首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tibetan Plateau is the world’s highest plateau, which provides a unique location for the investigation of global fractionation of organochlorine pesticides (OCPs). In this study, deposition and regional distribution of HCHs and p,p′-DDX in the western and southern Tibetan Plateau were investigated by the records from a sediment core of Lake Zige Tangco and 24 surface soils. Concentration of ΣHCHs in the surface soils of the western Tibetan Plateau was much higher than that of the southern part. Maximum fluxes of α-, β-, and δ-HCH in the sediment core were 9.0, 222, and 21 pg cm?2 year?1, respectively, which appeared in the mid-1960s. Significant correlations were observed between concentrations of α- and β-HCH in both the surface soils and the sediment core. Concentrations of both α- and β-HCH increased with the inverse of the average annual temperature of these sites. γ-HCH became the dominant isomer of HCHs after the late 1970s, and reached the maximum flux of 160 pg cm?2 year?1 in the early 1990s. There were no significant correlations between concentrations of γ-HCH and the other isomers in both the surface soils and the sediment core. The results suggested that there was input of Lindane at scattered sites in this area. In contrast to ΣHCHs, concentration of Σp,p′-DDX in the surface soils of the southern part was much higher than that of the western part. Maximum flux of Σp,p′-DDX was 44 pg cm?2 year?1, which appeared in the mid-1960s. Local emission of p,p′-DDT was found at scattered sites. This study provides novel data and knowledge for the OCPs in the western and southern Tibetan Plateau, which will help understand the global fractionation of OCPs in remote alpine regions.  相似文献   

2.
Intensive agricultural land use imposes multiple pressures on streams. More specifically, the loading of streams with nutrient-enriched soil from surrounding crop fields may deteriorate the sediment quality. The current study aimed to find out whether stream restoration may be an effective tool to improve the sediment quality of agricultural headwater streams. We compared nine stream reaches representing different morphological types (forested meandering reaches vs. deforested channelized reaches) regarding sediment structure, sedimentary nutrient and organic matter concentrations, and benthic microbial respiration. Main differences among reach types were found in grain sizes. Meandering reaches featured larger mean grain sizes (50–70 μm) and a thicker oxygenated surface layer (8 cm) than channelized reaches (40 μm, 5 cm). Total phosphorous amounted for up to 1,500 μg?g?1 DW at retentive channelized reaches and 850–1,050 μg?g?1 DW at the others. While N-NH4 accumulated in the sediments (60–180 μg?g?1 DW), N-NO3 concentrations were generally low (2–5 μg?g?1 DW). Benthic respiration was high at all sites (10–20 g O2 m?2?day?1). Our study shows that both hydromorphology and bank vegetation may influence the sediment quality of agricultural streams, though effects are often small and spatially restricted. To increase the efficiency of stream restoration in agricultural landscapes, nutrient and sediment delivery to stream channels need to be minimized by mitigating soil erosion in the catchment.  相似文献   

3.
The present study assesses the persistence and variation of organochlorine pesticides (OCPs) and their regulation by total organic carbon (TOC) and black carbon (BC) in freshwater sediment. Sediment samples from the Yamuna River, a major tributary of the Ganges (one of the most populated and intensively used rivers in Asia), had high levels of Σ20OCPs (21.41 to 139.95 ng g?1). β-Hexachlorocyclohexane (β-HCH) was the most predominant component. ΣHCH and Σdichloro-diphenyl-trichloroethane (DDT) constituted ~86 % of Σ20OCPs. Isomer ratios indicated fresh usage of lindane, DDT and technical-grade HCH. Toxicological comparison with freshwater sediment quality guidelines showed γ-HCH and DDT at high levels of concern. β-HCH, α-HCH, endrin, heptachlor epoxide, dichloro-diphenyl-dichloroethane (DDD), dichloro-diphenyl-dichloroethylene and chlordane were above some of the guideline levels. TOC and BC had mean concentrations of 1.37?±?0.51 % and 0.46?±?0.23 mg g?1, respectively. BC constituted 1.25 to 10.56 % of TOC. We observed low to moderate correlations of BC with isomers of HCH, p,p′-DDT and methoxychlor while of TOC with Σ20OCPs, γ-HCH, endosulfan sulfate and methoxychlor. Principal component analysis enabled correlating and clustering of various OCPs, BC and TOC. OCP distribution was related with pH, electrical conductivity, soil moisture and finer fractions of sediment. OCPs with similarity in properties that determine their interactions with carbonaceous components of sediment clustered together. A number of factors may, thus, be involved in the regulation of interactive forces between BC and OCPs. BC in this study may be more important than TOC in the retention of some OCPs into fluvial sediments, thereby reducing their bioavailability. The finding is probably the first of its kind to report and emphasises the role of BC in the persistence of OCPs in fluvial sediments.  相似文献   

