首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The potential colloids release from a large panel of 25 solid industrial and municipal waste leachates, contaminated soil, contaminated sediments and landfill leachates was studied. Standardized leaching, cascade filtrations and measurement of element concentrations in the microfiltrate (MF) and ultrafiltrate (UF) fraction were used to easily detect colloids potentially released by waste. Precautions against CO2 capture by alkaline leachates, or bacterial re-growth in leachates from wastes containing organic matter should be taken. Most of the colloidal particles were visible by transmission electron microscopy with energy dispersion spectrometry (TEM–EDS) if their elemental MF concentration is greater than 200 μg l?1. If the samples are dried during the preparation for microscopy, neoformation of particles can occur from the soluble part of the element. Size distribution analysis measured by photon correlation spectroscopy (PCS) were frequently unvalid, particularly due to polydispersity and/or too low concentrations in the leachates. A low sensitivity device is required, and further improvement is desirable in that field. For some waste leachates, particles had a zeta potential strong enough to remain in suspension. Mn, As, Co, Pb, Sn, Zn had always a colloidal form (MF concentration/UF concentration > 1.5) and total organic carbon (TOC), Fe, P, Ba, Cr, Cu, Ni are partly colloidal for more than half of the samples). Nearly all the micro-pollutants (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sn, V and Zn) were found at least once in colloidal form greater than 100 μg l?1. In particular, the colloidal forms of Zn were always by far more concentrated than its dissolved form. The TEM–EDS method showed various particles, including manufactured nanoparticles (organic polymer, TiO2, particles with Sr, La, Ce, Nd). All the waste had at least one element detected as colloidal. The solid waste leachates contained significant amount of colloids different in elemental composition from natural ones. The majority of the elements were in colloidal form for wastes of packaging (3), a steel slag, a sludge from hydrometallurgy, composts (2), a dredged sediment (#18), an As contaminated soil and two active landfill leachates.These results showed that cascade filtration and ICP elemental analysis seems valid methods in this field, and that electronic microscopy with elemental detection allows to identify particles. Particles can be formed from dissolved elements during TEM sample preparation and cross-checking with MF and UF composition by ICP is useful. The colloidal fraction of leachate of waste seems to be a significant source term, and should be taken into account in studies of emission and transfer of contaminants in the environment. Standardized cross-filtration method could be amended for the presence of colloids in waste leachates.  相似文献   

2.
 The concentrations of bisphenol A (BPA) contained in landfill leachates from solid waste disposal sites were measured. The concentrations of BPA contained in leachates from industrial waste sites were in the range below the detection limit to 2800 μg/l, while those from municipal sites were in the range 26–8400 μg/l. The leachates from ash-rich sites contained relatively lower concentrations of BPA compared with organic-rich leachates. It is suggested that BPA concentration increases with time after the completion of reclamation in the case of ash-rich sites, whereas the concentration of BPA decreases with time in the case of organic-rich sites. A 7-year survey on a site in Japan showed neither a decrease nor an increase in the concentration of BPA during on-going reclamation. A leachate from a site in the Philippines contained high concentrations of BPA. A slight positive correlation was found between BPA concentrations and total organic carbon (TOC). A major portion of the BPA in leachates was found in dissolved and organic unassociated fractions, which cannot be precipitated by coagulation. More than 99.9% of the BPA contained in raw leachates was removed by a conventional series of treatment processes consisting of biological treatment, coagulation, sedimentation, sand filtration, and activated carbon adsorption. Received: May 29, 2002 / Accepted: October 17, 2002  相似文献   

3.
The interaction of parameters determining the potential emissions of two different mechanically-biologically pretreated municipal solid wastes (MBT wastes) is elucidated in this work. The origins of the wastes are Germany and Sweden. By means of lab-scale experiments, increased stabilisation through composting is preferably determined by a decrease in respiration activity. Concurrently, the stabilisation is verified for the leachates by a decrease in COD, DOC, and BOD(5). Total organic carbon content reflects stabilisation less accurately. FT-IR and thermal analytical methods add valuable information about the state of degradation, especially when several distinct thermal parameters are taken into account. Mobility of Cr, Ni, Pb, and Zn produced by a batch leaching test with deionized water is reduced by the pretreatment of both materials. Mobility of copper unambiguously increased. A principle component analysis (PCA) of membrane fractionated leachates indicates an affinity of Cu to mobile humic acids or dissolved organic carbon. High Cr, Zn, and Ni contents in the solid co-occur with high contents of solid humic acids. To a lesser extent, this is also true for solid Cd, Cu, and Pb contents. Due to differences in required landfilling conditions, actual emissions and after-care phase length will depend on whether each waste is landfilled in Germany or Sweden.  相似文献   

