首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 873 毫秒
1.
Biodegradation of toluene vapour was investigated for 168 days in a polyurethane packed biofilter inoculated with a mixed microbial population. Biofilter consisted of five square cross-section modular units each of size 0.16 m × 0.16 m × 0.20 m and filled with the polyurethane foam cubes up to a height of 0.15 m. Inlet concentration of toluene was varied from 0.04 to 2.5 g m?3 and the volumetric flow rate of toluene loaded air from 0.06 to 0.90 m3 h?1.Depending upon initial loading rates, removal efficiency ranging from 68.2 to 99.9% and elimination capacity ranging from 10.85 to 90.48 g h?1 m?3 were observed during steady state operations. More than 90% removal efficiency was observed up to an inlet loading rate of 76.3 g h?1 m?3. High carbon recovery (>90%) indicated effective biodegradation in the bed. Low variation of pH (7.2–8.8) and pressure drop (45.8–76.3 Pa) was observed. The stability of the biomass was evident from the fast response of the biofilter to shutdown and restartup.  相似文献   

2.
This paper reports the performance of a compost biofilter subjected to periodic intermittent loads of gas-phase hexane and toluene. The biofilter was operated for 10 h per day, at different empty bed residence times (4, 2 and 1.3 min), and at different inlet concentrations of hexane and toluene, varying between 2 and 3.8 g m?3, respectively. Steady-state removal efficiency profiles, reaching more than 90% for both the pollutants, was observed after 44 days of operation. Periodic operation of the compost biofilter was characterized by an adsorption step, followed by biological conversion of the pollutants by the microorganisms inherent to the compost. After resuming daily biofilter operation, the required times for biochemical reaction to dominate the initial adsorption step was observed to be 2.5 and 1 h, respectively, for toluene and hexane. The maximum elimination capacity due to the biological step was found to be 61.6 g m?3 h?1. The results from this study showed the effectiveness of the biofilter to handle mixtures of gas-phase pollutants, subjected to regular intermittent operations, thus proving their worthiness for industrial use.  相似文献   

3.
Biological control of odor gases has gained more attention in recent years. In this study, removal performance of a vertical bio-trickling filter inoculated with bacteria and fungi was studied. Bacteria and fungi were isolated from activated sludge in a sewage treatment plant. By adopting “three step immobilization method”, the bio-trickling filter could degrade pollutant immediately once hydrogen sulfide (H2S) passed. The optimal empty bed resident time was 20 s. The optimal elimination capacity was about 60 g H2S m?3 h?1 with removal efficiency of 95%. And the maximum elimination capacity was 170 g H2S m?3 h?1. Pressure drop was ranged between 5 and 15 mm H2O per bed over the whole operation. Removal efficiency was not affected obviously after terminating nutrient supply. The bio-trickling filter could recover back after shut down H2S gaseous and liquid supplies simultaneously. Microbial community structure in the bio-trickling filter was not changed significantly.Combining bacteria and fungi would be a better choice for inoculation into a bio-trickling filter because of the quickly degradation of H2S and rapid recovery under shut-down experiment. This is the first study attempting to combine bacteria and fungi for removal of H2S in a bio-trickling filter.  相似文献   

4.
To investigate the mechanism of removal of selected pharmaceuticals in activated sludge systems, laboratory-scale batch experiments were conducted to assess the adsorption and degradation behavior of trace oxytetracycline (OTC). The adsorption equilibrium of OTC was observed in 30 min and the adsorption process could be well described by a pseudo-second-order model with a rate of 0.362 L μg?1 min?1. The OTC adsorption rate decreased with increasing temperature and could be fitted by the Freundlich isotherm. The linear partition coefficients (Kd) were 1.19, 0.999, and 0.841 L g?1 at temperatures of 15, 20, and 25 °C, respectively. Thermodynamic analysis revealed that the adsorption of OTC onto the inactivated sludge was spontaneous (ΔG = ?16.7 to ?17.0 kJ mol?1), enthalpy-driven (ΔH = ?24.9 kJ mol?1), entropy-retarded (ΔS = ?27.4 J (mol K)?1), and predominantly a physical adsorption.  相似文献   