4.
The metabolic fate of 14C-phenyl-labeled herbicide clodinafop-propargyl (14C-CfP) was studied for 28 days in lab assays using a sediment–water system derived from a German location. Mineralization was 5.21% of applied 14C after 28 days exhibiting a distinct lag phase until day 14 of incubation. Portions of radioactivity remaining in water phases decreased at moderate rate to 18.48% after 28 days; 62.46% were still detected in water after 14 days. Soxhlet extraction of the sediment using acetonitrile released 35.56% of applied 14C with day 28, while 33.99% remained as non-extractable residues. A remarkable increase of bound 14C was observed between 14 and 28 days correlating with the distinct increase of mineralization. No correlation was found throughout incubation with microbial activity of the sediment as determined by dimethyl sulfoxide reduction. Dissolved oxygen and pH value of water phases remained almost constant for 28 days. Analyses of Soxhlet extracts of the sediment and ethyl acetate extracts of water phases by radio-TLC and radio-HPLC revealed that CfP was rapidly cleaved to free acid clodinafop (Cf), which was further (bio-) transformed. DT50 values (based on radio-HPLC) were below 1 day (CfP) and slightly above 28 days (Cf). Further metabolites were not detected. Fractionation of humic and non-humic components of the sediment demonstrated that CfP's non-extractable residues were predominantly associated with fulvic acids up to 14 days of incubation (3.36%), whereas after 28 days, the majority of radioactivity was found in the humin/mineral fraction (13.30% of applied 14C). Due to high-performance size-exclusion chromatography of the fulvic acids fraction derived from assays incubated for 28 days, this portion of 14C was firmly, possibly covalently bound to fulvic acids and did not consist of CfP or Cf. Using an isolation strategy comprising preincubation of sediment with CfP and mineralization of 14C-CfP as criterion, a microorganism was isolated from the sediment examined. It grew on 14C-CfP as sole carbon source with evolution of 14CO2. The bacterium was characterized by growth on commonly used carbon sources and 16S rDNA sequence analysis. Its sequence exhibited high similarity with that of Nocardioides aromaticivorans strain H-1 (98.85%; DSM 15131, JCM 11674).  相似文献   

5.
Petroleum ether was used to extract petroleum hydrocarbons from soils collected from six oil fields with different history of exploratory and contamination. It was capable of fast removing 76–94 % of the total petroleum hydrocarbons including 25 alkanes (C11–C35) and 16 US EPA priority polycyclic aromatic hydrocarbons from soils at room temperature. The partial least squares analysis indicated that the solvent extraction efficiencies were positively correlated with soil organic matter, cation exchange capacity, moisture, pH, and sand content of soils, while negative effects were observed in the properties reflecting the molecular size (e.g., molecular weight and number of carbon atoms) and hydrophobicity (e.g., water solubility, octanol–water partition coefficient, soil organic carbon partition coefficient) of hydrocarbons. The high concentration of weathered crude oil at the order of 105 mg kg?1 in this study was demonstrated adverse for solvent extraction by providing an obvious nonaqueous phase liquid phase for hydrocarbon sinking and increasing the sequestration of soluble hydrocarbons in the insoluble oil fractions during weathering. A full picture of the mass distribution and transport mechanism of petroleum contaminants in soils will ultimately require a variety of studies to gain insights into the dynamic interactions between environmental indicator hydrocarbons and their host oil matrix.  相似文献   

6.
Although the attention for vanadium (V) as a potentially harmful element is growing and some countries adopted threshold values for V in soils, sediments, groundwater, or surface water, V is generally of little importance in environmental legislation and the knowledge about the behavior of V in the environment is still limited. In the present study, the release of V from oxidized sediments, sediment-derived soils, and certified reference materials was investigated by means of several types of leaching tests and extractions that are frequently used for soil and sediment characterization. The pHstat leaching tests and single and sequential extractions applied in this study show that V generally displays a very limited actual and potential mobility in sediment. “Mobile” V concentrations, as estimated by the amount of V released by a single extraction with CaCl2 0.01 mol L?1, were low, even in the most contaminated sediment samples. Only under strongly acidifying conditions (pH 2), such as in the case of ingestion of soil or sediment or in accidental spills, a substantial release of V can be expected.  相似文献   

