首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
In the paper, the performance of two Bulgarian dispersion models is tested against European Tracer Experiment (ETEX) first release data base. The first one is the LED puff model which was the core of the Bulgarian Emergency Response System during all releases of ETEX. The second one is the newly created Eulerian dispersion model EMAP. These models have two important features: they are PC-oriented and they use quite a limited amount of input meteorological information. First, a number of runs with various source configurations are made on meteorological data produced by ECMWF. The aim of these runs is to verify the models’ ability to simulate reliably ETEX first release. To this end, a set of statistical criteria selected in ATMES (Atmospheric Transport Models Evaluation Study, see Klug et al., 1992 are used. The best runs for both models are obtained when the source is presented as a column towering from the ground to heights of 400–700 m. These runs took part in the second phase of ETEX (ETEX-II), the so called ATMES-type exercise where EMAP ranked ninth and LED - fourteenth among 34 models. Here, additional sets of EMAP are presented where in the first run the value of the horizontal diffusion coefficient is varied and in the other runs different meteorological data sets are tested. The results obtained from the first run show that the values of Kh=4–6×104 m2 s-1 produce fields which fit experimental data best. The other sets of runs show that the higher the frequency of the meteorological data, the better the simulation. The results can be improved by linear interpolation of the meteorological parameters with time, the best fitting obtained with interpolation at each time step.  相似文献   

2.
For operational or research purposes (dispersion computations of radioactive effluents during nuclear emergency situations, simulations of chemical pollution in the vicinity of thermal power plants), different models of passive dispersion in the atmosphere have been developed at the Environment Department of EDF’s R and D Division. This report presents the comparison of the performances of three such models: DIFTRA (lagrangian puff model, with operational goal), DIFEUL (three dimensional eulerian) and DIFPAR (Monte Carlo particle model) for the simulation of the first ETEX release, an international tracer campaign during which a passive tracer cloud has been followed over Europe. The results obtained in this study give model vs. experience differences of the same order as the model vs. experience differences observed during an international model comparison experiment using data of the Chernobyl release, the ATMES exercise. In addition to the standard statistical scores used in the evaluation of the performances of the transport models two asymmetric scores (in contradistinction with the Figure of Merit in Space) are proposed: “efficiency” and “power”. Their aim is to separate the two manners in which a model may be wrong: by predicting presence of pollutant while none is measured or conversely predicting absence when pollutant is actually detected.  相似文献   

3.
This paper presents results from a series of numerical experiments designed to evaluate operational long-range dispersion model simulations, and to investigate the effect of different temporal and spatial resolution of meteorological data from numerical weather prediction models on these simulations. Results of Lagrangian particle dispersion simulations of the first tracer release of the European Tracer Experiment (ETEX) are presented and compared with measured tracer concentrations. The use of analyzed data of higher resolution from the European Center for Medium-Range Weather Forecasts (ECMWF) model produced significantly better agreement between the concentrations predicted with the dispersion model and the ETEX measurements than the use of lower resolution Navy Operational Global Atmospheric Prediction System (NOGAPS) forecast data. Numerical experiments were performed in which the ECMWF model data with lower vertical resolution (4 instead of 7 levels below 500 mb), lower temporal resolution (12 h instead of 6 h intervals), and lower horizontal resolution (2.5° instead of 0.5°) were used. Degrading the horizontal or temporal resolution of the ECMWF data resulted in decreased accuracy of the dispersion simulations. These results indicate that flow features resolved by the numerical weather prediction model data at approximately 45 km horizontal grid spacing and 6 h time intervals, but not resolved at 225 km spacing and 12 h intervals, made an important contribution to the long-range dispersion.  相似文献   