4.
The process of eutrophication in form of intense plant growth has been observed in some lakes and water streams at the Plitvice Lakes National Park in central Croatia. Here we investigate whether this phenomenon is a consequence of anthropogenic pollution or due to naturally produced organic matter in the lakes. We applied chemical analysis of water at two springs and four lakes (nutrients, dissolved organic carbon (DOC), trace elements) and measurements of surface lake sediments (mineral and organic fraction analyses, trace elements) in four different lakes/five sites. The chemical composition of water does not indicate recent anthropogenic pollution of water because the concentrations of most trace elements are below detection limits. The concentrations of DOC and nutrients are slightly higher in the area of increased eutrophication-plant growth. Also the content of organic matter in the sediment is at the highest level in areas with highest C/N ratio indicating that the organic fraction of this sediment is mainly of terrestrial origin. There is no significant difference among the trace element concentration in the upper segment of all cores, deposited approximately during last 50 years when higher anthropogenic influence is expected due to development and touristic activity, and the lower part of the cores, corresponding to the period approximately 100–200 years before present. The content of trace elements and organic matter in sediments decreases from the uppermost lake downstream. According to our results there is no indication of recent anthropogenic pollution in water and sediment. Higher concentrations of DOC in water as well as phosphorus and some other elements in the lake sediment can be a consequence of input of natural organic matter to the lake water.  相似文献   

5.
Sediment cores collected in eutrophic subalpine Lake Bled (NW Slovenia) were analyzed sedimentologically in terms of grain size, mineralogy and sedimentation rates, and geochemically in terms of metals and nutrients. Surficial sediment is composed of dark gyttya type clayey silt with 5%–10% of organic matter. The sediment below is fine laminated and composed of homogenous silt and clayey silt: Mineralogically, low-Mg calcite prevails, followed by dolomite, quartz, partially of diatomaceous origin, and feldspar. Clay minerals are composed of muscovite/illite and chlorite. Authigenic minerals are pyrite and ‘lake chalk’ (low-Mg calcite). Lake sediment is especially polluted by Pb, Zn and P. Higher contents were found in the northwestern and eastern parts due to the particle input by local inflows. Increasing eutrophication and pollution, indicated by Cd, Cu, V, Cr, Co and total N and P enrichment in the top layers of the cores, started almost 100 years B.P., and especially 50 years ago.  相似文献   

6.
The release of inorganic and organic contaminants from municipal solid waste incinerator (MSWI) bottom ash is controlled to a large extent by the release of dissolved organic carbon (DOC), and in particular by the reactive humic (HA) and fulvic acids (FA) subfractions of DOC. The properties of organic matter contributing to the release of DOC, HA and FA are, therefore, important for environmental risk assessment. In this study we have quantitatively measured the carbon speciation, and its relation with the leaching of Cu, in three fresh and carbonated MSWI bottom ash samples. Results show that up to only 25% of loss on ignition (LOI) consists of organic carbon (OC), while about 17% of OC in the three samples consists of HA and FA. Up to 50% of DOC in MSWI bottom ash leachates was identified as fulvic acid (FA). This value is substantially higher than previously estimated for these MSWI bottom ash samples and is consistent with the higher recovery of the new method that was applied. The results of this study imply that methods focusing on specific carbon fractions are more appropriate for assessment of environmentally relevant organic carbon species than the measurement of LOI.  相似文献   

