首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The annual occurrence of hypoxia (<25% oxygen saturation) in the bottom waters along the Swedish west coast coincides with the postlarval settlement of Norway lobster, Nephrops norvegicus (L.). This study investigates behaviour and the experimental effects of low oxygen concentrations in juvenile N. norvegicus of different ages. All experimental individuals were reared to the juvenile (postlarval) stage in the laboratory and then given sediment as a substratum. Behavioural responses to low oxygen concentrations were tested in early and late Postlarvae 1 exposed to normoxia (>80% oxygen saturation, pO2 > 16.7 kPa), moderate hypoxia (30% oxygen saturation, pO2 = 6.3 kPa) and hypoxia (25% oxygen saturation, pO2 = 5.2 kPa). The experiments were run for a maximum period of 24 h or until individuals died. Behaviour was studied using sequential video recordings of four behavioural activities: digging, walking, inactivity or flight (escape swimming up into the water column). Behaviour and mortality changed with lowered oxygen concentrations; energetically costly activities (such as walking) were reduced, and activity in general declined. In normoxia, juveniles initially walked and then burrowed, but when exposed to hypoxia they were mainly inactive with occasional outbursts of escape swimming. To increase oxygen availability the juveniles were observed to raise their bodies on stilted legs (similar to adults in hypoxic conditions), but oxygen saturations of 25% were lethal within 24 h. The results suggest that the main gas exchanges of early postlarval stages occur over the general body surface. Burrowing behaviour was tested in Postlarvae 1 and 2 of different ages held in >80% oxygen saturation for 1 wk. The difference in time taken to complete a V-shaped depression or a U-shaped burrow was measured. The results showed a strong negative relationship between postlarval age and burrowing time, but all individuals made a burrow. Juveniles were more sensitive to hypoxia than adults. Thus, the possible consequences of episodic hypoxia for the recruitment of Nephrops norvegicus and for the recolonization of severely affected areas are discussed. Received: 4 August 1996 / Accepted: 11 October 1996  相似文献   

2.
E. Sandberg 《Marine Biology》1997,129(3):499-504
The functional response of the predatory isopod Saduria entomon to the prey amphipod Bathyporeia pilosa was measured in normoxia (95% O2 saturation), moderate hypoxia (45% O2 saturation) and hypoxia (35% O2 saturation) in aquarium experiments. The prey densities tested ranged from 400 to 8000 ind m−2. Prey density influenced consumption rates of S. entomon in normoxia and 45% O2 saturation, but there was no difference between consumption rates at these two oxygen levels. Nevertheless the form of functional response differed. In normoxia S. entomon showed a positively density-dependent functional response to B. pilosa, indicating a potentially stabilizing effect on the prey population. In moderate hypoxia the variance in consumption increased, decreasing the statistical power to distinguish between response models. The functional response of S. entomon in moderate hypoxia was best described with a density-independent response, characterized as destabilizing for the prey population. In hypoxia (35% O2) predation by S. entomon did not respond to increasing prey density, as almost no amphipods were eaten at this oxygen level. The results are discussed in terms of the usability of theoretical models to examine predator–prey relationships in stressful environments. Received: 26 April 1997 / Accepted: 20 May 1997  相似文献   