4.
The CANadian Emergency Response Model (CANERM) was used to simulate the dispersion resulting from the ETEX release of 23 October 1994. Dispersion simulations were done using three different data sets as meteorological input: the ECMWF/ETEX Data Set, data from the CMC Global Data Assimilation System, and results from a diagnostic execution of the Global Environmental Multiscale (GEM) model. Comparisons of the dispersion simulations are made with observed surface concentration data provided by the Joint Research Centre (JRC) of the European Commission. It is found that CANERM can simulate fairly well the main features of the cloud dispersion. The spatial and temporal evolution of the simulated cloud appear quite plausible, but a tendency to overestimate surface concentrations is apparent. The simulations provide a credible explanation for the two peaks observed at station NL01; the first peak appears to be associated with the passage of the head portion of the plume, while the second seems to be associated with the tail part. Verification scores indicate that the simulations using the ECMWF/ETEX data set and CMC global data are of equivalent quality. However, the simulations obtained using the GEM diagnostic fields are significantly better.  相似文献   

5.
6.
In previous work [Kovalets, I., Andronopoulos, S., Bartzis, J.G., Gounaris, N., Kushchan, A., 2004. Introduction of data assimilation procedures in the meteorological pre-processor of atmospheric dispersion models used in emergency response systems. Atmospheric Environment 38, 457–467.] the authors have developed data assimilation (DA) procedures and implemented them in the frames of a diagnostic meteorological pre-processor (MPP) to enable simultaneous use of meteorological measurements with numerical weather prediction (NWP) data. The DA techniques were directly validated showing a clear improvement of the MPP output quality in comparison with meteorological measurement data. In the current paper it is demonstrated that the application of DA procedures in the MPP, to combine meteorological measurements with NWP data, has a noticeable positive effect on the performance of an atmospheric dispersion model (ADM) driven by the MPP output. This result is particularly important for emergency response systems used for accidental releases of pollutants, because it provides the possibility to combine meteorological measurements with NWP data in order to achieve more reliable dispersion predictions. This is also an indirect way to validate the DA procedures applied in the MPP. The above goal is achieved by applying the Lagrangian ADM DIPCOT driven by meteorological data calculated by the MPP code both with and without the use of DA procedures to simulate the first European tracer experiment (ETEX I). The performance of the ADM in each case was evaluated by comparing the predicted and the experimental concentrations with the use of statistical indices and concentration plots. The comparison of resulting concentrations using the different sets of meteorological data showed that the activation of DA in the MPP code clearly improves the performance of dispersion calculations in terms of plume shape and dimensions, location of maximum concentrations, statistical indices and time variation of concentration at the detectors locations.  相似文献   

7.
During ETEX Meteo-France applied part of its emergency response system for critical events developped in the framework of the World Meteorological Organization environmental emergency response program. The atmospheric transport model used to forecast the evolution of a passive tracer is an eulerian model called MEDIA. In real time this model is driven by meteorological data from ARPEGE, the operational numerical weather prediction model available at the Meteo-France operation center. The overall evaluation of the results show that the model can reproduce the cloud displacement, but there exists a stretching in the transport direction. In the ATMES-II phase, the results are closer to the observations when meteorological data from the European Center for Medium range Weather Forecast are used. A simulation using analyzed meteorological data from ARPEGE every 6 h slightly improve the results comparing with the real-time experiment. All the simulations we performed reveal that the quality of the atmospheric transport model is strongly dependent on the quality of the driving numerical weather prediction model.  相似文献   

8.
In this paper the meteorological processes responsible for transporting tracer during the second ETEX (European Tracer EXperiment) release are determined using the UK Met Office Unified Model (UM). The UM predicted distribution of tracer is also compared with observations from the ETEX campaign. The dominant meteorological process is a warm conveyor belt which transports large amounts of tracer away from the surface up to a height of 4 km over a 36 h period. Convection is also an important process, transporting tracer to heights of up to 8 km. Potential sources of error when using an operational numerical weather prediction model to forecast air quality are also investigated. These potential sources of error include model dynamics, model resolution and model physics. In the UM a semi-Lagrangian monotonic advection scheme is used with cubic polynomial interpolation. This can predict unrealistic negative values of tracer which are subsequently set to zero, and hence results in an overprediction of tracer concentrations. In order to conserve mass in the UM tracer simulations it was necessary to include a flux corrected transport method. Model resolution can also affect the accuracy of predicted tracer distributions. Low resolution simulations (50 km grid length) were unable to resolve a change in wind direction observed during ETEX 2, this led to an error in the transport direction and hence an error in tracer distribution. High resolution simulations (12 km grid length) captured the change in wind direction and hence produced a tracer distribution that compared better with the observations. The representation of convective mixing was found to have a large effect on the vertical transport of tracer. Turning off the convective mixing parameterisation in the UM significantly reduced the vertical transport of tracer. Finally, air quality forecasts were found to be sensitive to the timing of synoptic scale features. Errors in the position of the cold front relative to the tracer release location of only 1 h resulted in changes in the predicted tracer concentrations that were of the same order of magnitude as the absolute tracer concentrations.  相似文献   