7.
The solubility and potential mobility of heavy metals (Cd, Cu,Hg, Pb and Zn) in two urban soils were studied by sequential andleaching extractions (rainwater). Compared to rural (arable) soils on similar parent material, the urban soils were highlycontaminated with Hg and Pb and to a lesser extent also with Cd,Cu and Zn. Metal concentrations in rainwater leachates were related to sequential extractions and metal levels reported fromStockholm groundwater. Cadmium and Zn in the soils were mainly recovered in easily extractable fractions, whereas Cu and Pb were complex bound. Concentrations of Pb in the residual fractionwere between two- and eightfold those in arable soils, indicatingthat the sequential extraction scheme did not reflect the solidphases affected by anthropogenic inputs. Cadmium and Zn conc. inthe rainwater leachates were within the range detected in Stockholm groundwater, while Cu and Pb conc. were higher, whichsuggests that Cu and Pb released from the surface soil were immobilised in deeper soil layers. In a soil highly contaminatedwith Hg, the Hg conc. in the leachate was above the median concentration, but still 50 times lower than the max concentration found in groundwater, indicating the possibilityof other sources. In conclusion, it proved difficult to quantitatively predict the mobility of metals in soils by sequential extractions.  相似文献   

8.
When selecting a landfill leachate treatment method the contaminant composition of the leachate should be considered in order to obtain the most cost-effective treatment option. In this study the filter material pine bark was evaluated as a treatment for five landfill leachates originating from different cells of the same landfill in Sweden. The objective of the study was to determine the uptake, or release, of metals and dissolved organic carbon (DOC) during a leaching test using the pine bark filter material with the five different landfill leachates. Furthermore the change of toxicity after treatment was studied using a battery of aquatic bioassays assessing luminescent bacteria (Vibrio fischeri) acute toxicity (30-min Microtox®), immobility of the crustacean Daphnia magna, growth inhibition of the algae Pseudokirchneriella subcapitata and the aquatic plant Lemna minor; and genotoxicity with the bacterial Umu-C assay. The results from the toxicity tests and the chemical analysis were analyzed in a Principal Component Analysis and the toxicity of the samples before and after treatment was evaluated in a toxicity classification. The pine bark filter material reduced the concentrations of metal contaminants from the landfill leachates in the study, with some exceptions for Cu and Cd. The Zn uptake of the filter was high for heavily contaminated leachates (≥73%), although some desorption of zinc occurred in less contaminated waters. Some of the leachates may require further treatment due to discharge into a natural recipient in order to reduce the risk of possible biological effects. The difference in pH changes between the different leachates was probably due to variations in buffering capacity, affected by physicochemical properties of the leachate. The greatest desorption of phenol during filtration occurred in leachates with high conductivity or elevated levels of metals or salts. Generally, the toxicity classification of the leachates implies that although filter treatment with pine bark removes metal contaminants from the leachates effectively, it does not alter leachate toxicity noticeably. The leachates with the highest conductivity, pH and metal concentrations are most strongly correlated with an increased toxic response in the score plots of both untreated and treated leachates. This is in line with the toxicity classification of the leachate samples. The results from this study highlight the importance of evaluating treatment efficiency from the perspective of potential recipient effects, rather than in terms of residual concentrations of individual contaminants when treating waters with a complex contamination matrix, such as landfill leachates.  相似文献   

9.
The Matanza-Riachuelo is one of the most polluted rivers of Latin America. The complex chemical mixture of pollutants discharged into the river is accumulated in the river sediments. In this paper, Matanza-Riachuelo river sediment composition and genotoxicity were tested in order to develop a cost-effective, environmentally sound option for disposal and management of contaminated dredged materials. Sampling was performed in a rural area, in a solid waste dumpsite and also in an urban and industrial area. The concentrations of total heavy metals increased from the upper basin to the lower basin. The Ames Salmonella typhimurium test and the Saccharomyces cerevisiae D7 test were performed using toxicity characteristic leachate procedure (TCLP) leachates. The concentrations of copper, lead, and chromium in the leachates exceeded the guide levels for the protection of aquatic life. Low concentrations of organic chlorinated compounds were detected in the leachates. Genotoxic profiles were obtained by testing TCLP leachates from polluted sediment samples with Salmonella typhimurium, Saccharomyces cerevisiae D7, and water sediment suspension with Allium cepa test. No mutagenicity effects on Ames test were observed. Gene conversion and mitotic reversion in Saccharomyces cerevisiae D7 and chromosome aberration in Allium cepa were induced by the sediment samples. Results obtained suggest that dredged sediments could be classified as genotoxic hazardous waste.  相似文献   

