首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the long-time application of organic waste derived composts to crops, there is still no universally accepted index to assess compost maturity and stability. The research presented in this article investigated the suitability of seven types of seeds for use in germination bioassays to assess the maturity and phytotoxicity of six composts. The composts used in the study were derived from cow manure, sea weeds, olive pulp, poultry manure and municipal solid waste. The seeds used in the germination bioassays were radish, pepper, spinach, tomato, cress, cucumber and lettuce. Data were analyzed with an analysis of variance at two levels and with pair-wise comparisons. The analysis revealed that composts rendered as phytotoxic to one type of seed could enhance the growth of another type of seed. Therefore, germination indices, which ranged from 0% to 262%, were highly dependent on the type of seed used in the germination bioassay. The poultry manure compost was highly phytotoxic to all seeds. At the 99% confidence level, the type of seed and the interaction between the seeds and the composts were found to significantly affect germination. In addition, the stability of composts was assessed by their microbial respiration, which ranged from approximately 4 to 16 g O2/kg organic matter and from 2.6 to approximately 11 g CO2–C/kg C, after seven days. Initial average oxygen uptake rates were all less than approximately 0.35 g O2/kg organic matter/h for all six composts. A high statistically significant correlation coefficient was calculated between the cumulative carbon dioxide production, over a 7-day period, and the radish seed germination index. It appears that a germination bioassay with radish can be a valid test to assess both compost stability and compost phytotoxicity.  相似文献   

2.
The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha?1 were incubated for 90 days at two temperatures: 5 and 35 °C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 23 factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 °C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E4/E6 ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E4/E6 ratio (<5), the higher temperature favoured mineralization but not humification, whereas the low temperature maintained the SOC levels and even increased the HA/FA ratio. In these soils the moment of addition of organic amendment should be decided depending on the effect intended. On the other hand, the lower the SOC content in the original soil, the greater are the changes observed in the SOC after amendment with co-compost. The results suggest that proper recommendations for optimum organic matter evolution after soil amendment is possible after considering a small set of characteristics of soil and the corresponding soil organic matter fractions, in particular HA.  相似文献   

3.
The effect of twelve weeks of composting on the mobility and bioavailability of cadmium in six composts containing sewage sludge, wood chips and grass was studied, along with the cadmium immobilization capacity of compost. Two different soils were used and Cd accumulation measured in above-ground oat biomass (Avena sativa L.). Increasing pH appears to be an important cause of the observed decreases in available cadmium through the composting process. A pot experiment was performed with two different amounts of compost (9.6 and 28.8 g per kg of soil) added into Fluvisol with total Cd 0.255 mg kg?1, and contaminated Cambisol with total Cd 6.16 mg kg?1. Decrease of extractable Cd (0.01 mol l?1 CaCl2) was found in both soils after compost application. The higher amount of compost immobilized an exchangeable portion of Cd (0.11 mol l?1 CH3COOH extractable) in contaminated Cambisol unlike in light Fluvisol. The addition of a low amount of compost decreased the content of Cd in associated above-ground oat biomass grown in both soils, while a high amount of compost decreased the Cd content in oats only in the Cambisol.  相似文献   

4.
Discharging untreated highly acidic (pH < 4.0), organic and nutrients rich monosodium glutamate wastewater (MW), and highly alkaline (pH > 10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5 ± 0.1) with PW and lime (treatments represented as MW + PW and MW + Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha?1. Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear?1 and 100-kernel weight were higher in MW + Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW + Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW + PW. The MW + PW and MW + Lime treatments exhibited comparable results with chemically fertilized treatment. The MW acidity neutralized with lime showed positive impacts on growth, yield and nutrients uptake; nevertheless, when MW pH neutralized with PW has an additional benefit on increase in soil organic matter and humic substances.  相似文献   