3.
The biology of symbiotic scleractinians is profoundly influenced by their intracellular zooxanthellae, and many studies have focused on the mechanistic basis of this influence. This has usually been accomplished by examining the metabolism of zooxanthellae under physical conditions measured in the open reef and assumed to be similar to conditions in hospite. Recent advances in the measurement of conditions near and within coral tissue suggests that this assumption may result in substantial errors. To address this possibility, the role of water flow in determining oxygen saturation adjacent to the tissue of Dichocoenia stokesii was investigated, and the effect of these measured oxygen saturations on the respiration and photosynthesis of zooxanthellae isolated from the same species was quantified. Using a microelectrode (700 μm diam), we measured oxygen saturations above (≤4 mm) the tissue in two flow speeds over 24 h periods in a flume receiving sunlight at in situ levels. The results were used as a proxy for ecologically relevant intracellular oxygen saturations, which were applied to zooxanthellae in vitro to assess their effect on symbiont metabolism. Microenvironment oxygen saturations (% air saturation) ranged from 74–159% in slow flow (2.7 cm s−1) to 88–110% in faster flow (7.5 cm s−1) over day–night cycles. Therefore, the metabolic rates of zooxanthellae were measured at 50 to 54% (hypoxia), 98 to 102% (normoxia) and 146 to 150% (hyperoxia) oxygen saturation. Oxygen saturation significantly affected the metabolism of zooxanthellae, with gross photosynthesis increasing 1.2-fold and dark respiration increasing 2-fold under hyperoxia compared to hypoxia. These results suggest that the metabolism of zooxanthellae in hospite is affected markedly by their microenvironment which, in turn, is influenced by flow-mediated mass transfer. Received: 13 July 1998 / Accepted: 30 April 1999  相似文献   

4.
The infaunal bivalve Ruditapes decussatus L. was collected from Ria Formosa, Faro, southern Portugal, and subjected to a range of hypoxic conditions and anoxia. Physiological measurements, clearance rates, respiration rates and absorption efficiency were undertaken at slightly different oxygen partial pressures (11, 6, 3 and 1.2 kPa for clearance rates and absorption efficiency and 12, 7, 5, 1.9 and 0.9 kPa for respiration rates). Metabolic rates under hypoxia were measured as oxygen consumption and anoxic metabolism was measured using direct calorimetry. Increasing hypoxia resulted in lower clearance rates, leading to lower ingestion rates and reduced faeces production. Clearance and ingestion rates declined below ˜6 kPa, reflecting decreasing ventilation and feeding activity, although complete cessation was not observed even at 1.2 kPa. Under extreme hypoxia (< 2 kPa) clams showed an irregular behaviour, with valves either closed or only slightly open, and siphons compressed or retracted. Clearance rate was 12% and respiration rate was 35% of normoxic rates. R. decussatus responded to increasing hypoxia by lowering its metabolic rate. Regulation of respiration was absent through moderate hypoxia (˜␣7␣kPa), but was observed in the lower hypoxia range (7 to 0.9 kPa). Under anoxia, rates of heat dissipation were 3.6% of normoxic rates. The low anoxic metabolic rate is indicative of a reduced energy expenditure, and this energy-saving mechanism is common in bivalves. Scope for growth was always pos itive, and even at low oxygen levels clams did not have to utilize their energy reserves. The ability to reduce metabolic costs but still meet the maintenance costs by aerobic catabolism enables R. decussatus to tolerate hypoxia. Such conditions can occur, particularly in the summer, in southern Portugal. Received: 19 July 1996 / Accepted: 17 September 1996  相似文献   

5.
 We examined the mating behaviour of the New Zealand ocypodid crab Macrophthalmus hirtipes in the laboratory between February and June 1998. This species has a discrete breeding season. Mating and moulting were not linked and only intermoult females with mobile gonopore opercula were attractive to males. Allometry and compatibility of gonopods and gonopores of different-sized crabs was investigated. Under laboratory conditions, the opercula of intermoult females remained mobile on average for 11.4 d, but the duration of receptivity did not appear to be under female control. The operational sex ratio in the laboratory fluctuated greatly, but was always male-dominated. During the period of opercular mobility, females mated many times with several different males. Matings in the absence of burrows were relatively short (mean duration = 23 min, max. = 122 min) and the mating behaviour of M. hirtipes lacked courtship and mate-guarding. Males used a search-intercept method to acquire mates, with very low levels of intrasexual competition. There was no evidence of mate preference in M. hirtipes, and males spent just as long mating with ovigerous females as with non-ovigerous ones. Although M. hirtipes has ventral-type spermathecae, as do several other ocypodid crabs, it is unclear whether this promotes last-male sperm precedence. The role of burrows in modifying the mating behaviour of M. hirtipes in the field remains to be established. Received: 7 January 2000 / Accepted: 5 June 2000  相似文献   