10.
In order to manage municipal solid waste incineration (MSWI) bottom ash safely, risk assessments, including the prediction of leaching under different field conditions, are necessary. In this study, the influence of salt or dissolved organic matter (DOM) in the influent on metal leaching from MSWI bottom ash was investigated in a column experiment. The presence of salt (0.1M NaCl) resulted in a small increase of As leaching, whereas no impact on leachate concentration was found when lakewater DOM (35.1mg/l dissolved organic carbon) was added. Most of the added DOM was retained within the material. Further, X-ray spectroscopy revealed that Cu(II) was the dominating form of Cu and that it probably occurred as a CuO-type mineral. The Cu(2+) activity in the MSWI bottom ash leachate was most likely determined by the dissolution of CuO together with the formation of Cu-DOM complexes and possibly also by adsorption to (hydr)oxide minerals. The addition of lake DOM in the influent resulted in lower saturation indices for CuO in the leachates, which may be due to slow CuO dissolution kinetics in combination with strong Cu-DOM complexation.  相似文献   

11.
The concentration and bioavailability of heavy metals in composted organic wastes have negative environmental impacts following land application. Aerobic composting procedures were conducted to investigate the influences of selected parameters on heavy metal speciation and phytotoxicity. Results showed that both of sewage sludge (SSC) and swine manure (SMC) composting systems decreased the pH, the content of organic matter (OM) and dissolved organic carbon (DOC), and total amounts of Cu, Zn and Pb. Sequential extraction showed that readily extractible fractions of exchangeable and carbonate in Cu and Zn increased during SSC composting but decreased during SMC composting, thus their bioavailability factors (BF) enhanced in SSC but declined in SMC. The fraction of reducible iron and manganese (FeMnOX) of Cu and Zn in SSC and FeMnOX-Cu in SMC decreased, but FeMnOX-Zn in SMC gradually increased in the process of compost. In contrast, the changes of Pb distributions were similar in two organic wastes. Pb was preferentially bound to the residual fraction and its BF decreased. The evolution of heavy metal distributions and BF depended on not only total metal concentrations but also the other properties, such as pH, decomposition of OM and decline of DOC. The germination rate (RSG), root growth (RRG) and germination index (GI) of pakchoi (Brassica Chinensis L.) increased during the composting process. Linear regression analysis demonstrated that GI, which could represent phytotoxic behavior to the plants, could be poorly predicted by BF or total amount of metals, i.e., BF-Zn, T-Cu. However, the inclusion of other physicochemical parameters (pH, OM and DOC) could enhance the linear regression significances (R).  相似文献   

12.
This study characterises the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.  相似文献   

13.
A natural treatment system for the treatment of leachate was studied at Moskogen landfill in southern Sweden. This facility consists of three consecutive ponds and a soil-plant (SP)-system. A test area, receiving water from the third pond with the same hydraulic load as the SP-system, was used for estimation of the latter system. Quality parameters including biochemical oxygen demand, total organic carbon, ammonium, nitrate, orthophosphate, and total suspended solids along the treatment line were determined as well as soluble metals (Cu, Cd, Zn, Cr, Ni, and Pb). In addition a thorough investigation along the treatment line has also been performed concerning volatile organic compounds and semi-volatile organic compounds. Non-polar organic compounds were investigated using gas chromatography-mass spectrometry. Quantification was based on the assumption of equal response for the compounds found in comparison with the chosen marker substances. For polar, water-soluble compounds the measurements were restricted to phenolic compounds using high-performance liquid chromatography. Several different types of organic compounds were found in the raw leachate including aromatics, benzene-sulfonamides, biphenyls, naphthalene, organic phosphates, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phenols and phthalates. The treatment system efficiently reduced organic pollutants, heavy metals, and nitrogen/phosphorous compounds. Most metals and organic compounds in the leachate were already significantly reduced to a low level in the treatment ponds and ammonium-N was efficiently transformed to nitrate-N in the SP-system.  相似文献   

