首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Due to the fast development of industry and the overuse of agrichemicals in past decades, Lake Taihu, an important source of aquatic products for Eastern China, has simultaneously suffered mercury (Hg) contamination and eutrophication. The objectives of this study are to understand Hg transfer in the food web in this eutrophic, shallow lake and to evaluate the exposure risk of Hg through fish consumption.

Methods

Biota samples including macrophytes, sestons, benthic animals, and fish were collected from Lake Taihu in the fall of 2009. The total mercury (THg), methyl mercury (MeHg), ??13C and ??15N in the samples were measured.

Results and discussion

The signature for ??15N increased with the trophic levels. Along with a diet composed of fish, the significant relationship between the ??13C and ??15N indicated that a pelagic foraging habitat is the dominant pathway for energy transfer in Lake Taihu. The concentrations of THg and MeHg in the organisms varied dramatically by ??3 orders of magnitude from primary producers (macrophytes and sestons) to piscivorous fish. The highest concentrations of both THg (100 ng g?1) and MeHg (66 ng g?1), however, were lower than the guideline of 200 ng g?1 of MeHg for vulnerable populations that is recommended by the World Health Organization (WHO). The daily intake of THg and MeHg of 92 and 56 ng day?1 kg?1 body weight, respectively, was generally lower than the tolerable intake of 230 ng day?1 kg?1 body weight for children recommended by the Joint FAO/WHO Expert Committee on Food Additives. Significant relationships between the ??15N and the logarithm of THg and MeHg showed an obvious biomagnification of Hg along the food web. The logarithmic bioaccumulation factor of MeHg in the fish (up to 5.7) from Lake Taihu, however, was relatively low compared to that of other aquatic ecosystems.

Conclusion

Health risk of exposure to Hg by consumption of fish for local residents is relatively low in the Lake Taihu area. Dilution of Hg levels in the phytoplankton induced by eutrophication is a possible factor inhibiting accumulation of MeHg in fish in eutrophic Lake Taihu.  相似文献   

2.
Naime Arslan 《Ambio》2013,42(6):715-723
Turkey is the largest producer of borate products in the world. Among four largest boron mines in Turkey two of them are located in basins of Orhaneli and Emet Streams. In this study, boron levels in abiotic (water–sediment) and some biotic elements (sentinel organisms; Asellus aquaticus, Gammarus pulex,Chironomus tentans, Limnodrilus hoffmeisteri and nektonic organism; Squalius cii) of Orhaneli and Emet Streams were investigated and their ranks among the food chain were demonstrated. Since Orhaneli and Emet Streams confluence to form Mustafakemalpaşa Brook which feeds Uluabat Lake which is one of the most important Ramsar fields of the world, Boron levels in those two streams have importance in terms of both continuances of aquatic systems. Present study results have shown that boron levels in water of both streams are much higher (vary between 8.64 and 16.73 mg L−1) than not only Turkish Standard but also limits determined by WHO, US EPA, and NAS. Boron levels determined in sediments of two streams vary between 18.05 and 36.7 mg kg−1. The highest boron level in the biotic elements was determined in liver of Squalius cii (34.64 mg kg−1), it is followed by Limnodrilus hoffmeisteri (2.84 mg kg−1), Chironomus tentans (2.11 mg kg−1), and Gammarus pulex (1.98 mg kg−1).  相似文献   