7.
Slope failure has become a major concern in Malaysia due to the rapid development and urbanisation in the country. It poses severe threats to any highway construction industry, residential areas, natural resources and tourism activities. The extent of damages that resulted from this catastrophe can be lessened if a long-term early warning system to predict landslide prone areas is implemented. Thus, this study aims to characterise the relationship between Oxisols properties and soil colour variables to be manipulated as key indicators to forecast shallow slope failure. The concentration of each soil property in slope soil was evaluated from two different localities that consist of 120 soil samples from stable and unstable slopes located along the North-South Highway (PLUS) and East-West Highway (LPT). Analysis of variance established highly significant difference (P < 0.0001) between the locations, the total organic carbon (TOC), soil pH, cation exchange capacity (CEC), soil texture, soil chromaticity and all combinations of interactions. The overall CIELAB analysis leads to the conclusion that the CIELAB variables lightness L*, c* (Chroma) and h* (Hue) provide the most information about soil colour and other related soil properties. With regard to the relationship between colour variables and soil properties, the analysis detected that soil texture, organic carbon, iron oxide and aluminium concentration were the key factors that strongly correlate with soil colour variables at the studied area. Indicators that could be used to predict shallow slope failure were high value of L*(62), low values of c* (20) and h* (66), low concentration of iron (53 mg kg?1) and aluminium oxide (37 mg kg?1), low soil TOC (0.5%), low CEC (3.6 cmol/kg), slightly acidic soil pH (4.9), high amount of sand fraction (68%) and low amount of clay fraction (20%).  相似文献   

8.
Abstract

This study quantified 2,4-D [(2,4-dichlorophenoxy)acetic acid] sorption and mineralization rates in five soils as influenced by soil characteristics and nutrient contents. Results indicated that 2,4-D was weakly sorbed by soil, with Freundlich distribution coefficients ranging from 0.81 to 2.89 µg1?1/n  g?1 mL1/ n . First-order mineralization rate constants varied from 0.03 to 0.26, corresponding to calculated mineralization half-lives of 3 and 22 days, respectively. Herbicide sorption generally increased with increasing soil organic carbon content, but the extent of 2,4-D sorption per unit organic carbon varied among the soils due to differences in soil pH, clay content and/or organic matter quality. Herbicide mineralization rates were greater in soils that sorbed more 2,4-D per unit organic carbon, and that had greater soil nitrogen contents. We conclude that the effect of sorption on herbicide degradation cannot be generalized without a better understanding of the effects of soil characteristics and nutrient content on herbicide behavior in soil.  相似文献   

9.
A method for the identification and quantification of pesticide residues in water, soil, and sediment samples has been developed, validated, and applied for the analysis of real samples. The specificity was determined by the retention time and the confirmation and quantification of analyte ions. Linearity was demonstrated over the concentration range of 20 to 120 µg L?1, and the correlation coefficients varied between 0.979 and 0.996, depending on the analytes. The recovery rates for all analytes in the studied matrix were between 86% and 112%. The intermediate precision and repeatability were determined at three concentration levels (40, 80, and 120 µg L?1), with the relative standard deviation for the intermediate precision between 1% and 5.3% and the repeatability varying between 2% and 13.4% for individual analytes. The limits of detection and quantification for fipronil, fipronil sulfide, fipronil-sulfone, and fipronil-desulfinyl were 6.2, 3.0, 6.6, and 4.0 ng L?1 and 20.4, 9.0, 21.6, and 13.0 ng L?1, respectively. The method developed was used in water, soil, and sediment samples containing 2.1 mg L?1 and 1.2% and 5.3% of carbon, respectively. The recovery of pesticides in the environmental matrices varied from 88.26 to 109.63% for the lowest fortification level (40 and 100 µg kg?1), from 91.17 to 110.18% for the intermediate level (80 and 200 µg kg?1), and from 89.09 to 109.82% for the highest fortification level (120 and 300 µg kg?1). The relative standard deviation for the recovery of pesticides was under 15%.  相似文献   