5.
The effects of wastewater application on electrical conductivity, water retention and water repellency of soils planted with Populus deltoides (eastern cottonwood) and irrigated with different concentrations of landfill leachate and compost wastewater, tap water and nutrient solution were evaluated. Substrate water content at field capacity (?0.033 MPa) and at permanent wilting point (?1.5 MPa) was determined with a pressure plate extractor to assess available water capacity of the substrate. A water drop penetration test was used to determine substrate water repellency. The biomass of nutrient and landfill leachate treatments was significantly (P < 0.05) greater compared to the tap water and compost wastewater treatments. All treatments increased substrate water content at field capacity and at permanent wilting point. Landfill leachate significantly increased available water capacity (up to 52%); treatment with compost wastewater significantly decreased it (25–47%). All substrates showed increased water repellency after the experiment at field capacity and permanent wilting point comparing to the original substrate. The strongest influence on water repellency at both field capacity and permanent wilting point showed irrigation with compost wastewater and tap water. Pronounced influence on substrate’s water repellency of compost wastewater could be contributed to a high content of dissolved organic carbon, whereas Mg and Ca cations caused flocculation and consequent water repellency of the substrate irrigated with tap water. The results indicate that soil physical characteristics must be closely monitored when landfill leachate and compost wastewater are used for irrigation to avoid long term detrimental effects on the soil, and consequently on the environment. Due to the complexity of the compost wastewater quality the latter should be applied on open fields only after prior pre-treatment to reduce dissolved organic carbons, or alternatively, compost wastewater should be added only intermittently and in diluted ratios.  相似文献   

6.
Mineralization potentials are often used to classify organic wastes. These methods involve measuring CO2 production during batch experiments, so variations in chemical compounds are not addressed. Moreover, the physicochemical conditions are not monitored during the reactions. The present study was designed to address these deficiencies. Incubations of a mixture of soil and waste (vinasse at 20% dry matter from a fermentation industry) were conducted in aerobic and anaerobic conditions, and liquid samples obtained by centrifugation were collected at 2 h, 1 d and 28 d. Dissolved organic carbon (DOC) patterns highlighted that: there was a “soil effect” which increased organic matter (OM) degradation in all conditions compared to vinasse incubated alone; and OM degradation was faster under aerobic conditions since 500 mg kg?1 of C remained after aerobic incubation, as compared to 4000 mg kg?1 at the end of the anaerobic incubation period. No changes were detected by Fourier transform infrared spectroscopy (FTIR) between 2 h and 1 d incubation. At 28 days incubation, the FTIR signal of the aerobic samples was deeply modified, thus confirming the high OM degradation. Under anaerobic conditions, the main polysaccharide contributions (ν(C–O)) disappeared at 1000 and 1200 cm?1, as also confirmed by the 13C NMR findings. Under aerobic incubation, a 50% decrease in the polysaccharide proportion was observed. Under anaerobic conditions, significant chemical modifications of the organic fraction were detected, namely formation of low molecular weight organic acids.  相似文献   

7.
In this study we observed the production of volatile fatty acids (VFAs) during the composting process of compost heaps in two different bioreactors (open and closed) at three different depths (0, 40 and 80 cm). The compost was prepared as a mixture of bio-waste, horse manure, grass and sawdust to ensure sufficient pH conditions in compost heaps. VFA contents in the composting materials were analysed weekly over 14–119 d. The degradation process was monitored, along with temperature, pH, total organic carbon, oxidizable carbon and mono- and oligosaccharides. VFA contents were evaluated with regard to the depth of the sample site in the compost heap and to conditions in the bioreactors. The maximum VFA occurrence was observed during the first 35 d; acetic and propionic acids in particular were determined to occur in each sample. Considerable variations in their formation and elimination were observed in the two bioreactors as well as at the various depths in the compost heaps. Significant correlations were found between individual VFAs, as well as between VFA concentrations and organic carbon contents.  相似文献   

8.
Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 × 2 × 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH4 loadings up to 300 l CH4/m2 d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC.Methane emissions from the reference lysimeter with the smaller substrate cover (12–52 g CH4/m2 d) were significantly higher than fluxes from the other lysimeters (0–19 g CH4/m2 d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18–26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27–45% of the precipitation).On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH4 emissions, even beyond the time of active aeration.  相似文献   