5.
Biodegradability enhancement of landfill leachate using air stripping followed by coagulation/ultrafiltration (UF) processes was introduced. The air stripping process obtained a removal efficiency of 88.6% for ammonia nitrogen (NH4–N) at air-to-liquid ratio of 3500 (pH 11) for stripping 18 h. The single coagulation process increased BOD/COD ratio by 0.089 with the FeCl3 dosage of 570 mg l?1 at pH 7.0, and the single UF process increased the BOD/COD ratio to 0.311 from 0.049. However, the combined process of coagulation/UF increased the BOD/COD ratio from 0.049 to 0.43, and the final biological oxygen demand (BOD), chemical oxygen demand (COD), NH4–N and colour of leachate were 1223.6 mg l?1, 2845.5 mg l?1, 145.1 mg l?1 and 2056.8, respectively, when 3 kDa molecular weight cut-off (MWCO) membrane was used at the operating pressure 0.7 MPa. In ultrafiltration process, the average solution flux (JV), concentration multiple (MC) and retention rate (R) for COD was 107.3 l m?2 h?1, 6.3% and 84.2%, respectively.  相似文献   

6.
The start-up and operation of a partial nitritation sequencing batch reactor for the treatment of landfill leachate were carried out on intermittent aeration mode. Partial nitrite accumulation was established in 15 days after the mode was changed from continuous aeration to intermittent aeration. Despite the varying influent composition, partial nitritation could be maintained by adjusting the hydraulic retention time (HRT) and the air flow rate. An increase in the air flow rate together with a decrease in air off duration can improve the partial nitritation capacity and eventually result in the development of granular sludge with fine diameters. A nitrogen loading rate of 0.71 ± 0.14 kg/m3/d and a COD removal rate of 2.21 ± 0.13 kg/m3/d were achieved under the conditions of an air flow rate of 19.36 ± 1.71 m3 air/m3/h and an air on/off duration of 1.5 min/0.7 min. When the ratio of total air flux (TAF) to the influent loading rate (ILR) was controlled at the range of 163–256 m3 air/kg COD, a stable effluent NO3?–N/NOx?–N (NO2?–N plus NO3?–N) ratio below 13% was achieved. Interestingly, the effluent pH was found to be a good indicator of the effluent NO2?–N/NH4+–N ratio, which is an essential parameter for a subsequent anaerobic ammonium oxidation (Anammox) reactor.  相似文献   

7.
Nanoscale zero-valent iron (Fe0) was synthesized for nitrate denitrification. The reduction efficiency of nitrate decreased quickly with increasing initial pH value, increased considerably with the increasing dosage of nanoscale Fe0, and did not vary much with initial nitrate concentrations changing from 20 to 50 mg l?1 when the excessive amount of nanoscale Fe0 was utilized. With reductive denitrification of nitrate by nanoscale Fe0, the removal rate of nitrate reached 96.4% in 30 min with nanoscale Fe0 dosage of 1.0 g l?1 and pHin 6.7, and more than 85% of the nitrate was transformed into ammonia. Kinetics analysis in batch studies demonstrates that the denitrification of nitrate by nanoscale Fe0 involves reaction on the metal surface, which fits well the pseudo-first order reaction with respect to nitrate concentration. The observed reaction rate constant of reductive denitrification of nitrate was determined to be 0.086 min?1 with a nanoscale Fe0 dosage of 1.0 g l?1 and pHin 6.7. Fast and highly effective denitrification can be achieved by nanoscale Fe0 compared with commercial Fe0 powder, this is due to the extremely high surface area and high reactivity for nanoscale Fe0, which can enhance the denitrification efficiencies remarkably.  相似文献   

8.
This study aimed to explore the influences of single-chamber systems with different applied voltage on bio-hydrogen (H2) production. The reactor used was the bio-electrochemically assisted microbial reactor (BEAMR) membrane-less (BEAMR-membrane-less, BML). The microbial dark fermentative H2 production method was adopted. After the hot screening process and the DNA sequencing, the domesticated dominant microflora was Clostridium sp. This study discussed the influences of the cases with (continuous and intermittent) and without applied voltage separately. The results showed that, the H2 production rate of the case with intermittent applied voltage (117 mL/h g VSS) of 0.24 V was increased of 1.7 folds higher than the without applied voltage (69 mL/h g VSS) and 1.3 folds higher than the case with continuous applied voltage (88.2 mL/h g VSS) of 0.24 V. The produced H2 concentration with intermittent applied voltage was 18.9% (18.6–19.1%) higher than the without applied voltage, while there was no significant difference with continuous applied voltage.  相似文献   