6.
Nephropsnorvegicus (L.) were subjected to 8 h of emersion, either between layers of seawater-soaked hessian with periodical (20 min) flushes of seawater (high humidity, HH) or to unprotected emersion (low humidity, LH). Blood ammonia levels rose during emersion in both groups but reached higher levels under LH conditions. Ammonia efflux rates after re-immersion were higher than those of control prawns, and amounts of ammonia excreted at such times were considerably higher than those calculated to have accumulated in the blood during emersion. Possible explanations for such differences are discussed. C aO2 and C vO2 decreased rapidly to ca. 10% normoxia values within 2 h of HH and LH emersion and remained low throughout the remaining emersion time. Emersion-induced tissue hypoxia increased blood concentrations of glucose and lactate. Lactate accumulation was higher during LH emersion, compared with HH emersion. Blood pH dropped ca. 0.40 units but increased again after 2 h of re-immersion. Acidosis was probably related more to respiratory difficulties (CO2 accumulation) than to lactate accumulation, as blood lactate values remained high after 2 h of re-immersion. The ability of N. norvegicus to cope with emersion appears to be little influenced by high humidity conditions. Received: 26 June 1996 / Accepted: 5 August 1996  相似文献   

7.
M. Thiel 《Marine Biology》1999,135(2):321-333
The isopod Sphaeroma terebrans Bate, 1866 burrows in aerial roots of the red mangrove Rhizophora mangle L. The burrows serve as shelter and as a reproductive habitat, and females are known to host their offspring in their burrows. I examined the reproductive biology of S. terebrans in the Indian River Lagoon, a shallow lagoon stretching for ∼200 km along the Atlantic coast of Florida, USA. Reproductive isopods were found throughout the year, but reproductive activity was highest in the fall and during late spring/early summer. During the latter periods, large numbers of subadults established their own burrows in aerial roots. The average numbers of S. terebrans per root were high during the fall, but decreased during the winter and reached lowest levels at the end of the summer. Females reached maturity at a larger size than males, but also grew to larger sizes than the males. The average size of females varied between 8 and 10 mm, the average size of males between 6.5 and 8.5 mm. The number of embryos female−1 was strongly correlated with female body length. No indication for embryo mortality during development was found. Parental females (i.e. with juveniles in their burrows) hosted on average between 5 and 20 juveniles in their burrows (range 1 to 59). Most juveniles found in female burrows were in the manca stage and 2 to 3 mm in body length. Juveniles did not increase in size while in the maternal burrow, and juveniles of similar sizes could also be found in their own burrows. Males did not participate in extended parental care, since most of them left the females after copulation. Many females that were born in the summer produced one brood in the fall and a second during winter/early spring. Females that were born in the fall produced one brood during spring/early summer, but then probably died. Extended parental care in S. terebrans is short compared to other peracarid crustaceans. It is concluded that this reproductive strategy in S. terebrans serves primarily to shelter small juveniles immediately after they emerge from the female body, when their exoskeleton is still hardening and their physiological capabilities are still developing. Thus, in S. terebrans, extended parental care probably aids to protect small juveniles from adverse physical conditions in their subtropical intertidal habitat. Received: 9 December 1998 / Accepted: 24 June 1999  相似文献   

8.
To assess the effect of oxygen reduction on the escape response of sea bass, Dicentrarchus labrax, an integrative experimental approach was employed. The effect of hypoxia was tested on locomotor variables, i.e. cumulative distance (D), maximum swimming speed (V max) and maximum acceleration (A max). Behavioural variables, such as responsiveness (i.e. the proportion of individuals responding out of the total number of fish tested), response latency (i.e. the time interval between stimulus onset and the first detectable movement leading to the escape of the animal) and directionality (i.e. the proportion of escape responses in which the first detectable movement of the head was oriented away or towards the stimulus at its onset) were also considered. Four levels of oxygen were used: >85% (i.e. normoxia, the control treatment), 50, 20 and 10% of air saturation. Sea bass responsiveness decreased significantly at 10% of air saturation, while hypoxia did not have any effect on the response latency. At the onset of the escape response, the proportion of away/towards responses was random when oxygen was ≤50% of air saturation, suggesting an impairment of the left–right discrimination. Whatever the level of hypoxia, none of the locomotor variables (i.e. D, V max and A max) was significantly different from normoxia. Our study suggests that hypoxia may reduce sea bass elusiveness facing a predator by directly affecting its escape behaviour, possibly related to an impairment of the mechano-sensory performance and/or in the Mauthner cells involved in triggering the escape response.  相似文献   