9.
In regions with intensive livestock farming, thermal treatment for local energy extraction from the manure and export of the P rich ash as a fertilizer has gained interest. One of the main risks associated with P fertilizers is eutrophication of water bodies. In this study P and K mobility in ash from anaerobically digested, thermally gasified (GA) and incinerated (IA) piggery waste has been tested using water loads ranging from 0.1 to 200 ml g?1. Leaching of P from soil columns amended with GA was investigated for one P application rate (205 kg P ha?1 corresponding to 91 mg P kg?1 soil dry matter) as a function of precipitation rate (9.5 and 2.5 mm h?1), soil type (Jyndevad agricultural soil and sand), amount of time elapsed between ash amendment and onset of precipitation (0 and 5 weeks) and compared to leaching from soils amended with a commercial fertilizer (Na2HPO4). Water soluble P in GA and IA constituted 0.04% and 0.8% of total ash P. Ash amended soil released much less P (0.35% of total P applied in sand) than Na2HPO4 (97% and 12% of total P applied in Jyndevad and sand, respectively).  相似文献   

10.
Four user surveys were performed at recycle centres (RCs) in the Municipalities of Aarhus and Copenhagen, Denmark, to get general information on compost use and to examine the substitution of peat, fertiliser and manure by compost in hobby gardening. The average driving distance between the users’ households and the RCs was found to be 4.3 km and the average amount of compost picked up was estimated at 800 kg per compost user per year. The application layer of the compost varied (between 1 and 50 cm) depending on the type of use. The estimated substitution (given as a fraction of the compost users that substitute peat, fertiliser and manure with compost) was 22% for peat, 12% for fertiliser and 7% for manure (41% in total) from the survey in Aarhus (n = 74). The estimate from the survey in Copenhagen (n = 1832) was 19% for peat, 24% for fertiliser and 15% for manure (58% in total). This is the first time, to the authors’ knowledge, that the substitution of peat, fertiliser and manure with compost has been assessed for application in hobby gardening. Six case studies were performed as home visits in addition to the Aarhus surveys. From the user surveys and the case studies it was obvious that the total substitution of peat, fertiliser and manure was not 100%, as is often assumed when assigning environmental credits to compost. It was more likely around 50% and thus there is great potential for improvement. It was indicated that compost was used for a lot of purposes in hobby gardening. Apart from substitution of peat, fertiliser and manure, compost was used to improve soil quality and as a filling material (as a substitute for soil). Benefits from these types of application are, however, difficult to assess and thereby quantify.  相似文献   

11.
Small scale co-composting of faecal matter from dry toilet systems with shredded plant material and food waste was investigated in respect to heat development and deactivation of faecal indicators under tropical semiarid conditions. Open (uncovered) co-composting of faecal matter with shredded plant material alone did not generate temperatures high enough (<55 °C) to reduce the indicators sufficiently. The addition of food waste and confinement in chambers, built of concrete bricks and wooden boards, improved the composting process significantly. Under these conditions peak temperatures of up to 70 °C were achieved and temperatures above 55 °C were maintained over 2 weeks. This temperature and time is sufficient to comply with international composting regulations. The reduction of Escherichia coli, Enterococcus faecalis and Salmonella senftenberg in test containment systems placed in the core of the compost piles was very efficient, exceeding 5 log10-units in all cases, but recolonisation from the cooler outer layers appeared to interfere with the sanitisation efficiency of the substrate itself. The addition of a stabilisation period by extending the composting process to over 4 months ensured that the load of E. coli was reduced to less than 103 cfu?g and salmonella were undetectable.  相似文献   