9.
Performance of a Lagrangian dispersion model was examined in connection with its dependency on the boundary layer modelling and the input data resolution. The European Tracer Experiment (ETEX) data were used as reference. According to the sensitivity analysis of the model performance, the long-range dispersion model with the sparse input data was not noticeably different from that with the finer resolution data. The assumption of the prescribed constant mixing depth did not largely degrade the prediction results as compared with the simulation results with the temporally changing boundary layer. It is, therefore, concluded that the model is practical, considering the limited input data in the operational mode. However, it was also pointed out that the parameterization for the horizontal and vertical diffusion processes used in the present model enhanced the growth of plume. The improvement of input data resolution in time and space caused further dispersion of tracer deterministically. These resulted in the underestimation of the maximum concentration and the unfocussed concentration distribution map although the mean concentration was predicted fairly well.  相似文献   

10.
A comprehensive validation of FLEXPART, a recently developed Lagrangian particle dispersion model based on meteorological data from the European Centre for Medium-Range Weather Forecasts, is described in this paper. Measurement data from three large-scale tracer experiments, the Cross-Appalachian Tracer Experiment (CAPTEX), the Across North America Tracer Experiment (ANATEX) and the European Tracer Experiment (ETEX) are used for this purpose. The evaluation is based entirely on comparisons of model results and measurements paired in space and time. It is found that some of the statistical parameters often used for model validation are extremely sensitive to small measurement errors and should not be used in future studies. 40 cases of tracer dispersion are studied, allowing a validation of the model performance under a variety of different meteorological conditions. The model usually performs very well under undisturbed meteorological conditions, but it is less skilful in the presence of fronts. The two ETEX cases reveal the full range of the model’s skill, with the first one being among the best cases studied, and the second one being, by far, the worst. The model performance in terms of the statistical parameters used stays rather constant with time over the periods (up to 117 h) studied here. It is shown that the method used to estimate the concentrations at the receptor locations has a significant effect on the evaluation results. The vertical wind component sometimes has a large influence on the model results, but on the average only a slight improvement over simulations which neglect the vertical wind can be demonstrated. Subgrid variability of mixing heights is important and must be accounted for.  相似文献   

11.
The Danish Emergency Response Model of the Atmosphere (DERMA) is described and applied to the first ETEX experiment. By using analysed low-resolution numerical weather-prediction data from the global model of the European Centre for Medium-range Weather Forecast (ECMWF) as well as higher-resolution data from two versions of the High Resolution Limited Area Model (HIRLAM), which are operational at the Danish Meteorological Institute (DMI), the sensitivity of DERMA to the resolution of meteorological data is analysed by comparing DERMA results with concentration measurements. Furthermore, the sensitivity to boundary-layer height and diffusion parameters is studied. These parameters include the critical bulk Richardson number, which is used to estimate the atmospheric boundary-layer height, the horizontal eddy diffusivity and the Lagrangian turbulence time scale. The parameters, which provide the best performance of DERMA, are 0.25 for the critical bulk Richardson number, 6×103 m2 s-1 for the horizontal eddy diffusivity, and 3 h for the Lagrangian time scale. DERMA is much more sensitive to boundary-layer parameters when using high-resolution DMI-HIRLAM data than when using data of lower resolution from the ECMWF. Finally, the bulk Richardson number method of boundary-layer height calculation applied to DMI-HIRLAM data is verified directly against routine radiosondes released under the tracer gas plume. The boundary-layer height estimates based on analysed NWP model data agree well with observations, and the agreement deteriorates as a function of forecast length.  相似文献   

