 40 mg/L and NH3–N < 10 mg/L. The removal efficiency of COD and TN were 96.1% and 95.9%, respectively. The effluent quality met the new discharge standard for Pollution Control on the Landfill Site of Municipal Solid of PR China (GB16889-2008). The operation cost of these processes was about 36.1 CHY/t (5.70 USD/t).  相似文献   

15.
This study investigated the recovery of oil from waste grease through the process of thermal degradation in an aqueous solution of potassium hydroxide (KOH) followed by solvent extraction. Waste high temperature metal bearing grease was dissolved in a 15 w/w% KOH solution at 80 °C while being agitated at 2000 rpm using a shear action agitator for a period of 15 min. Two distinct layers were observed after 8 min of settling time. The top layer being of dark brown oil and the bottom layer was a heterogeneous mixture. The two layers were separated by decantation. The bottom layer was cooled down to 45 °C followed by slow addition of toluene (C7H8) while agitating at 1200 rpm for 15 min to prevent solids settling and minimise rapid volatilisation of the organic compounds in the mixture. Two distinct layers were also formed, the top homogeneous mixture of light brown oil–toluene mixture and the bottom sludge layer. The solvent was recovered from the oil for re-use by fractional distillation of the homogenous mixture. It was observed that 15 w/w% potassium hydroxide solution can chemically degrade the soap matrix in the grease and extract up to 49 w/w% of the fuel oil when subjected to high shear stress at a temperature of 80 °C. The 26 w/w% extraction of oil in the remaining sludge was obtained by solvent extraction process with mass ratios of sludge to solvent of 2:1. Solvent recovery of 88% by mass was obtained via fractional distillation method. The combined extraction processes brought an overall oil yield of 75 w/w% from the waste grease. The fuel oil obtained from this process has similar properties to paraffin oil and can be blended with other oils as an alternative energy source.  相似文献   

16.
Compost leachate forms during the composting process of organic material. It is rich in oxidizable organics, ammonia and metals, which pose a risk to the environment if released without proper treatment. An innovative method based on the membrane bioreactor (MBR) technology was developed to treat compost leachate over 39 days. Water quality parameters, such as pH, dissolved oxygen, ammonia, nitrate, nitrite and chemical oxygen demand (COD) were measured daily. Concentrations of caffeine and metals were measured over the course of the experiment using gas chromatography – mass spectrometry (GC/MS) and inductively coupled plasma – mass spectrometry (ICP–MS) respectively. A decrease of more than 99% was achieved for a COD of 116 g/L in the initial leachate. Ammonia was decreased from 2720 mg/L to 0.046 mg/L, while the nitrate concentration in the effluent rose to 710 mg/L. The bacteria in the MBR system adjusted to the presence of the leachate, and increased 4 orders of magnitude. Heavy metals were removed by at least 82.7% except copper. These successful results demonstrated the membrane bioreactor technology is feasible, efficient method for the treatment of compost leachate.  相似文献   

17.
This study investigated the electrochemical oxidation of stabilized leachate from Pulau Burung semi-aerobic sanitary landfill by conducting laboratory experiments with sodium sulfate Na2SO4 (as electrolyte) and graphite carbon electrodes. The control parameters were influent COD, current density and reaction time, while the responses were BOD removal, COD removal, BOD:COD ratio, color and pH. Na2SO4 concentration was 1 g/L. Experiments were conducted based on a three-level factorial design and response surface methodology (RSM) was used to analyze the results. The optimum conditions were obtained as 1414 mg/L influent COD concentration, 79.9 mA/cm2 current density and 4 h reaction time. This resulted in 70% BOD removal, 68% COD removal, 84% color removal, 0.04 BOD/COD ratio and 9.1 pH. Electrochemical treatment using graphite carbon electrode was found to be effective in BOD, COD and color removal but was not effective in increasing the BOD/COD ratio or enhancing biodegradability of the leachate. The color intensity of the treated samples increased at low influent COD and high current density due to corrosion of electrode material.  相似文献   