12.
The use of organic wastes in agriculture may increase the production of crops by incorporating organic matter and nutrients into the soil, and by improving its physical characteristics; however, this use may cause environmental problems such as the leaching of certain ions. The objective of this study was to establish possible nitrogen and phosphorus leaching under real field conditions in Phaeozem soils. The experimental work was performed in a corn (Zea mays L.) field where three plots were conditioned with inorganic fertilizer, three plots with 4.5 Mg ha?1 of biosolids on dry basis, and three plots with the same amount of composted biosolids. The quality of biosolids and composted biosolids complied with the Mexican Official Standards. Soil water samples were collected with suction cups during two agricultural cycles and were analysed. Soil samples were also taken and analysed.The N–NO3 concentrations in soil water fluctuated between 0.9 and 98 mg L?1 in the composted biosolid treatment, between 0.7 and 64 mg L?1 in the biosolid treatment, and between 1 and 61 mg L?1 in the inorganic fertilizer treatment. The maximum concentration of N–NO2 and N–NH3 in soil water was 1.02 and 2.65 mg L?1, respectively. The greatest percentage of nitrogen leached is produced when inorganic fertilizer is used (37.4% and 24.0% N leached in the first and second years, respectively), followed by composted biosolids (17.1% and 13.5% N leached in the first and second years, respectively) and last by biosolids (11% for both years). This difference could be related to the form in which nitrogen is present in the fertilizers, while commercial fertilizer is as inorganic nitrogen, organic wastes are basically presented as organic nitrogen. The maximum PO43- concentration in soil water was 1.9 mg L?1 in the composted biosolid treatment, 1.7 mg L?1 in the biosolid treatment and 0.9 mg L?1 in the inorganic fertilizer treatment. The estimated percentage of leached phosphorus was less than 1% for all treatments. The minimum leaching that occurred seemed to be due to a sorption–precipitation process.  相似文献   

13.
Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.  相似文献   

14.
Uncontrolled deposition of waste from animal farms is a common practice in south-western Nigeria, and the presence of heavy metals in soil constitutes environmental and health hazards by polluting the soil, ground water, adjoining streams and rivers. The study investigated the profile distribution of Mn, Pb, Cd, Zn, Fe, Cu, Ni and Cr in some tropical Alfisols in south-western Nigeria after nine years disposal of animal wastes. The amount of these metals in the soil horizons was high enough to cause health and phytotoxic risks. All the metals except Zn and Cr increased down the profile, while Mn, Pb, Cd, Fe, Cu and Ni accumulated at 80–120 cm depth. The increment of these metals at this depth over the top soil were 26%, 143%, 72%, 47%, 328% for Mn, Pb, Cd, Cu and Ni, respectively. It thus, shows their mobility and the possibility of polluting ground water. The Mn content at the poultry and cattle waste sites increased by 127% and 25%, respectively over the control, while that of cattle and swine dump site for Cd content were 9.82 and 15.63 mg kg?1, respectively. Lead content also increased by 8.52 and 5.25 mg kg?1, respectively.There was the accumulation of Zn and Cu at the swine dump site while the cattle dump site had the highest amounts of nickel and chromium. The least amount of Fe was recorded at the swine waste dump site. The reduction in organic matter with depths together with the reduced pH might have favored the mobility of the metals. The ranking of pollution among the sites was poultry > swine > cattle > sheep and could be due to the type of ration fed, the vaccination programmes, sanitation programmes and other management practices.  相似文献   

15.
The attenuation of H2S emissions by various landfill cover materials was evaluated using both laboratory and field experiments. The results demonstrated that cover materials consisting of selected waste products (compost and yard trash) and soils amended with quicklime and calcium carbonate effectively attenuated H2S emissions and detectable H2S emissions were only encountered in a testing plot using a sandy soil cover (average emission rate was 4.67 × 10?6 mg m?2 s?1). H2S concentration profiles in the cover materials indicated that H2S was removed as it migrated through the cover materials. At the same depth in the testing area, the H2S concentration in the sandy soil field plot was always higher than that of other testing plots because the sand (a) demonstrated less ability to remove H2S and (b) exhibited a higher H2S concentration at the base of the cover. Laboratory experiments confirmed these observations, with a combination of physical adsorption, chemical reactions, and biological oxidation, accounting for the enhanced removal. In addition to removal, the results suggest that some of the cover materials reduced H2S generation by creating less favorable conditions for sulfate-reducing bacteria (e.g., high pH and temperature).  相似文献   

16.
In the present study, we investigated the effects of two bulking materials, Sphagnum peat and pine wood chips, on the early stages of biowaste composting in two pilot-scale processes. Emphasis was placed on studying the formation conditions of malodorous compost gases in the initial phases of the processes. The results showed that gas emission leaving an open windrow and a closed drum composting system contained elevated concentrations of fermentative microbial metabolites when acid Sphagnum peat (pH 3.2) was used as a bulking material. Moreover, the gas emission of the peat amended drum composter contained a high concentration of odour (up to 450,000 ou m?3 of air). The highest odour values in the outlet gas of peat amended composts coincided with the elevated concentrations of volatile organic compounds such as acetoin and buthanedion. We conclude that the acidifying qualities of composting substrates or bulking material may intensify odour emission from biowaste composts and prolong the early stages of the composting process.  相似文献   