9.
M. Thiel 《Marine Biology》1998,132(1):107-116
The reproductive traits of a deposit-feeding amphipod that engages in extended parental care were examined. At the study site in Lowes Cove, Maine, USA, Casco bigelowi (Blake, 1929) occurred in highest densities in soft sediments just below mean low water (MLW). During most months, the sex ratio was ≃1. Many females hosted males in their burrows throughout the summer, but after fertilization of females in September, all adult males disappeared from the study area. In October almost 80% of the females were ovigerous, and in November about the same percentage was parental, i.e. caring for juveniles in their burrows. The females produced only one brood each in late fall which they accommodated in their burrows for 2 mo or longer. The average number of juveniles per female was ∼20 in November, and continuously decreased until January. Juveniles reached sizes >10 mm length in the maternal burrows. In early December the first juveniles were found in their own burrows, but major recruitment took place in late December and January. It is concluded that for C. bigelowi, the delay of recruitment into the winter months with low predation pressure and the large offspring size at this time are major advantages gained by extended parental care. C. bigelowi is host to the peritrich ciliate Cothurnia sp. on its gills, and during the summer months >70% of all amphipods had ciliates on their gills. Juveniles still living in their mother's burrows showed infestation rates similar to that of the parent; those of highly infested mothers were more heavily infested than those of “clean” mothers. Facilitated epibiont transmission during intimate and long-lasting (2␣mo) parent–offspring associations may be a consequence of extended parental care. Received: 25 November 1997 / Accepted: 14 April 1998  相似文献   

10.
The burrowing decapod Nephrops norvegicus (L.) was kept under various degrees of hypoxia in order to measure respiration, heart rate, scaphognathite rate, haemolymph oxygen content and pH. An emergence reaction to hypoxia occurred only in dim light (<10-2 m-c) or darkness, but after 10 d of moderate hypoxia the decapods showed no emergence response at all. The weight specific respiration of quiescent individuals was relatively low and increased only slightly in hypoxia (PwO2=40 torr). Heart rate, about 50 beats min-1, changed little during hypoxia, down to PwO2=40 torr, whereas scaphognathite rates rose from about 60 beats min-1 at normoxia to peak at 120 beats min-1 at PwO2=40 torr. The oxygen extraction efficiency (E) remained at 20 to 30% during the first hour of hypoxia then rose gradually to maximum values of 30 to 40%. A small respiratory alkalosis of the blood became evident only after 4h of hypoxia (PwO2=50 torr). Normoxic postbranchial O2 tensions (PaO2) were low (25–30 torr) and showed only a small decline during hypoxia. Over 10 to 13 d in moderate hypoxia an effective biosynthesis of 0.024 mM haemocyanin individual-1 d-1 occurred in fed decapods, whereas controls (normoxic) showed no significant change in pigment levels. A linear relationship between oxygen carrying capacity and haemocyanin concentration was found. It is contended that N. norvegicus is better able to cope with periodic exposure to hypoxia when food of sufficient quantity and quality is available.  相似文献   

11.
A detailed investigation of a small area of sea bed occupied by the Norway lobster Nephrops norvegicus (L.) was carried out by diving and television observations at depths of 30 m in Loch Torridon, Scotland. The density of burrows was 1/2 m2, but only a proportion of these were occupied by N. norvegicus. Although about 70% of the larger burrows were occupied by N. norvegicus, giving a density of 1 lobster/8 m2, very few juveniles (carapace length less than 30 mm) were found in the area. Many of the small burrows were occupied by the gobiid fish Lesueurigobius friesii (Collett). There was evidence that N. norvegicus frequently change their burrows, and fighting for burrows was observed. N. norvegicus remain within their burrows during the day, emerge around sunset to forage for food during the night, and then return to their burrows at dawn. This, and other aspects of their burrowing behaviour, have a marked effect on the commercial trawl catches of N. norvegicus which show large seasonal and diurnal variations in size and sex composition.  相似文献   