10.
The fate of 14C-labeled herbicide prosulfocarb was studied in an agricultural soil and in a sediment-water system, the sediment part of which was derived from Yangtze Three Gorges Reservoir, China. Time-course studies were performed for 28 d and 49 d, respectively. Main transformation routes of 14C-prosulfocarb were mineralization to 14CO2 and formation of nonextractable residues amounting to 12.13% and 10.43%, respectively, after 28 days (soil), and 9.40% and 11.98%, respectively, after 49 d (sediment-water system). Traces of prosulfocarbsulfoxide were detected by means of TLC, HPLC, and LC-MS; other transformation products were not found. Initial extraction of soil assays using 0.01 M CaCl2 solution showed that the bioavailability of the herbicide was considerably low; immediately after application (0.1 d of incubation), only 4.78% of applied radioactivity were detected in this aqueous fraction. DT50 values of 14C-prosulfocarb estimated from radio-TLC and -HPLC analyses were above 28 d in soil and ranged between 29 d and 49 d in the sediment-water system. Partitioning of 14C from water to sediment phase occurred with DT50 slightly above 2 d. With regard to the sediment-water system, adsorption occurred with log Koc = 1.38 (calculated from 2 day assays) and 2.35 (49 d assays). As similarly estimated from portions of 14C found in CaCl2 extracts of the 0.1 d assays, 14C-prosulfocarb's log Koc in soil was 2.96. With both experiments, similar portions of nonextractable radioactivity were associated with all soil organic matter fractions, i.e. nonhumics, fulvic acids, humic acids, and humin/minerals. Throughout all sample preparation, the experiments were severely impaired by losses of radioactivity especially with concentration of samples containing water in vacuo. All findings pointed to volatility of parent prosulfocarb in presence of water rather than volatility of transformation products. According to literature data, this behavior of prosulfocarb was not expected, though volatility was demonstrated under field conditions.  相似文献   

11.
The Xin’an Reservoir is an important water supply source and water conservation area for the Qiantang River. However, after the occurrence of the two algae blooms in 1998 and 1999, the safety of water quality has been put into question. In order to study the historical deposition of nutrients, sediment cores were collected in different regions from the Xin’an Reservoir. The stable isotopes δ13C and δ15N, nutrients, total organic carbon (TOC), and inorganic carbon (IC) in the sediment cores were determined. Radiometric methods (210Pb and 137Cs) were used to obtain sediment chronologies. Spatially, it was found that the average total nitrogen (TN) content in the upper 5 cm of sediments increased from 0.21% in the riverine zone, to 0.33%, and then to 0.57% in the lacustrine zone. The average TP content in the upper 5 cm increased from 0.67 g kg?1 in the riverine zone, to 1.03 g kg?1 in the estuary region, and then to 1.65 g kg?1 in the lacustrine zone. In addition, TOC levels showed a distinct increase from 1.42% in the bottom to 5.97% in the surface of the lacustrine zone. These results demonstrated that although primary productivity and the input of nutrients constantly increased in recent years, algae blooms rarely occurred in the Xin’an Reservoir, due to “depth effect” and an aquatic environment protection-oriented fishery policy. However, high TOC flux and high bio-available phosphorus and nitrogen in surface sediment demonstrated that the reservoir is still confronted with the potential risk of algae blooms.  相似文献   

12.

Purpose

Combinatorial bio/chemical approach was applied to investigate dioxin-like contamination of soil and sediment at the petrochemical and organochlorine plant in Pancevo, Serbia, after the destruction of manufacturing facilities that occurred in the spring of 1999 and subsequent remediation actions.

Materials and methods

Soil samples were analyzed for indicator polychlorinated biphenyls (PCBs) by gas chromatography/electron capture detection (GC/ECD). Prioritized soil sample and sediment samples from the waste water channel were analyzed for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS). Microethoxyresorufin o-deethylase (Micro-EROD) and H4IIE?Cluciferase bioassays were used for monitoring of dioxin-like compounds (DLC) and for better characterization of dioxin-like activity of soil samples.

Results

Bioanalytical results indicated high dioxin-like activity in one localized soil sample, while the chemical analysis confirmed the presence of large quantities of DLC: 3.0?×?105 ng/g d.w. of seven-key PCBs, 8.2 ng/g d.w. of PCDD/Fs, and 3.0?×?105 ng/g d.w. of planar and mono-ortho PCBs. In the sediment, contaminant concentrations were in the range 2?C8 ng/g d.w. of PCDD/Fs and 9?C20 ng/g d.w. of PCBs.