3.
Liang P  Shao DD  Wu SC  Shi JB  Sun XL  Wu FY  Lo SC  Wang WX  Wong MH 《Chemosphere》2011,82(7):1038-1043
To study the influence of mariculture on mercury (Hg) speciation and distribution in sediments and cultured fish around Hong Kong and adjacent mainland China waters, sediment samples were collected from six mariculture sites and the corresponding reference sites, 200-300 m away from the mariculture sites. Mariculture activities increased total mercury, organic matter, carbon, nitrogen and sulfur concentrations in the surface sediments underneath mariculture sites, possibly due to the accumulation of unconsumed fish feed and fish excretion. However, methylmercury (MeHg) concentrations and the ratio of MeHg to THg (% MeHg) in sediments underneath mariculture sites were lower than the corresponding reference sites. The % MeHg in sediments was negatively correlated (r = −0.579, p < 0.05) with organic matter (OM) content among all sites, indicating that OM may have inhibited Hg methylation in surface sediments. Three mariculture fish species were collected from each mariculture site, including red snapper (Lutjanus campechanus), orange-spotted grouper (Epinephelus coioides) and snubnose pompano (Trachinotus blochii). The average MeHg concentration in fish muscle was 75 μg kg−1 (wet weight), and the dietary intake of MeHg through fish consumption for Hong Kong residents was 0.37 μg kg−1 week−1, which was lower than the corresponding WHO limits (500 μg kg−1 and 1.6 μg kg−1 week−1).  相似文献   

4.
Differences in the accumulation of mercury (Hg) in five species of marine bivalves, including scallops Chlamys nobilis, clams Ruditapes philippinarum, oysters Saccostrea cucullata, green mussels Perna viridis, and black mussels Septifer virgatus, were investigated. The bivalves displayed different patterns of Hg accumulation in terms of the body concentrations of methylmercury (MeHg) and total Hg (THg), as well as the ratio of MeHg to THg. Parameters of the biodynamics of the accumulation of Hg(II) and MeHg could reflect the species-dependent Hg concentrations in the bivalves. With the exception of black mussels, we found a significant relationship between the efflux rates of Hg(II) and the THg concentrations in the bivalves. The interspecific variations in the MeHg to THg ratio were largely controlled by the relative difference between the elimination rates of Hg(II) and MeHg. Stable isotope (δ13C) analysis indicated that the five bivalve species had contrasting feeding niches, which may also affect the Hg accumulation.  相似文献   

5.
Results of a survey of 156 Chinese mitten crab (Eriocheir sinensis) grow-out farms around Hongze Lake (118.48–118.72°E; 33.36–33.38°N) are reported. Area farmed has remained relatively unchanged but production (59 932 t in 2012) increased steadily over the last 7 years, indicative of the viability and sustainability of the farming system that has gradually replaced intensive Chinese major carp polyculture around Hongze Lake. Results showed that production range was 135–2400 kg ha−1 cycle−1 (mean 1144 ± 34). Crab yields correlated linearly to stocking density and conformed to a normal distribution curve, with 66.7 % of farms yielding 900 kg ha−1 cycle−1 or more. Yield was negatively correlated to pond size and capture size (p < 0.01), and farms with macrophyte coverage rate lower than 30 % of water surface were significantly (p < 0.05) lower than those exceeding 30 %.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0722-0) contains supplementary material, which is available to authorized users.  相似文献   

6.
Vertical diffusivity and oxygen consumption in the basin water, the water below the sill level at about 59 m depth, have been estimated by applying budget methods to monitoring data from hydrographical stations BY4 and BY5 for periods without water renewal. From the vertical diffusivity, the mean rate of work against the buoyancy forces below 65 m depth is estimated to about 0.10 mW m−2. This is slightly higher than published values for East Gotland Sea. The horizontally averaged vertical diffusivity κ can be approximated by the expression κ = a0N−1 where N is the buoyancy frequency and a0 ≈ 1.25 × 10−7 m2 s−2, which is similar to values for a0 used for depths below the halocline in Baltic proper circulation models for long-term simulations. The contemporary mean rate of oxygen consumption in the basin water is about 75 g O2 m−2 year−1, which corresponds to an oxidation of 28 g C m−2 year−1. The oxygen consumption in the Bornholm Basin doubled from the 1970s to the 2000s, which qualitatively explains the observed increasing frequency and vertical extent of anoxia and hypoxia in the basin water in records from the end of the 1950s to present time. A horizontally averaged vertical advection–diffusion model of the basin water is used to calculate the effects on stratification and oxygen concentration by a forced pump-driven vertical convection. It is shown that the residence time of the basin water may be reduced by pumping down and mixing the so-called winter water into the deepwater. With the present rate of oxygen consumption, a pumped flux of about 25 km3 year−1 would be sufficient to keep the oxygen concentration in the deepwater above 2 mL O2 L−1.  相似文献   