14.
A series of tests to burn mixtures of tar pond sludge and coal was carried out using a mini‐circulating fluidized bed combustor (mini‐CFBC). During the tests, carbon dioxide, oxygen, carbon monoxide, sulfur dioxide, and nitrogen oxides in the flue gas were monitored continuously. Stack gas sampling was carried out for hydrochloric acid, metals, particulate matter, volatile organic compounds (VOCs), total hydrocarbons, semivolatile organic compounds (SVOCs), dioxins and furans (PCDD/Fs), and polychlorinated biphenyls (PCBs). Results showed that hydrochloric acid, mercury, particulate matter, PCDD/F, and metal concentrations were all below both the current limits and the gas‐release limits to be implemented in 2008 in Canada. The new 2008 emissions limits will reduce the maximum allowable concentrations of most pollutants by half. Thus, the maximum concentration for particulate matter will be 5 mg/m3 (from the current maximum concentration of 10 mg/m3);the maximum concentration for hydrochloric acid will be 5 mg/m3 (from 10 mg/m3); and the‐maximum concentration for dioxins and furans will be 0.032 ng/m toxic equivalent (from 0.08 ng/mcurrently). Sulfur capture efficiency was 89–91 percent. The percentage of fuel nitrogen converted to nitrogen oxides was of the order of 4.7 to 6.1, which is significantly lower than that of conventional pulverized coal‐fired boilers and well within the normal range for fluidized bed combustors (FBCs). PCB and polycyclic aromatic hydrocarbon (PAH) emissions levels were comparable or lower than levels reported in the literature for industrial‐scale FBCs. VOC concentrations were low except for benzene, for which the concentration was higher than that reported for pulverized coal‐fired utility boilers. In addition, carbon monoxide concentration was high at 1,200 to 2,200 parts per million. However, these carbon monoxide concentrations are typical of the mini‐CFBC firing coal. The trials showed that for 10 percent by weight tar pond sludge mixed with 90 percent by weight coal, the combustion was both stable and efficient. The tests demonstrated that CFBC technology is an environmentally sound option for eliminating tar pond waste sludge. © 2005 Wiley Periodicals, Inc.  相似文献   

15.
Leaching experiments of rebuilt soil columns with two simulated acid rain solutions (pH 4.6–3.8) were conducted for two natural soils and two artificial contaminated soils from Hunan, south-central China, to study effects of acid rain on competitive releases of soil Cd, Cu, and Zn. Distilled water was used in comparison. The results showed that the total releases were Zn>Cu>Cd for the natural soils and Cd>Zn≫Cu for the contaminated soils, which reflected sensitivity of these metals to acid rain. Leached with different acid rain, about 26–76% of external Cd and 11–68% external Zn were released, but more than 99% of external Cu was adsorbed by the soils, and therefore Cu had a different sorption and desorption pattern from Cd and Zn. Metal releases were obviously correlated with releases of TOC in the leachates, which could be described as an exponential equation. Compared with the natural soils, acid rain not only led to changes in total metal contents, but also in metal fraction distributions in the contaminated soils. More acidified soils had a lower sorption capacity to metals, mostly related to soil properties such as pH, organic matter, soil particles, adsorbed SO4 2−, exchangeable Al3+ and H+, and contents of Fe2O3 and Al2O3.  相似文献   

16.
Municipal and Industrial Solid Waste Incineration (MISWI) bottom ash is mainly deposited in landfills, but natural resources and energy could be saved if these ash materials would be used in geotechnical constructions. To enable such usage, knowledge is needed on their potential environmental impact. The aim of this study was to evaluate the ecotoxicity of leachates from MISWI bottom ash, aged for five years, in an environmental relevant way using a sequential batch leaching method at the Liquid/Solid-ratio interval 1–3, and to test the leachates in a (sub)chronic ecotoxicity test. Also, the leachates were characterized chemically and with the technique of diffusive gradients in thin films (DGTs). By comparing established ecotoxicity data for each element with chemically analysed and labile concentrations in the leachates, potentially problematic elements were identified by calculating Hazard Quotients (HQ). Overall, our results show that the ecotoxicity was in general low and decreased with increased leaching. A strong correspondence between calculated HQs and observed toxicity over the full L/S range was observed for K. However, K will likely not be problematic from a long-term environmental perspective when using the ash, since it is a naturally occurring essential macro element which is not classified as ecotoxic in the chemical legislation. Although Cu was measured in total concentrations close to where a toxic response is expected, even at L/S 3, the DGT-analysis showed that less than 50% was present in a labile fraction, indicating that Cu is complexed by organic ligands which reduce its bioavailability.  相似文献   