12.
 The long-term survival and growth of Norway lobsters, Nephrops norvegicus (L.), were examined in relation to light-induced retina breakdown. The incidence of eye damage was first assessed in tagged N. norvegicus released in Loch Torridon, on the west coast of Scotland between 1978 and 1983. Of 34 recaptures examined, all but four showed evidence of eye damage, varying in extent from 1 to 63% of the retina. Additional tagged N. norvegicus were released in Loch Torridon in 1984 and 1985 in order to compare recapture and growth rates in lobsters with and without eye damage. Three groups of N. norvegicus were released; normal sighted, partially sighted (median retina damage = 68%) and fully blinded (retina damage = 100%). From 1217 lobsters released, 235 were recovered by September 1992, when the experiment was concluded. The final proportions of N. norvegicus recaptured were found to be independent of eye-damage condition, and there was no evidence that growth rate was affected by eye damage. Combining all categories of releases, the overall proportion of females recaptured (0.244) was significantly greater than the proportion of males (0.145), suggesting better long-term survival in females than in males. At the time of release, ∼80% of the females were carrying recently spawned eggs. Although the proportion of berried females in the recaptures was slightly reduced in the two eye-damaged groups compared with the normal sighted group, the difference was not statistically significant. It is concluded that light-induced eye damage in N. norvegicus is irreversible, but such damage does not seem to influence their long-term survival, growth or reproduction. Received: 21 October 1998 / Accepted: 26 October 1999  相似文献   

13.
The brittle stars Amphiura filiformis (Müller) and Ophiura albida (Forbes) were exposed to different oxygen saturations (100, 10, 5, 3, and <1% oxygen saturation) and to physiological anoxia (<1% oxygen saturation) at different total sulfide concentrations (0, 2, 20, 200 μM). The mortality was followed during experiments and the median survival time (LT50) was determined. The infaunal A. filiformis had a significantly higher tolerance to both hypoxia and sulfide than did the epibenthic O. albida. After exposure to 10% oxygen saturation for a month, only 2.0% A. filiformis and 0% O. albida were dead. In oxygen saturations <1% A. filiformis and O. albida had a LT50 of 7.5 and 2.5 d, respectively. The presence of even very small concentrations of sulfide decreased the survival significantly. Sulfide is shown to be the key factor for the survival of the two species. Received: 11 October 1996 / Accepted: 12 November 1996  相似文献   

14.
Y. Yamada  T. Ikeda 《Marine Biology》2000,137(5-6):933-942
 Using the number of segments of pleopod rami as a marker of instar number, the population structure (instar composition) of the mesopelagic gammarid amphipod Cyphocaris challengeri was investigated by monthly samplings from May 1997 to April 1999 at a station off southwest Hokkaido, Japan. Laboratory-rearing experiments were also conducted to establish the relationship between the number of segments of pleopod rami and instar number, and to estimate the growth pattern of this gammarid based on the intermolt period and molt-increment data. Stratified sampling in the field (0 to 200 and 200 to 400 m depth strata) showed this species occurred mainly at 200 to 400 m depth during the day. Instar analysis indicated that C. challengeri has 12 instars in females and 11 instars in males. Based on observations of secondary sexual characters, Instars 1 to 6 were designated juveniles (Instars 1 to 3 occurred in the marsupia of gravid females); in males, 7 to 9 were immature and 10 and 11 were mature, while in females 7 and 8 were immature and 9 to 12 were mature. Off southwest Hokkaido, Instar 4 (just released from a female's marsupium) was found throughout the year, with a peak abundance occurring in April to July of each year. A sequential development of Instar 4 to 9 (youngest adult instar) through the year was observed. Generation length (i.e. the time required to grow from Instar 4 to 10) was estimated from a laboratory-obtained growth curve to be 216 to 584 d at the in situ temperature range (2 to 5 °C), which is consistent with observations on field populations. Specimens older than Instar 9 were rare in the field and could not be used in laboratory-rearing experiments, so longevity could not be estimated. Eggs were oval and measured 0.6 mm (large diameter). Brood size ranged from 20 to 65. Comparing the present results with those of epipelagic hyperiid amphipods, the nearly identical growth rates together with the production of fewer but larger eggs seen in C. challengeri appear to reflect to the typical life mode of deep-living pelagic crustaceans. Received: 14 February 2000 / Accepted: 6 July 2000  相似文献   