7.
This paper explores the concept of homegardens and their potential functions as strategic elements in land-use planning, and adaptation and mitigation to climate change in Sri Lanka. The ancient and locally adapted agroforestry system of homegardens is presently estimated to occupy nearly 15 % of the land area in Sri Lanka and is described in the scientific literature to offer several ecosystem services to its users; such as climate regulation, protection against natural hazards, enhanced land productivity and biological diversity, increased crop diversity and food security for rural poor and hence reduced vulnerability to climate change. Our results, based on a limited sample size, indicate that the homegardens also store significant amount of carbon, with above ground biomass carbon stocks in dry zone homegardens (n = 8) ranging from 10 to 55 megagrams of carbon per hectare (Mg C ha−1) with a mean value of 35 Mg C ha−1, whereas carbon stocks in wet zone homegardens (n = 4) range from 48 to 145 Mg C ha−1 with a mean value of 87 Mg C ha−1. This implies that homegardens may contain a significant fraction of the total above ground biomass carbon stock in the terrestrial system in Sri Lanka, and from our estimates its share has increased from almost one-sixth in 1992 to nearly one-fifth in 2010. In the light of current discussions on reducing emissions from deforestation and forest degradation (REDD+), the concept of homegardens in Sri Lanka provides interesting aspects to the debate and future research in terms of forest definitions, setting reference levels, and general sustainability.  相似文献   

8.
9.
The significance of metal concentrations in marine mammals is not well understood and relating concentrations between stranded and free-ranging populations has been difficult. In order to predict liver concentrations in free-ranging dolphins, we examined concentrations of trace elements (Al, As, Ba, Be, Cd, Co, Cu, Fe, Li, Mn, Ni, Pb, Sb, Se, Sn, total Hg (THg), V, Zn) in skin and liver of stranded bottlenose dolphins (Tursiops truncatus) from the South Carolina (SC) coast and the Indian River Lagoon, Florida (FL) during 2000-2008. Significantly higher concentrations of Zn, Fe, Se, Al, Cu and THg were found in skin while liver exhibited significantly higher Cu, Fe, Mn and THg concentrations for both study sites. Mean skin concentrations of Cu and Mn were significantly higher in SC dolphins while higher concentrations of THg and V were found in FL dolphins. In addition, liver tissues in SC dolphins exhibited significantly higher As concentrations while higher Fe, Pb, Se, THg, and V levels were found in FL dolphins. Two elements (Cu and THg) showed significant age-related correlations with skin concentration while five elements (Cu, Se, THg, Zn and V) showed age-related correlations with liver concentrations. Geographic location influenced age-related accumulation of several trace elements and age-related accumulation of THg in hepatic tissue was observed for both sites to have the highest correlations (r2 = 0.90SC; r2 = 0.69FL). Mean THg concentration in liver was about 10 times higher in FL dolphins (330 μg g−1 dw) than those samples from SC dolphins (34.3 μg g−1 dw). The mean molar ratio of Hg to Se was 0.93 ± 0.32 and 1.08 ± 0.38 for SC and FL dolphins, respectively. However, the Hg:Se ratio varied with age as much lower ratios (0.2-0.4) were found in younger animals. Of the 18 measured elements, only THg was significantly correlated in skin and liver of stranded dolphins and skin of free-ranging dolphins from both sites suggesting that skin may be useful in predicting Hg concentrations in liver tissue of free-ranging dolphins. Results indicate that 33% of the stranded and 15% of the free-ranging dolphins from FL exceed the minimum 100 μg g−1 wet weight (ww) (∼400 dw) Hg threshold for hepatic damage while none from SC reached this level. Hepatic concentrations of As in SC dolphins and V in FL dolphins were also highly correlated with skin concentrations which may have some regional specificity predictive value. The present study provides the first application of trace element concentrations derived from stranded bottlenose dolphins to predict liver concentrations in free-ranging populations.  相似文献   