9.
Titania nanomaterial with an anatase structure and 5.6 nm crystallite size and 280.7 m2 g−1 specific surface areas had been successfully prepared by sol–gel/hydrothermal route. The effect of pH as a type of autoclave and calcination was studied. Crystallite size and phase composition of the prepared samples were identified. X-ray diffraction analyses showed the presence of anatase with little or no rutile phases. The crystallite size of the prepared TiO2 with acidic catalyst was both smaller than that prepared with basic catalyst, and was increasing after acidic calcinations by a factor 4–5. Basic calcinations produced a specific increase of 1.5. Rutile ratio and the particle size were increased after calcination at 500 °C. However, TiO2 powder synthesized using a basic catalyst persisted the anatase phase and a loosely aggregation of particles. Anatase TiO2 as prepared with acidic catalyst in Teflon lined stainless steel autoclave demonstrated the highest photocatalytic activity for degradation of 2,6-dichlorophenol-indophenol under ultraviolet irradiation with t½ 0.8 min.  相似文献   

10.
The aim of this research was to study the on-site anaerobic treatment of a medium-strength residential wastewater in a pilot-scale up-flow septic tank (UST). The effects of three different hydraulic retention times (HRTs) of 24, 12 and 6 h on the UST performance were investigated. The UST removed 85, 77, and 86% of biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total suspended solids (TSS), respectively, at steady state operation and with a 24 h HRT. Decreasing the HRT to 12 and then 6 h resulted in deteriorated effluent quality and significantly reduced reactor performance. The sludge showed a high specific methanogenic activity (SMA) of 15.2 mL CH4 g?1 VSS d?1 with raw wastewater substrate. The solids accumulated in the tank by the end of the experiment had a VSS/TSS of 0.57, demonstrating significant stabilization. Overall, the UST is concluded to be a technically and economically promising alternative to conventional septic tanks for the on-site decentralized treatment of residential wastewater, particularly in the rural communities of developing countries.  相似文献   

11.
Rotating biological contactors (RBCs) for wastewater treatment began in the 1970s. Removal of organic matter has been targeted within organic loading rates of up to 120 g m−2 d−1 with an optimum at around 15 g m−2 d−1 for combined BOD and ammonia removal. Full nitrification is achievable under appropriate process conditions with oxidation rates of up to 6 g m−2 d−1 reported for municipal wastewater. The RBC process has been adapted for denitrification with reported removal rates of up to 14 g m−2 d−1 with nitrogen rich wastewaters. Different media types can be used to improve organic/nitrogen loading rates through selecting for different bacterial groups. The RBC has been applied with only limited success for enhanced biological phosphorus removal and attained up to 70% total phosphorus removal. Compared to other biofilm processes, RBCs had 35% lower energy costs than trickling filters but higher demand than wetland systems. However, the land footprint for the same treatment is lower than these alternatives. The RBC process has been used for removal of priority pollutants such as pharmaceuticals and personal care products. The RBC system has been shown to eliminate 99% of faecal coliforms and the majority of other wastewater pathogens. Novel RBC reactors include systems for energy generation such as algae, methane production and microbial fuel cells for direct current generation. Issues such as scale up remain challenging for the future application of RBC technology and topics such as phosphorus removal and denitrification still require further research. High volumetric removal rate, solids retention, low footprint, hydraulic residence times are characteristics of RBCs. The RBC is therefore an ideal candidate for hybrid processes for upgrading works maximising efficiency of existing infrastructure and minimising energy consumption for nutrient removal. This review will provide a link between disciplines and discuss recent developments in RBC research and comparison of recent process designs are provided (Section 2). The microbial features of the RBC biofilm are highlighted (Section 3) and topics such as biological nitrogen removal and priority pollutant remediation are discussed (Sections 4 Biological nutrient removal in RBCs, 5 Priority pollutant remediation in RBCs). Developments in kinetics and modelling are highlighted (Section 6) and future research themes are mentioned.  相似文献   