17.
Leachate from a landfill is collected and flowed in leachate accumulation pond, and sent to treatment facility. However, leachate in the pond can be a source of complaints from residents due to off coloration or odor, particularly near heavily populated urban areas. In this study, for the purpose of appropriate control of leachate pond, pond water and sediment were sampled in an offshore municipal solid waste disposal site 2 years after the disposal site was closed, and analyzed some parameters to estimate their properties. The pond water had high alkalinity due to the disposal of incineration residues, and EC and CODMn were also high. On the other hand, Cr, Mn, Fe, Cu, Zn, Cd, and Pb did not exceed the Japanese effluent water standards. Total sulfide was detected from all sediment samples during the sampling period, and values in the summer were slightly higher than at other times. To investigate the stabilization of targeted disposal site, the relationships among cumulative liquid/solid ratio (L/S) with pH and Cl? elution after closing the site were examined. Both parameters showed a direct relationship with cumulative L/S ratio, which can be anticipated to continue increasing in the future.  相似文献   

18.
Heavy Metal Sediment Load from the City of Stockholm   总被引:2,自引:0,他引:2  
A transect of upstream lake sitesand downstream coastal sites surrounding the cityof Stockholm, capital of Sweden, wereinvestigated for heavy metals in sediments.Concentrations of Cd, Cu, Hg, Pb and Zn increasedclose to the city. In the most central areas ofStockholm, sediment deposition was increasedabout 5-fold for Cd, Cu, Hg and Pb and 3-fold forZn, as compared to the surrounding areas. Thesediment load from the city was estimated bycorrecting for a background concentration. It canbe concluded that most of the load of Hg and Pbwas trapped in the sediments close to the citywhile Ni, Cu, Cd and Zn to a higher degree weretransported through the archipelago towards theBaltic Sea.  相似文献   

19.
Typical soils in Greece are neutral or alkaline and frequently are lime-rich, conditions that favour the accumulation of trace elements. The traditional use of metal-based fungicides in orchards and vineyards may have led to the accumulation of trace metals. Concentrations of Fe, Cu, Mn, Zn (aqua regia digestion) and some other soil parameters were measured in organically and conventionally cultivated soils (0–30 cm) from vineyards, olive groves and citrus groves of varying ages, and in uncultivated soils. Many vineyards and olive groves are situated in hilly or mountainous areas with sloping ground or terraces in contrastto citrus, which is cultivated in lower lying areas. Due to the difficulty of access, these crops often are cultivated extensively in both systems. Trace metal concentrations were found to lie withinthe ranges expected for the predominant soil types. Cu concentrations were relatively high (>100 mg kg-1) in a few samples, but were not correlated with the age of the cultivation. A two-way ANOVA analysis showed larger differences in the mean concentrations of Cu, Mn and Zn between different crops (p≤ 0.001 for Cu, p≤ 0.05 for Zn, and p≤ 0.1 for Mn) than between different cultivation systems (no significant differences). The crop by cultivation interaction was not statistically significant for any metal (p > 0.8). Strong correlations (p≤ 0.001) were found between Fe, Mn and Zn and both clay concentration and CEC, although these relationshipswere not uniform throughout the different crop and cultivation systems. Concentrations of Cu were related to clay concentrations only for vineyards and to CEC only for citrus. Correlations were not found with organic matter or pH.  相似文献   

20.
Variations of metal distribution in sewage sludge composting   总被引:4,自引:0,他引:4  
In the study, the variations of heavy metal distributions (of Cu, Mn, Pb, and Zn) during the sewage sludge composting process were investigated by sequential extraction procedures. The total content of Cu and Zn in the composted mixture increased after the composting process. Mn and Zn were mainly found in mobile fractions (exchangeable fraction (F1), carbonate fraction (F2), and Fe/Mn oxide fraction (F3)). Cu and Pb were strongly associated with the stable fractions (organic matter/sulfides fraction (F4) and residual fraction (F5)). These five metal fractions were used to calculate the metal mobility (bioavailability) in the sewage sludge and composted mixture. The mobility (bioavailability) of Mn, Pb, and Zn (but not Cu) increased during the composting process. The metal mobility in the composted mixture ranked in the following order: Mn>Zn>Pb>Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号