10.
Since the 19th century, large amounts of industrial waste were dumped in a reservoir adjacent to a chlor-alkali plant in the lower Ebro River (NE Spain). Previous toxicological analysis of carp populations inhabiting the surveyed area have shown that the highest biological impact attributable to mercury pollution occurred downstream of the discharge site. However, mercury speciation in fish from this polluted area has not been addressed yet. Thus, in the present study, piscivorous European catfish (Silurus glanis) and non-piscivorous common carp (Cyprinus carpio) were selected, to investigate the bioavailability and bioaccumulation capacities of both total mercury (THg) and methylmercury (MeHg) at the discharge site and downstream points. Multiple Correspondence Analysis (MCA) was applied to reduce the dimensionality of the data set, and Multiple Linear Regression (MLR) models were fitted in order to assess the relationship between both Hg species in fish and different variables of interest. Mercury levels in fish inhabiting the dam at the discharge site were found to be approximately 2-fold higher than those from an upstream site; while mercury pollution progressively increased downstream of the hot spot. In fact, both THg and MeHg levels at the farthest downstream point were 3 times greater than those close to the waste dump. This result clearly indicates downstream transport and increased mercury bioavailability as a function of distance downstream from the contamination source. A number of factors may affect both the downstream transport and increased Hg bioavailability associated with suspended particulate matter (SPM) and dissolved organic carbon (DOC).  相似文献   

11.
In China, total Hg (HgT) and methylmercury (MeHg) were quantified in rice grain grown in three sites using water-saving rice cultivation methods, and in one Hg-contaminated site, where rice was grown under flooded conditions. Polished white rice concentrations of HgT (water-saving: 3.3 ± 1.6 ng/g; flooded: 110 ± 9.2 ng/g) and MeHg (water-saving 1.3 ± 0.56 ng/g; flooded: 12 ± 2.4 ng/g) were positively correlated with root-soil HgT and MeHg contents (HgT: r2 = 0.97, MeHg: r2 = 0.87, p < 0.05 for both), which suggested a portion of Hg species in rice grain was derived from the soil, and translocation of Hg species from soil to rice grain was independent of irrigation practices and Hg levels, although other factors may be important. Concentrations of HgT and other trace elements were significantly higher in unmilled brown rice (p < 0.05), while MeHg content was similar (p > 0.20), indicating MeHg infiltrated the endosperm (i.e., white rice) more efficiently than inorganic Hg(II).  相似文献   

12.
Olof Lindén  Jonas Pålsson 《Ambio》2013,42(6):685-701
The study shows extensive oil contamination of rivers, creeks, and ground waters in Ogoniland, Nigeria. The levels found in the more contaminated sites are high enough to cause severe impacts on the ecosystem and human health: extractable petroleum hydrocarbons (EPHs) (>10-C40) in surface waters up to 7420 μg L−1, drinking water wells show up to 42 200 μg L−1, and benzene up to 9000 μg L−1, more than 900 times the WHO guidelines. EPH concentrations in sediments were up to 17 900 mg kg−1. Polycyclic aromatic hydrocarbons concentrations reached 8.0 mg kg−1, in the most contaminated sites. The contamination has killed large areas of mangroves. Although the natural conditions for degradation of petroleum hydrocarbons are favorable with high temperatures and relatively high rainfall, the recovery of contaminated areas is prevented due to the chronic character of the contamination. Oil spills of varying magnitude originates from facilities and pipelines; leaks from aging, dilapidated, and abandoned infrastructure; and from spills during transport and artisanal refining of stolen oil under very primitive conditions.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-013-0412-8) contains supplementary material, which is available to authorized users.  相似文献   