15.
The benthic crustacean Saduria entomon occurs frequently in deeper parts of the Gulf of Gdańsk. It is one of a few species able to survive oxygen deficiencies in its natural environment. The anaerobic heat production of S. entomon during 40 h of anoxia was determined. Additionally, the effects of size, sex and activity of the organism on its heat production were investigated. Average heat production of S. entomon was 0.25 ± 0.16 mJ g−1 wet wt s−1 (n=55, avg. length 39 ± 6 mm). The amount of heat produced decreased with increasing body size. The heat production of S. entomon males was greater than that of females ( p<0.05). Specimens kept in chambers with glass beads and water were less active and had lower metabolic rates than those placed in chambers containing water only (more active). During 40 h of anoxia S. entomon gradually decreased its heat production to 5–16% of aerobic level, demonstrating the high adaptation of this species to changeable oxygen conditions in the Baltic Sea. Received: 31 July 1997 / Accepted: 21 January 1998  相似文献   

16.
The isopod Natatolana borealis Lilljeborg constructs U-shaped burrows in soft mud, the bore of which closely approximates the width of the occupant. Within artificial burrows, the isopods are largely quiescent and often adopt a position close to one of the burrow openings. Conditions within burrows constructed in the laboratory are moderately hypoxic [11.7 to 14.9 kPa (88 to 112 torr)], with isopods showing discontinuous irrigation behaviour (pleopod beating). Rates of oxygen consumption (measured at 10°C) are maintained approximately constant over a wide range of oxygen partial pressure (PO 2) due, in part, to a pronounced increase in pleopod beat rate. Values for the critical partial pressure of oxygen (Pc), the PO 2 at which can no longer be maintained independent of PO 2, were 2.0 to 3.3 kPa (15 to 25 torr). N. borealis can survive lengthy periods (65 h at 5°C) of anoxia, during which there is a significant reduction in the carbohydrate concentration and an increase in the l-lactate concentration of the tissues. The oxygencarrying capacity of the haemolymph of N. borealis was low. The haemocyanin showed a relatively high oxygen affinity [P50=0.39 kPa (2.99 torr) at 10°C at the in vivo pH of 7.80] and a pronounced Bohr effect (-1.22). These characteristics may be advantageous to a burrowing mode of life and also for the conditions likely to be encountered in fish carcasses into which they burrow en masse to feed.  相似文献   

17.
 California grunion Leuresthes tenuis (Teleostei: Atherinopsidae) emerge from the ocean to spawn on beaches of southern California. Grunion eggs do not hatch at a set developmental age, but remain in the sand until turbulent surf at high tide washes them out to sea. In previously studied fishes and amphibians that lay eggs terrestrially, low oxygen is the trigger for hatching in water, and high oxygen tensions inhibit hatching. For the grunion, however, eggs placed in air, seawater and oil did not hatch at any at oxygen tension until they were agitated in fluid. Following agitation in seawater, all eggs hatched within several minutes. Grunion eggs in normoxic or hyperoxic water hatched significantly faster than eggs agitated at the lowest oxygen tensions. Mechanical agitation, not hypoxia, is the environmental trigger for hatching in California grunion eggs. Received: 15 May 1999 / Accepted: 5 April 2000  相似文献   