12.
Many pesticides used in agricultural activities are considered environmentally non-volatile. The main purpose of this paper is to develop multimedia model to be used as a tool to predict the overall fate and transport of non-volatile organic chemicals (NVOCs) dynamic in the agro-ecosystem. The model was developed based on the EQuilibrium Criterion (EQC) model for type 2 chemicals introduced by Mackay and colleagues in 1996. Mackay’s model only considered four environmental compartments, which are air, water, soil and sediment. The present model adds the vegetation compartment, in addition to previous compartments that shape the agro-ecosystem. The vegetation compartment is described by two sub-compartments consisting of the above ground plant (AGP) and roots. The model was parameterized for the Cameron Highlands region, Malaysia, and runs with an illustrative emission rate of 1 kg h?1 into the air for three selected pesticides, namely, mancozeb, spinosad and chlorosulfuron. The simulation results with and without vegetation compartment were compared. The estimated results indicating that the AGP captures 99.9% of introduced NVOCs (i.e., of 100% or 1 kg h?1) and transfers them to the ground below due to the slight degradation losses of 10?4% and the non-volatility property of the evaluated chemicals. Root uptake of chlorosulfuron accounted the highest removal process from soil while degradation of spinosad in the soil is the major loss mechanism. Leaching to groundwater loss for mancozeb is about 2-fold greater than that of degradation, which together accounted the major removal process from soil. Based on the estimated results of mass distribution on the overall system, vegetation compartment accumulates 0.04%, 0.5% and 2.02% of the mancozeb, spinosad and chlorosulfuron, respectively.  相似文献   

13.
A biotrickling filter packed with coal slag as packing medium was continuously used for more than 9 months under high ammonia loading rates of up to 140 g/m3/h. Nitrogen mass balance and microbial community analysis were conducted to evaluate the inhibitory effects of high ammonia concentration and metabolic by-products on the rates of nitrification. Ammonia removal efficiency reached above 99% at an empty bed retention time of as low as 8 s when inlet concentrations were below 350 ppm. The maximum and critical elimination capacities of the biotrickling filter were 118 g/m3/h and 108.1 g/m3/h, respectively. Kinetics analysis results showed that less than 2.5 s was required for the biotrickling filter with pH control to treat ammonia at concentrations of up to 500 ppm in compliance with the Taiwan EPA standard (outlet NH3 < 1 ppm). Results of mass balance and microbial community analysis indicated that complete removal was mainly contributed by the activities of autotrophic ammonia oxidizing bacteria and not by physical absorption or adsorption at low loading rates. However, at high inlet loadings, ammonium became the dominant by-product due to inhibitory effects of high ammonia concentration on the bacterial community.  相似文献   

14.
The feasibility of using endpoint pH control to achieve stable partial nitritation (PN) in an SBR for landfill leachate treatment was investigated. By imposing a fixed-time anoxia followed by variable-time aeration in an SBR cycle, successful partial nitritation was maintained for 182 days at a nitrogen loading rate of 0.30–0.89 kg/m3/day. The effluent NO2-N/NH4+-N ratio and the effluent NO3-N concentration were 1.30 ± 0.22 and 16 ± 9 mg/L, respectively. High free ammonia (FA) and low dissolved oxygen (DO) concentrations were inhibition factors of nitrate formation. The termination of aeration at a suitable endpoint pH was the key to achieve an effluent NO2-N/NH4+-N ratio close to the stoichiometric value. This endpoint pH control strategy represents practical potentials in the engineered application of combined PN–ANAMMOX processes.  相似文献   

15.
An integrated process of metal chelate absorption coupled with two stage bio-reduction using immobilized cultures has been proposed to continuously removal of NOx, and the effects of SO2, NO and O2 concentration, gas/liquid flow rate on NOx removal efficiency were investigated. Although nitrogen-containing components, such as Fe(II)EDTA-NO, NO2? and NO3? in the scrubbing solution, inhibited the bio-reduction of Fe(III)EDTA obviously, it was feasible to abate the inhibition effect by using the two stage bio-reduction system, and thus to improve NOx removal efficiency. The removal efficiency decreased slowly with the increase of SO2, O2, NO concentration and gas flow rate, and increased with the increase of liquid flow rate. Continuously operating for 18 days, a high removal efficiency around 95% was reached by using the two-stage bio-reduction system with immobilized microorganisms, while the value decreased to 85% after 5 days of operation by using the suspended microorganisms, at a constant gas flow rate of 60 L/h containing 424–450 mg/m3 NO, 2428–2532 mg/m3 SO2 and 3% O2.  相似文献   