13.
Mercury levels in sediment and predatory fish were measured for 53 localities in Suriname. The average mercury level in bottom sediment surpassed the Canadian standard for sediment in most localities, except the coastal plains. Of the predatory fish, 41 % had a mercury level above the European Union standard for human consumption of 0.5 μg g−1. Highest mercury levels were found in fish from the Brokopondo Reservoir and from the Upper Coppename River. High levels of mercury in fish in pristine areas are explained by atmospheric transportation of mercury with the northeastern trade winds followed by wet deposition. Contrary to gold mining areas, where mercury is bound to drifting sediments, in “pristine” areas the mercury is freely available for bio-accumulation and uptake. Impacts on piscivorous reptiles, birds, and mammals are unknown, but likely to be negative.  相似文献   

14.
Chen L  Xu Z  Ding X  Zhang W  Huang Y  Fan R  Sun J  Liu M  Qian D  Feng Y 《Chemosphere》2012,88(5):612-619
Total mercury (THg) and methylmercury (MeHg) were measured in large number of soil samples collected from areas with different types of land use, different depth in the Pearl River Delta (PRD) of South China. THg and MeHg concentrations ranged from 16.7 to 3320 ng g−1 and 0.01 to 1.34 ng g−1, respectively. THg levels are highest in the top 0-20 cm soil layer, and decrease from the surface to bottom layer soil. Spatial variation was observed with different types of land use. Urban parks had the highest concentrations and the other areas tended to decrease in the order of residential areas, industrial areas, vegetable fields, cereal fields, and woodlands. Temporal variation was also noted, and two relatively high THg contamination zones located in the northwestern part of the PRD have significantly expanded over the last two decades. Both THg and MeHg concentrations were correlated significantly with soil organic matter (OM), but not with soil pH. THg pollution status was evaluated using two assessment methods.  相似文献   

15.
Kim CK  Lee TW  Lee KT  Lee JH  Lee CB 《Chemosphere》2012,89(11):1360-1368
Mercury (Hg) concentrations were monitored in wild and cultured fish collected from fresh and coastal waters in the Korean peninsula from April 2006 to August 2008 nationwide. Total Hg concentrations were reported for 5043 fish samples, including 78 species from 133 locations. Significant interspecies variation was noted in the Hg levels. The average Hg concentration in each fish species ranged from 6.31 μg kg−1 for mullet (Mugil cephalus) to 200 μg kg−1 for mandarin fish (Siniperca scherzeri). Among the species collected, the maximum concentration of Hg, 1720 μg kg−1, was measured in an Amur catfish (Silurus asotus). Only wild freshwater fish exceeded the WHO ingestion standard. Wild freshwater piscivorous fish samples from a large artificial upstream lake contained the highest Hg levels. Hg concentrations were compared between fish groups categorized as wild and farmed fish from freshwater and coastal waters. Although the wild freshwater fish had similar size ranges, their Hg concentrations were higher than those of the other groups. Compared to the feed of farmed marine and freshwater fishes, the prey of wild freshwater fish had a higher Hg concentration, and the total Hg concentrations in freshwater and associated sediment samples were higher than those in coastal water and associated sediment samples. In the freshwater environment, piscivorous fish bioaccumulated two times more Hg than carnivorous and omnivorous fish and four times more than planktivorous fish. The difference in Hg concentrations among trophic groups might have been due to differences in the size of fish, in addition to the variations among different trophic groups. These data will be useful for developing the fish consumption advisory as a management measure to reduce Hg exposure.  相似文献   