Conclusions

This study demonstrates the utility of combined application of bioassays and instrumental analysis, especially for developing and transition country which do not have capacity of the expensive instrumental analysis. The results indicate the high contamination of soil in the area of petrochemical plant, and PCDD/Fs contamination of the sediment from the waste water channel originating from the ethylene dichloride production.  相似文献   

13.
Methane-oxidizing bacteria (methanotrophs) in the soil are a unique group of methylotrophic bacteria that utilize methane (CH4) as their sole source of carbon and energy which limit the flux of methane to the atmosphere from soils and consume atmospheric methane. A field experiment was conducted to determine the effect of nitrogen application rates and the nitrification inhibitor dicyandiamide (DCD) on the abundance of methanotrophs and on methane flux in a grazed pasture soil. Nitrogen (N) was applied at four different rates, with urea applied at 50 and 100 kg N ha?1 and animal urine at 300 and 600 kg N ha?1. DCD was applied at 10 kg ha?1. The results showed that both the DNA and selected mRNA copy numbers of the methanotroph pmoA gene were not affected by the application of urea, urine or DCD. The methanotroph DNA and mRNA pmoA gene copy numbers were low in this soil, below 7.13?×?103 g?1 soil and 3.75?×?103 μg?1 RNA, respectively. Daily CH4 flux varied slightly among different treatments during the experimental period, ranging from ?12.89 g CH4 ha?1 day?1 to ?0.83 g CH4 ha?1 day?1, but no significant treatment effect was found. This study suggests that the application of urea fertilizer, animal urine returns and the use of the nitrification inhibitor DCD do not significantly affect soil methanotroph abundance or daily CH4 fluxes in grazed grassland soils.  相似文献   

14.
This study used the enzymes extracted from an atrazine-degrading strain, Arthrobacter sp. DNS10, which had been immobilized by sodium alginate to rehabilitate atrazine-polluted soil. Meanwhile, a range of biological indices were selected to assess the ecological health of contaminated soils and the ecological security of this bioremediation method. The results showed that there was no atrazine detected in soil samples after 28 days in EN?+?AT (the soil containing atrazine and immobilized enzyme) treatment. However, the residual atrazine concentration of the sample in AT (the soil containing atrazine only) treatment was about 5.02?±?0.93 mg?kg?1. These results suggest that the immobilized enzyme exhibits an excellent ability in atrazine degradation. Furthermore, the immobilized enzyme could relieve soil microbial biomass carbon and soil microbial respiration intensity to 772.33?±?34.93 mg?C?kg?1 and 5.01?±?0.17 mg?CO2?g?1?soil?h?1, respectively. The results of the polymerase chain reaction–degeneration gradient gel electrophoresis experiment indicated that the immobilized enzyme also could make the Shannon–Wiener index and evenness index of the soil sample increase from 1.02 and 0.74 to 1.51 and 0.84, respectively. These results indicated that the immobilized enzymes not only could relieve the impact from atrazine on the soil, but also revealed that the immobilized enzymes did no significant harm on the soil ecological health.  相似文献   

15.
The goal was to determine dissolution potency of betulinol and wood sterols (WSs) from pulp and paper mill-contaminated sediments and the current stratification for assessment the load due to potential erosion in the river-like watercourse. Both compounds are wood extractives, which may be toxic to benthos and fish. This research continues a study in which other wood extractives, resin acids and their derivative, retene, were analysed. Sediments were collected from 1, 3.5, 12, 15, and 33 km downstream from the pulp and paper mills, and from 2 upstream reference sites. The dissolution potency into sediment–water elutriates (1?+?4?v/v) was studied by two agitation times and temperatures. The vertical amounts of extractives were determined from the uppermost 20 cm of sediment. The amounts of extractives potentially released were estimated from the sediment layers 0–2 and 2–5 cm by using spatial interpolation. According to the interpolation, the total amount of betulinol and β-sitosterol was calculated as kg/ha in the whole sediment area. Significant concentrations of betulinol (1,666 μg/g, dw) and WSs (2,886 μg/g, dw) were measured from the sediments. According spatial interpolation, the highest calculated amount of betulinol (4,726 kg/ha) and that of the most abundant WS, β-sitosterol (3,571 kg/ha), were in the lake where the effluents were discharged. In the dissolution experiment, the highest concentration of betulinol in sediment (0–10 cm) and elutriate was 412 μg/g (dw) and 165 μg/l, respectively. For WSs, concentrations were 768 μg/g (dw) in sediment and 273 μg/l in elutriate. In a worst-case scenario, betulinol may be desorbed to water in concentrations which are hazardous to aquatic animals. Instead WSs are not a risk in this study area. The amount of desorption varied depending on the concentration of contaminants in sediment, the nature of disturbance, and the sediment organic carbon content.  相似文献   