16.
The present study reported a method for removal of As(III) from water solution by a novel hybrid material (Ce-HAHCl). The hybrid material was synthesized by sol–gel method and was characterized by XRD, FTIR, SEM–EDS and TGA–DTA. Batch adsorption experiments were conducted as a function of different variables like adsorbent dose, pH, contact time, agitation speed, initial concentration and temperature. The experimental studies revealed that maximum removal percentage is 98.85 at optimum condition: pH = 5.0, agitation speed = 180 rpm, temperature = 60 °C and contact time = 80 min using 9 g L−1 of adsorbent dose for initial As(III) concentration of 10 mg L−1. Using adsorbent dose of 10 g L−1, the maximum removal percentage remains same with initial As(III) concentration of 25 mg L−1 (or 50 mg L−1). The maximum adsorption capacity of the material is found to be 182.6 mg g−1. Subsequently, the experimental results are used for developing a valid model based on back propagation (BP) learning algorithm with artificial neural networking (BP-ANN) for prediction of removal efficiency. The adequacy of the model (BP-ANN) is checked by value of the absolute relative percentage error (0.293) and correlation coefficient (R2 = 0.975). Comparison of experimental and predictive model results show that the model can predict the adsorption efficiency with acceptable accuracy.  相似文献   

17.
The effect of 7 mT (milliTesla) SMF (static magnetic field) on poly-3-hydroxybutyrate (PHB) production was studied at an acetate concentration of 260 Cmmol l?1 and temperature of 10 °C. The SMF decreased the specific acetate uptake rate by 29%, but increased the maximum PHB content and the yield of PHB on acetate by 32 and 28% respectively. The ratio qP/(qS ? qP), which described specific PHB production rate over the difference between specific acetate uptake rate and specific PHB production rate, was introduced for evaluation of the ratio of carbon flux into PHB synthesis and into the TCA (tricarboxylic acid) cycle. This value reached 2.3 when activated sludge culture was exposed to magnetic field of 7 mT, which was 1.1 times higher than the qP/(qS ? qP) value obtained without magnetic exposure. Therefore, the SMF promoted diversion of more acetyl-CoA towards PHB synthesis and could offset adverse effects of high acetate concentration and low temperature. These results provide evidence that SMF enhances PHB production by activated sludge.  相似文献   

18.
In the Ag(II)/Ag(I) redox mediator integrated scrubber system, NO reacts with the Ag(II) ions produced by the electrochemical oxidation of Ag(I) in an electrochemical cell present in the scrubbing solution (aqueous HNO3 acid) to form NO2. This NO2 is then absorbed into the scrubbing solution and degraded to nitrate. Numerous experimental runs were carried out to evaluate the feasibility of the integrated system to treat industrial waste gases containing high NOx levels. The results showed that the levels of NO and NOx removal increased with increasing Ag(II) loading and contact time. Under optimized conditions, 93.5% and 73.3% of the NO and NOx, respectively, were removed by a single stage gas scrubber with 1.62 g L?1 Ag(II) operating at 25 °C and atmospheric pressure.  相似文献   

19.
This paper discusses some aspects of the kerosene components oxidation in a soil matrix by a dielectric barrier discharge reactor at atmospheric pressure. The total kerosene components abatement can reaches 90% for an energy density of 960 J gsoil?1. The analyses of the discharge cell outlet gas reveals that COx and hydrocarbon compounds selectivity is close to 10%. A semi-quantitative approach by GC-FID shows that the carbon content in the oxidized compounds in soil is about 20% of the carbon content in the initial kerosene components. The polar species formed in soil are a mixture of aliphatic and aromatic molecules containing alcohol and carboxylic acid groups. The process of kerosene oxidation in soil matrix is more promoted than kerosene desorption followed by an oxidation in gas phase.  相似文献   

20.
Using micron-sized Al2O3 particles as carriers to grow carbon nanotubes (CNTs) under 700°C atmosphere of methane and hydrogen after pre-planted catalysts of Fe–Ni nanoparticles, those composite CNTs (CCNTs) have demonstrated several unique properties compared to CNTs—medium specific surface area and zeta potential, high adsorption capacity for metal ions, high recovery rate by acids, low decomposition heat for exothermal reaction, and so on. The adsorption behaviours of Pb2+, Cu2+ and Cd2+ in aqueous solutions by CCNTs are in good agreement with the Langmuir adsorption isotherm and second order kinetic model with maximum individual adsorption capacities of 67.11, 26.59 and 8.89 mg g−1. The individual and competitive adsorption behaviours indicated that the preference order of adsorption were Pb2+ > Cu2+ > Cd2+ for aluminum oxides, activated carbon, commercial CNTs, and CCNTs as well as other researchers’ CNTs. We suggest that future development of CNTs to combine with metals and/or other materials, such as TiO2, should consider attached to carriers or surface in order to avoid concerns on environment, health and safety. Thus, growing CNTs on Al2O3 particles to form CCNTs is an inherently safe approach for many promising environmental applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号