16.
Background, aim, and scope  Selenium (Se) has been shown to reduce mercury (Hg) bioavailability and trophic transfer in aquatic ecosystems. The study of methylmercury (MeHg) and Se bioaccumulation by plankton is therefore of great significance in order to obtain a better understanding of the estuarine processes concerning Hg and Se accumulation and biomagnification throughout the food web. In the western South Atlantic, few studies have documented trace element and MeHg in fish tissues. No previous study about trace elements and MeHg in plankton has been conducted concerning tropical marine food webs. Se, Hg, and MeHg were determined in two size classes of plankton, microplankton (70–290 μm) and mesoplankton (≥290 μm), and also in muscle tissues and livers of four fish species of different trophic levels (Mugil liza, a planktivorous fish; Bagre spp., an omnivorous fish; Micropogonias furnieri, a benthic carnivorous fish; and Centropomus undecimalis, a pelagic carnivorous fish) from a polluted estuary in the Brazilian Southeast coast, Guanabara Bay. Biological and ecological factors such as body length, feeding habits, and trophic transfer were considered in order to outline the relationships between these two elements. The differences in trace element levels among the different trophic levels were investigated. Materials and methods  Fish were collected from July 2004 to August 2005 at Guanabara Bay. Plankton was collected from six locations within the bay in August 2005. Total mercury (THg) was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. MeHg analysis was conducted by digesting samples with an alcoholic potassium hydroxide solution followed by dithizone-toluene extraction. MeHg was then identified and quantified in the toluene layer by gas chromatography with an electron capture detector (GC-ECD). Se was determined by AAS using graphite tube with Pin platform and Zeeman background correction. Results and discussion  Total mercury, MeHg, and Se increased with plankton size class. THg and Se values were below 2.0 and 4.8 μg g−1 dry wt in microplankton and mesoplankton, respectively. A large excess of molar concentrations of Se in relation to THg was observed in both plankton size class and both fish tissues. Plankton presented the lowest concentrations of this element. In fish, the liver showed the highest THg and Se concentrations. THg and Se in muscle were higher in Centropomus undecimalis (3.4 and 25.5 nmol g−1) than in Micropogonias furnieri (2.9 and 15.3 nmol g−1), Bagre spp (1.3 and 3.4 nmol g−1) and Mugil liza (0.3 and 5.1 nmol g−1), respectively. The trophic transfer of THg and Se was observed between trophic levels from prey (considering microplankton and mesoplankton) to top predator (fish). The top predators in this ecosystem, Centropomus undecimalis and Micropogonias furnieri, presented similar MeHg concentrations in muscles and liver. Microplankton presented lower ratios of methylmercury to total mercury concentration (MeHg/THg) (34%) than those found in mesoplankton (69%) and in the muscle of planktivorous fish, Mugil liza (56%). The other fish species presented similar MeHg/THg in muscle tissue (of around 100%). M. liza showed lower MeHg/THg in the liver than C. undecimalis (35%), M. furnieri (31%) and Bagre spp. (22%). Significant positive linear relationships were observed between the molar concentrations of THg and Se in the muscle tissue of M. furnieri and M. liza. These fish species also showed significant inverse linear relationships between hepatic MeHg and Se, suggesting a strong antagonistic effect of Se on MeHg assimilation and accumulation. Conclusions  Differences found among the concentrations THg, MeHg, and Se in microplankton, mesozooplankton, and fishes were probably related to the preferred prey and bioavailability of these elements in the marine environment. The increasing concentration of MeHg and Se at successively higher trophic levels of the food web of Guanabara Bay corresponds to a transfer between trophic levels from the lower trophic level to the top-level predator, suggesting that MeHg and Se were biomagnified throughout the food web. Hg and Se were positively correlated with the fish standard length, suggesting that larger and older fish bioaccumulated more of these trace elements. THg, MeHg, and Se were a function of the plankton size. Recommendations and perspectives  There is a need to assess the role of selenium in mercury accumulation in tropical ecosystems. Without further studies of the speciation of selenium in livers of fishes from this region, the precise role of this element, if any, cannot be verified in positively affecting mercury accumulation. Further studies of this element in the study of marine species should include liver samples containing relatively high concentrations of mercury. A basin-wide survey of selenium in fishes is also recommended.  相似文献   

17.
We analyzed Hg species distribution patterns among ecosystem compartments in the Everglades at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation and to investigate major biogeochemical processes that are pertinent to the observed Hg distribution patterns. At an Everglade-wide scale, THg concentrations were significantly increased in the following order: periphyton相似文献   