18.
The objective of this work was to investigate the feasibility and effectiveness of silica fume on stabilizing heavy metals in municipal solid waste incineration (MSWI) fly ash. In addition to compressive strength measurements, hydrated pastes were characterized by X-ray diffraction (XRD), thermal-analyses (DTA/TG), and MAS NMR (27Al and 29Si) techniques. It was found that silica fume additions could effectively reduce the leaching of toxic heavy metals. At the addition of 20% silica fume, leaching concentrations for Cu, Pb and Zn of the hydrated paste cured for 7 days decreased from 0.32 mg/L to 0.05 mg/L, 40.99 mg/L to 4.40 mg/L, and 6.96 mg/L to 0.21 mg/L compared with the MSWI fly ash. After curing for 135 days, Cd and Pb in the leachates were not detected, while Cu and Zn concentrations decreased to 0.02 mg/L and 0.03 mg/L. The speciation of Pb and Cd by the modified version of the European Community Bureau of Reference (BCR) extractions showed that these metals converted into more stable state in hydrated pastes of MSWI fly ash in the presence of silica fume. Although exchangeable and weak-acid soluble fractions of Cu and Zn increased with hydration time, silica fume addition of 10% can satisfy the requirement of detoxification for heavy metals investigated in terms of the identification standard of hazardous waste of China.  相似文献   

19.
The objective of this work was to determine the composition and production rate of medical waste from the health care facility of social insurance institute, a small waste producer in Xanthi, Greece. Specifically, produced medical waste from the clinical pathology (medical microbiology) laboratory, the X-ray laboratory and the surgery and injection therapy departments of the health facility was monitored for six working weeks. A total of 240 kg medical solid waste was manually separated and weighed and 330 L of liquid medical waste was measured and classified. The hazardous waste fraction (%w/w) of the medical solid waste was 91.6% for the clinical pathology laboratory, 12.9% for the X-ray laboratory, 24.2% for the surgery departments and 17.6% for the injection therapy department. The infectious waste fraction (%w/w) of the hazardous medical solid waste was 75.6% for the clinical pathology laboratory, 0% for the X-ray laboratory, 100% for the surgery departments and 75.6% for the injection therapy department. The total hazardous medical solid waste production rate was 64 ± 15 g/patient/d for the clinical pathology laboratory, 7.2 ± 1.6 g/patient/d for the X-ray laboratory, 8.3 ± 5.1 g/patient/d for the surgery departments and 24 ± 9 g/patient/d for the injection therapy department. Liquid waste was produced by the clinical pathology laboratory (infectious-and-toxic) and the X-ray laboratory (toxic). The production rate for the clinical pathology laboratory was 0.03 ± 0.003 L/patient/d and for the X-ray laboratory was 0.06 ± 0.006 L/patient/d. Due to the small amount produced, it was suggested that the most suitable management scheme would be to transport the hazardous medical waste, after source-separation, to the Prefectural Hospital of Xanthi to be treated with the hospital waste. Assuming this data is representative of other small medical facilities, medical waste production can be estimated for such facilities distributed around Greece.  相似文献   

20.
Fuel consumption and collection costs of solid waste were evaluated by the aid of a simulation model for a given collection area of a medium-sized Italian city. Using the model it is possible to calculate time, collected waste and fuel consumption for a given waste collection route. Starting from the data for the current waste collection scenario with a Source Segregated (SS) intensity of 25%, all the main model error evaluated was ?1.2. SS intensity scenarios of 25%, 30%, 35% and 52% were simulated. Results showed an increase in the average fuel consumed by the collection vehicles that went from about 3.3 L/tonne for 25% SS intensity to about 3.8 L/tonne for a SS intensity of 52%. Direct collection costs, including crews and vehicle purchase, ranged from about 40 €/tonne to about 70 €/tonne, respectively, for 25% and 52% SS intensity. The increase in fuel consumption and collection costs depends on the density of the waste collected, on the collection vehicle compaction ratio and on the waste collection vehicle utilization factor (WCVUF). In particular a reduction of about 50% of the WCVUF can lead to an average increase of about 80% in fuel consumption and 100% in collection costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号