12.
As part of the European Tracer Experiment (ETEX) two successful atmospheric experiments were carried out in October and November, 1994. Perfluorocarbon (PFC) tracers were released into the atmosphere in Monterfil, Brittany, and air samples were taken at 168 stations in 17 European countries for 72 h after the release. Upper air tracer measurements were made from three aircraft. During the first experiment a westerly air flow transported the tracer plume north-eastwards across Europe. During the second release the flow was eastwards. The results from the ground sampling network allowed the determination of the cloud evolution as far as Sweden, Poland and Bulgaria. This demonstrated that the PFT technique can be successfully applied in long-range tracer experiments up to 2000 km. Typical background concentrations of the tracer used are around 5–7 fl ?-1 in ambient air. Concentrations in the plume ranged from 10 to above 200 fl/?-1. The tracer release characteristics, the tracer concentrations at the ground and in upper air, the routine and additional meteorological observations at the ground level and in upper air, trajectories derived from constant-level balloons and the meteorological input fields for long-range transport models are assembled in the ETEX database. The ETEX database is accessible via the Internet. Here, an overview is given of the design of the experiment, the methods used and the data obtained.  相似文献   

13.
The ETEX 1 data set has been used to assess the performance of the UK Met Office’s long-range dispersion model NAME. In terms of emergency response modelling the model performed well, successfully predicting the overall spread and timing of the plume across Europe. However, in common with most other models, NAME overpredicted the observed concentrations. This is in contrast with other NAME validation studies which indicate either no significant bias or a tendency to underpredict concentrations. This suggests the reasons for overpredicting are specific to the ETEX situation. Explanations include inadequate vertical diffusion or transport, possible venting by convective activity, and experimental errors. An assessment of a range of advection schemes of varying complexity indicated no clear advantage, at present, in using more sophisticated random walk techniques at long range, a simple diffusion coefficient based scheme providing some of the best results. A brief look is also taken at a simulation of the more problematical ETEX 2 release.  相似文献   

14.
Two Lagrangian particle models, APOLLO and MILORD, were used to simulate the first ETEX experiment. The role played by wind field, mixing height h and horizontal diffusivity KH appeared to be the most important aspects to be studied. The sensitivity to the accuracy of the input advection field was studied through the application of APOLLO using different ECMWF data sets differing in space and time resolution and in being forecasted or analysed, corresponding to the real-time, emergency-like condition, and to the a posteriori benchmark simulation. The role of h and KH was investigated by running both APOLLO and MILORD with different parameterisations, and comparing the model results between them and with the available observations.The model evaluation was carried out through a set of statistical indexes computed on three hourly average concentrations paired in space and time and time-integrated concentrations. It was found that the quality of the input wind field plays a major role in predicting with sufficient accuracy the plume position and extension after the first 24 h from the beginning of the release. The best-model results are obtained with large values of KH (in the range of 2.5×104–4.5×104 m2 s-1), which confirms the need to enhance the horizontal diffusion, in order to include the advection fluctuations unresolved by large-scale meteorological fields. A fixed value of h in the range 1000–1500 m seems to be more efficient than space and time variable h computed with standard algorithms. A reasonable explanation for this result is given, based on the consideration that in the long range, particles diffuse also in the residual layer above the stable nocturnal boundary layer.  相似文献   