18.
Contaminated sediments in the St. Lawrence River remain a difficult problem despite decreases in emissions. Here, sediment and pore water phases were analyzed for total mercury (THg) and methyl mercury (MeHg) and diffusion from the sediment to the overlying water was 17.5 ± 10.6 SE ng cm−2 yr−1 for THg and 3.8 ± 1.7 SE ng cm−2 yr−1 for MeHg. These fluxes were very small when compared to the particle-bound mercury flux accumulating in the sediment (183 ± 30 SE ng cm−2 yr−1). Studies have reported that fish from the westernmost site have higher Hg concentrations than fish collected from the other two sites of the Cornwall Area of Concern, which could not be explained by differences in the Hg flux or THg concentrations in sediments, but the highest concentrations of sediment MeHg, and the greatest proportions of MeHg to THg in both sediment and pore water were observed where fish had highest MeHg concentrations.  相似文献   

19.
Mercury (Hg) speciation and mobility were determined in calcines and waste rocks collected from 9 Hg mines in China. Total Hg (THg) concentrations in the mine wastes varied widely in different Hg mines (with a range of 0.369 to 2,620 mg kg?1). Cinnabar is the dominant form of Hg in the mine wastes. However, Hg2+ and Hg0 concentrations in the calcines were significantly higher than these in the waste rocks, which suggested the retorting can produce large amounts of by-product Hg compounds. The THg and Hg0 concentrations in certain mine wastes exceeded soil guidelines recommended by US Environmental Protection Agency; while total soluble Hg concentrations of leachates in certain mine wastes exceeded National Surface Water Quality Standard of China. Mine wastes are important Hg pollution sources to the aquatic ecosystem and atmosphere.  相似文献   

20.
Guanabara Bay (GB), located in the Rio de Janeiro State, is still a productive estuary on the south-eastern Brazilian coast. It is an ecosystem heavily impacted by organic matter, oil and a number of other toxic compounds, including Hg. The present study aimed to comparatively evaluate the aquatic total mercury (THg) and MeHg contamination, and the ratios of MeHg to THg (% MeHg), in 3 species of marine organisms, Micropogonias furnieri-carnivorous fish (N = 81), Mugil spp.--detritivorous fish (N = 20) and Perna perna--filter-feeding bivalves (N = 190), which are widely consumed by the population. A total of 291 specimens were collected at the bay in different periods between 1988 and 1998. THg concentrations were determined by cold vapour AAS with stannous chloride as a reducing agent. MeHg was extracted by dithizone-benzene and measured by GC-ECD. Analytical quality was checked through certified standards. All organisms presented both low THg and MeHg concentrations and they were below the maximum limit of 1,000 micrograms Hg.kg-1 wet wt. as established for human intake of predatory fish by the new Brazilian legislation. Carnivorous fish showed higher THg and MeHg concentrations, and also % MeHg in muscle tissues, than organisms with other feeding habits and lower trophic levels. The average of THg concentrations in carnivorous fish was 108.9 +/- 58.6 micrograms.kg-1 wet wt. (N = 61) in 1990 and 199.5 +/- 116.2 micrograms.kg-1 wet wt. (N = 20) in 1998, but they presented different total length and body weights. The average THg content in detritivorous fish was 15.4 +/- 5.8 micrograms.kg-1 wet wt., whereas THg concentrations ranged from 4.1 to 53.5 micrograms.kg-1 wet wt. for the molluscs. The THg and MeHg contents of mussel varied according to the sampling point and water quality. MeHg concentration in detritivorous fish was similar to MeHg concentration in molluscs, but there was a significant difference in the MeHg/THg ratio: the carnivorous fish presented higher MeHg percentages (98%) than the detritivorous fish (54%) and the molluscs (33%). Weight-normalised average concentration of THg in carnivorous fish collected in 1990 (0.18 +/- 0.08 microgram.g-1/0.7 kg wet wt.) and in 1998 (0.16 +/- 0.09 microgram.g-1/0.7 kg wet wt.) presented no significant difference (t = 1.34; P < 0.5). In conclusion, the low THg and MeHg concentrations in the organisms from the GB ecosystem, are related to its eutrophic conditions and elevated amounts of suspended matter. In this situation, Hg could be strongly complexed or adsorbed by the particulate, which would dilute the Hg inputs and reduce its residence time in the water column, with a consequent decrease in its availability to organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号