17.
The production of compost and digestate from source-separated organic residues is well established in Europe. However, these products may be a source of pollutants when applied to soils. In order to assess this issue, composts, solid and liquid digestates from Switzerland were analyzed for heavy metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) addressing factors which may influence the concentration levels: the treatment process, the composition, origin, particle size and impurity content of input materials, the season of input materials collection or the degree of organic matter degradation.Composts (n = 81) showed mean contents being at 60% or less of the legal threshold values. Solid digestates (n = 20) had 20–50% lower values for Cd, Co, Pb and Zn but similar values for Cr, Cu and Ni. Liquid digestates (n = 5) exhibited mean concentrations which were approximately twice the values measured in compost for most elements. Statistical analyses did not reveal clear relationships between influencing factors and heavy metal contents. This suggests that the contamination was rather driven by factors not addressed in the present study.According to mass balance calculations related to Switzerland, the annual loads to agricultural soils resulting from the application of compost and digestates ranged between 2% (Cd) and 22% (Pb) of total heavy metal loads. At regional scale, composts and digestates are therefore minor sources of pollution compared to manure (Co, Cu, Ni, Zn), mineral fertilizer (Cd, Cr) and aerial deposition (Pb). However, for individual fields, fertilization with compost or digestates results in higher heavy metal loads than application of equivalent nutrient inputs through manure or mineral fertilizer.  相似文献   

18.
Composting has been recognized as one of the most cost effective and environmentally sound alternatives for organic wastes recycling from long and composted wastes have a potential to substitute inorganic fertilizers. We investigated the potential of composted tannery sludge for ornamental purposes and to examine the effects of two different composts and concentrations on ornamental Capsicum growth. The two composts were produced with tannery sludge and the composition of each compost was: compost1 of tannery sludge (C1TS) – tannery sludge + sugarcane straw and cattle manure mixed in the ratio 1:3:1 (v:v:v); compost2 of tannery sludge (C2TS) – tannery sludge + “carnauba” straw and cattle manure in the ratio 1:3:1 (v:v:v). Each compost was amended with soil at rates (% v:v) of 0%, 25%, 50%, 75% and 100% (designation hereafter as T1T5, respectively). The number of leaves and fruits were counted, and the stem length was also measured. Chlorophyll content was recorded on three leaves of each harvested plant prior to harvest. Number of leaves and fruits, stem length, dry weight of shoot and roots did not vary significantly between the plants grown in two tannery composts. All the treatments with composted tannery sludge application (T2T5) significantly increased the number of leaves and fruits, stem length and chlorophyll content compared with the control (T1). The chlorophyll content was higher in plants growing in the C1TS compared to C2TS. The results of the present study further suggest that Capsicum may be a good option to be grown on composted tannery amended soil.  相似文献   

19.
20.
Compost leachate forms during the composting process of organic material. It is rich in oxidizable organics, ammonia and metals, which pose a risk to the environment if released without proper treatment. An innovative method based on the membrane bioreactor (MBR) technology was developed to treat compost leachate over 39 days. Water quality parameters, such as pH, dissolved oxygen, ammonia, nitrate, nitrite and chemical oxygen demand (COD) were measured daily. Concentrations of caffeine and metals were measured over the course of the experiment using gas chromatography – mass spectrometry (GC/MS) and inductively coupled plasma – mass spectrometry (ICP–MS) respectively. A decrease of more than 99% was achieved for a COD of 116 g/L in the initial leachate. Ammonia was decreased from 2720 mg/L to 0.046 mg/L, while the nitrate concentration in the effluent rose to 710 mg/L. The bacteria in the MBR system adjusted to the presence of the leachate, and increased 4 orders of magnitude. Heavy metals were removed by at least 82.7% except copper. These successful results demonstrated the membrane bioreactor technology is feasible, efficient method for the treatment of compost leachate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号