18.
Copepod resting eggs are abundant in the seabed of many bays and estuaries where they provide a potential source of recruits for growth of planktonic populations. In the northeastern Gulf of Mexico the copepod Centropages hamatus (Lillejeborg) occurs in the water column only during the late fall, winter and early spring. The species produces subitaneous and diapause eggs, and both egg types have been found in the seabed. We determined the longevity of these two egg types to ascertain their potential for contributing to the growth of the planktonic population and for sustaining a persistent egg bank. Eggs were collected from females and incubated in the laboratory under temperature and oxygen conditions chosen to simulate field conditions. The diapause eggs were also exposed to sulfide. The total hatching success of subitaneous eggs in two experiments declined from highs of 78 and 97% to zero after 60 and 90 d of exposure to anoxia. The total hatching success of diapause eggs that were exposed to anoxia for 90 d however was typically greater than 80%. Some diapause eggs hatched after being incubated under anoxia for 437 d. Diapause eggs survived longer at ambient field temperatures when incubated under anoxia (437 d) compared to normoxia (118 d). Exposure to sulfide did not result in greater mortality of diapause eggs compared to anoxia alone. Diapause eggs that were incubated at ambient field temperatures did not hatch when exposed to normoxia until the temperature dropped to <20 °C. The results of this study suggest that C.␣hamatus sustain a short-term reserve of subitaneous eggs in the seabed that provides recruits for the current year's population. The greater longevity of diapause eggs suggests that they sustain the seasonal reappearance of the species year after year in the northeastern Gulf of Mexico. However, the contribution of diapause eggs of C. hamatus from the Gulf of Mexico to a persistent egg bank is questionable since hatching ceased after 437 d. Received: 30 July 1997 / Accepted: 18 January 1998  相似文献   

19.
Direct calorimetry was employed to measure the energy metabolism of infaunal bivalves, Abra tenuis, collected from a tidal lagoon in the Fleet, southern England, in June 1989, at various oxygen partial pressures. A significant anaerobic component (i.e., 20% of total metabolic rate) was detected under normoxia, presumably brought about by the intermittent ventilatory activity of this bivalve under these conditions. Under hypoxia (2.3 to 10 kPa, or 11 to 48% of full air saturation), however, the energy metabolism was maintained fully aerobic; the measured heat equivalent of oxygen uptake was not significantly different from the theoretical ranges for fully aerobic catabolism. Under anoxia, the rate of heat dissipation was reduced to 5–6% of the normoxic rate of heat dissipation. This conserves energy expenditure and would thus increase resistance of A. tenuis to anoxia or emersion. Physiological compensation by A. tenuis under conditions of declining oxygen tension involved a marked increase in ventilation rate. Comparison between fed and starved individuals indicated that costly physiological processes, such as digestion, absorption and growth declined at 10 and 5 kPa and were arrested at PO 2 (oxygen partial pressure) levels below 2.3 kPa. The present study provides evidence that there are no major differences between the metabolic responses of epifaunal suspension-feeding (eg. Mytilus edulis) and infaunal deposit-feeding (eg. A. tenuis) bivalves when exposed to environmental hypoxic stress.  相似文献   

20.
 In the Black Sea, during summer stratification, Calanus euxinus (Hulsemann) undertakes diel vertical migrations with an amplitude of about 117 m from oxygenated, warm (18 °C) surface layers to hypoxic (∼0.8 mg O2 l−1) zones with lower temperature (7.9 °C). When such changes in temperature and oxygen concentration are reproduced in the laboratory, total metabolism, basal metabolism and scope of activity of copepods decrease 7.2, 7.8 and 6.7 times, respectively, while the frequency of locomotory acts and mechanical power decline 3.4- and 9.5-fold, respectively. These changes allowed the copepods to conserve a significant portion of food consumed near the surface for transformation to lipid reserves. Diel respiratory oxygen consumption of migrating individuals, calculated so as to include actual duration of residence in layers with different temperature and oxygen concentrations, is estimated at 17.87 μg O2 ind−1. The net energy cost of vertical migration made up only 11.6% of the total. Copepods expend 78.6% of diel energy losses during approximately 10 h in the surface layers, while about 5.4% is required during about 9 h at depth. Hypoxia is shown to have a significant metabolic advantage during diel vertical migrations of C. euxinus in the Black Sea. Received: 1 October 1999 / Accepted: 11 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号