16.
In a laboratory study we investigated 1) the potential production of nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) and 2) the effect of nitrate (NO3?) and anaerobic N2O development on CH4 production in sediment from a recently recreated free surface water wetland (FSWW) and in soil from an adjacent meadow. We designed an experiment where production of greenhouse gases was registered at the time of maximum net development of N2O. We made additions of biodegradable carbon (glucose) and/or NO3? to sediment and soil slurries and incubated them at four temperatures (4, 13, 20, 28 °C). Gas production from both substrates was positively correlated with temperature. We also found that the sediment produced more N2O than the soil. N2O production in sediment was NO3? limited, whereas in soil carbon availability was lower and only combined additions of NO3? and glucose supported increased N2O development. CH4 production was generally low and did not differ between soil and sediment. Nor did glucose addition increase CH4 rates. The results suggest that neither soil nor sediment environment did support development of methanogenic populations. There were no clear effects of NO3? on CH4 production. However, the highest records of CH4 were found in incubations with low N2O production, which indicates that N2O might be toxic to methanogens. In summary, our study showed that transforming meadows into FSWWs implies a risk of increased N2O emissions. This does not seem to be valid for CH4. However, since N2O is almost always produced wherever NO3? is denitrified, increased N2O production in wetlands leads to reduced rates in downstream environments. Hence, we conclude that when balancing NO3? retention and global warming aspects, we find no reason to discourage future creation or restoration of wetlands.  相似文献   

17.
The purpose of this work was to investigate the effects of spreading olive oil mill wastewater (OMWW) on soil biochemical parameters and olive production in an organically managed olive orchard. The experiment was carried out with three different doses of OMWW (80, 160 and 500 m3 ha?1) and a control (untreated soil). Three samplings were done at 10, 30 and 90 days after the administration of the byproduct. OMWW application differentially modified the biochemical properties of the soil analyzed. Organic matter, organic carbon, total nitrogen and extractable phosphorus soil contents increased proportionally with each increasing dose. The values of these parameters decreased gradually with time. Total microbial activity was altered and the OMWW 500 m3 ha?1 treatment proved to be the most active when compared with the other applied doses. OMWW agricultural application also modified the structure of soil microbial communities, particularly affecting Gram positive and negative bacteria, while fungal biomass did not show consistent changes. Although there was a salinity increase in the treated soil, especially at the highest dose, the productive parameters analyzed (fruit and oil tree?1) were not affected. In light of the obtained results, we consider that low dose of OMWW could be considered an alternative farming practice for semiarid regions.  相似文献   