15.
Japan Atomic Energy Research Institute has developed an emergency response system WSPEEDI to forecast long-range atmospheric dispersions of radionuclides discharged into the atmosphere. The latest version of WSPEEDI consists of an atmospheric dynamic model MM5 for calculating meteorological fields and a particle random-walk model for atmospheric dispersion. The performance of WSPEEDI was evaluated by data obtained from a field tracer experiment over Europe (ETEX) in this paper. The model validation was done with respect to the following points: (1) the dependence of model accuracy on the temporal and spatial resolutions of the meteorological fields and (2) the superiority of an atmospheric dynamic model over a mass-consistent wind model. Regarding (1), it was shown that the calculation accuracy of the new version with high temporal resolution was improved, especially at the edge of the plume. Moreover, although the increase in horizontal spatial resolution of the old version had no substantial effect on the model performance, increase in horizontal resolution of the new version contributed to the significant improvement of the calculation accuracy. These results showed that the dynamically calculated meteorological field with the spatial resolution of the meso-βγ scale greatly improved calculation accuracy.  相似文献   

16.
The predictive potential of air quality models and thus their value in emergency management and public health support are critically dependent on the quality of their meteorological inputs. The atmospheric flow is the primary cause of the dispersion of airborne substances. The scavenging of pollutants by cloud particles and precipitation is an important sink of atmospheric pollution and subsequently determines the spatial distribution of the deposition of pollutants. The long-standing problem of the spin-up of clouds and precipitation in numerical weather prediction models limits the accuracy of the prediction of short-range dispersion and deposition from local sources. The resulting errors in the atmospheric concentration of pollutants also affect the initial conditions for the calculation of the long-range transport of these pollutants. Customary the spin-up problem is avoided by only using NWP (Numerical Weather Prediction) forecasts with a lead time greater than the spin-up time of the model. Due to the increase of uncertainty with forecast range this reduces the quality of the associated forecasts of the atmospheric flow.In this article recent improvements through diabatic initialization in the spin-up of large-scale precipitation in the Hirlam NWP model are discussed. In a synthetic example using a puff dispersion model the effect is demonstrated of these improvements on the deposition and dispersion of pollutants with a high scavenging coefficient, such as sulphur, and a low scavenging coefficient, such as cesium-137. The analysis presented in this article leads to the conclusion that, at least for situations where large-scale precipitation dominates, the improved model has a limited spin-up so that its full forecast range can be used. The implication for dispersion modeling is that the improved model is particularly useful for short-range forecasts and the calculation of local deposition. The sensitivity of the hydrological processes to proper initialization implies that the spin-up problem may reoccur with changes in the model and increased model resolution. Spin-up should be an ongoing concern for atmospheric modelers.  相似文献   

17.
In order to carry out efficient traffic and air quality management, validated models and PM emission estimates are needed. This paper compares current available emission factor estimates for PM10 and PM2.5 from emission databases and different emission models, and validates these against eight high quality street pollution measurements in Denmark, Sweden, Germany, Finland and Austria.The data sets show large variation of the PM concentration and emission factors with season and with location. Consistently at all roads the PM10 and PM2.5 emission factors are lower in the summer month than the rest of the year. For example, PM10 emission factors are in average 5–45% lower during the month 6–10 compared to the annual average.The range of observed total emission factors (including non-exhaust emissions) for the different sites during summer conditions are 80–130 mg km−1 for PM10, 30–60 mg km−1 for PM2.5 and 20–50 mg km−1 for the exhaust emissions.We present two different strategies regarding modelling of PM emissions: (1) For Nordic conditions with strong seasonal variations due to studded tyres and the use of sand/salt as anti-skid treatment a time varying emission model is needed. An empirical model accounting for these Nordic conditions was previously developed in Sweden. (2) For other roads with a less pronounced seasonal variation (e.g. in Denmark, Germany, Austria) methods using a constant emission factor maybe appropriate. Two models are presented here.Further, we apply the different emission models to data sets outside the original countries. For example, we apply the “Swedish” model for two streets without studded tyre usage and the “German” model for Nordic data sets. The “Swedish” empirical model performs best for streets with studded tyre use, but was not able to improve the correlation versus measurements in comparison to using constant emission factors for the Danish side. The “German” method performed well for the streets without clear seasonal variation and reproduces the summer conditions for streets with pronounced seasonal variation. However, the seasonal variation of PM emission factors can be important even for countries not using studded tyres, e.g. in areas with cold weather and snow events using sand and de-icing materials. Here a constant emission factor probably will under-estimate the 90-percentiles and therefore a time varying emission model need to be used or developed for such areas.All emission factor models consistently indicate that a large part (about 50–85% depending on the location) of the total PM10 emissions originates from non-exhaust emissions. This implies that reduction measures for the exhaust part of the vehicle emissions will only have a limited effect on ambient PM10 levels.  相似文献   