18.
Grazing can accelerate and alter the timing of nutrient transfer, and could increase the amount of extractable phosphorus (P) cycle from soils to plants. The effects of grazing management and/or forage type that control P cycling and distribution in pasture's resources have not been sufficiently evaluated. Our ability to estimate the levels and changes of soil-extractable P and other crop nutrients in subtropical beef cattle pastures has the potential to improve our understanding of P dynamics and nutrient cycling at the landscape level. To date, very little attention has been paid to evaluating transfers of extractable P in pasture with varying grazing management and different forage type. Whether or not P losses from grazed pastures are significantly greater than background losses and how these losses are affected by soil, forage management, or stocking density are not well understood. The objective of this study was to evaluate the effect of grazing management (rotational versus “zero” grazing) and forage types (FT; bahiagrass, Paspalum notatum, Flugge versus rhizoma peanuts, Arachis glabrata, Benth) on the levels of extractable soil P and degree of P saturation in beef cattle pastures. This study (2004–2007) was conducted at the Subtropical Agricultural Research Station, US Department of Agriculture–Agricultural Research Service located 7 miles north of Brooksville, FL. Soil (Candler fine sand) at this location was described as well-drained hyperthermic uncoated Typic Quartzipsamments. A split plot arrangement in a completely randomized block design was used and each treatment was replicated four times. The main plot was represented by grazing management (grazing vs. no grazing) while forage types (bahiagrass vs. perennial peanut) as the sub-plot treatment. Eight steel exclosures (10?×?10 m) were used in the study. Four exclosures were placed and established in four pastures with bahiagrass and four exclosures were established in four pastures with rhizoma peanuts to represent the “zero” grazing treatment. The levels of soil-extractable P and degree of P saturation (averaged across FT and soil depth) of 22.1 mg kg?1 and 11.6 % in pastures with zero grazing were not significantly (p?≤?0.05) different from the levels of soil-extractable P and degree of P saturation of 22.8 mg kg?1 and 12.9 % in pastures with rotational grazing, respectively. On the effect of FT, levels of soil-extractable P and degree of P saturation were significantly higher in pastures with rhizoma peanuts than in pastures with bahiagrass. There was no net gain of soil-extractable P due to the presence of animals in pastures with rotational grazing. Averaged across years, soil-extractable P in pastures with rotational grazing and with “zero” grazing was less than 150 mg kg?1, the water quality protection. There had been no movement of soil-extractable P into the soil pedon since average degree of P saturation in the upper 15 cm was 14.3 % while the average degree of P saturation in soils at 15–30 cm was about 9.9 %. Overall, average extractable P did not exceed the crop requirement threshold of 50 mg P kg?1 and the soil P saturation threshold of 25 %, suggesting that reactive P is not a problem. Our study revealed that rhizoma peanuts and bahiagrass differ both in their capacity to acquire nutrients from the soil and in the amount of nutrients they need per unit growth. Rhizoma peanuts, which are leguminous forage, would require higher amounts of P compared with bahiagrass. The difference in the amount of P needed by these forages could have a profound effect on their P uptake that can be translated to the remaining amount of P in the soils. Periodic applications of additional P may be necessary especially for pastures with rhizoma peanuts to sustain their agronomic needs and to potentially offset the export of P due to animal production. Addition of organic amendments could represent an important strategy to protect pasture lands from excessive soil resources exploitation.  相似文献   

19.
Net ecosystem metabolism and subsequent changes in environmental variables were studied seasonally in the seagrass-dominated Palk Bay, located along the southeast coast of India. The results showed that although the water column was typically net heterotrophic, the ecosystem as a whole displayed autotrophic characteristics. The mean net community production from the seagrass meadows was 99.31 ± 45.13 mM C m?2 d?1, while the P/R ratio varied between 1.49 and 1.56. Oxygen produced through in situ photosynthesis, exhibited higher dependence over dissolved CO2 and available light. Apportionment of carbon stores in biomass indicated that nearly three-fourths were available belowground compared to aboveground. However, the sediment horizon accumulated nearly 40 times more carbon than live biomass. The carbon storage capacities of the sediments and seagrass biomass were comparable with the global mean for seagrass meadows. The results of this study highlight the major role of seagrass meadows in modification of seawater chemistry. Though the seagrass meadows of Palk Bay are increasingly subject to human impacts, with coupled regulatory and management efforts focused on improved water quality and habitat conservation, these key coastal ecosystems will continue to be valuable for climate change mitigation, considering their vital role in C dynamics and interactions with the overlying water column.  相似文献   

20.
This work considered the environmental impact of artisanal mining gold activity in the Migori–Transmara area (Kenya). From artisanal gold mining, mercury is released to the environment, thus contributing to degradation of soil and water bodies. High mercury contents have been quantified in soil (140 μg kg?1), sediment (430 μg kg?1) and tailings (8,900 μg kg?1), as expected. The results reveal that the mechanism for transporting mercury to the terrestrial ecosystem is associated with wet and dry depositions. Lichens and mosses, used as bioindicators of pollution, are related to the proximity to mining areas. The further the distance from mining areas, the lower the mercury levels. This study also provides risk maps to evaluate potential negative repercussions. We conclude that the Migori–Transmara region can be considered a strongly polluted area with high mercury contents. The technology used to extract gold throughout amalgamation processes causes a high degree of mercury pollution around this gold mining area. Thus, alternative gold extraction methods should be considered to reduce mercury levels that can be released to the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号