18.
The advection and dispersion of Asian dust events from China to the Pacific Ocean around Japan during 2000–2002 were investigated using the meteorological satellite data of NOAA/AVHRR and GMS-5/VISSR. Aerosol vapour index images, taking the brightness temperature difference between 11 and 12 μm, are very effective for monitoring the Asian dust phenomenon in the East Asia region, with their capacity for detection during the day or night. We discuss the dust events, focusing on the advection patterns shown in satellite images, which are classified into three types as ‘dry slot’, ‘high-pressure wedge’ and ‘travelling high’, based on synoptic patterns. The results are compared with suspended particulate matter concentrations measured at Japanese surface stations and with ground-based observations of Sakurajima volcano by a web camera system at Kagoshima in Kyushu, Japan. We found that the passage of cold fronts caused a rapid increase of suspended particulate matter (SPM) concentrations, which exceeded 100 μg m−3, and that deep low-pressure complexes strengthened the dust phenomenon. The ‘high-pressure wedge’ type is seen much more clearly in satellite images than the ‘travelling high’ type, but SPM concentrations and visibility were similar in both owing to the differences in the vertical distribution of the dust and in viewing conditions.  相似文献   

19.
Currently used dispersion models, such as the AMS/EPA Regulatory Model (AERMOD), process routinely available meteorological observations to construct model inputs. Thus, model estimates of concentrations depend on the availability and quality of meteorological observations, as well as the specification of surface characteristics at the observing site. We can be less reliant on these meteorological observations by using outputs from prognostic models, which are routinely run by the National Oceanic and Atmospheric Administration (NOAA). The forecast fields are available daily over a grid system that covers all of the United States. These model outputs can be readily accessed and used for dispersion applications to construct model inputs with little processing. This study examines the usefulness of these outputs through the relative performance of a dispersion model that has input requirements similar to those of AERMOD. The dispersion model was used to simulate observed tracer concentrations from a Tracer Field Study conducted in Wilmington, California in 2004 using four different sources of inputs: (1) onsite measurements; (2) National Weather Service measurements from a nearby airport; (3) readily available forecast model outputs from the Eta Model; and (4) readily available and more spatially resolved forecast model outputs from the MM5 prognostic model. The comparison of the results from these simulations indicate that comprehensive models, such as MM5 and Eta, have the potential of providing adequate meteorological inputs for currently used short-range dispersion models such as AERMOD.  相似文献   

20.
A mesoscale atmospheric model PSU/NCAR MM5 is used to provide operational weather forecasts for a nuclear emergency response decision support system on the southeast coast of India. In this study the performance of the MM5 model with assimilation of conventional surface and upper-air observations along with satellite derived 2-d surface wind data from QuickSCAT sources is examined. Two numerical experiments with MM5 are conducted: one with static initialization using NCEP FNL data and second with dynamic initialization by assimilation of observations using four dimensional data assimilation (FDDA) analysis nudging for a pre-forecast period of 12 h. Dispersion simulations are conducted for a hypothetical source at Kalpakkam location with the HYSPLIT Lagrangian particle model using simulated wind field from the above experiments. The present paper brings out the differences in the atmospheric model predictions and the differences in dispersion model results from control and assimilation runs. An improvement is noted in the atmospheric fields from the assimilation experiment which has led to significant alteration in the trajectory positions, plume orientation and its distribution pattern. Sensitivity tests using different PBL and surface parameterizations indicated the simple first order closure schemes (Blackadar, MRF) coupled with the simple soil model have given better results for various atmospheric fields. The study illustrates the impact of the assimilation of the scatterometer wind and automated weather stations (AWS) observations on the meteorological model predictions and the dispersion results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号