首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aqueous deoxyribonucleic acid (DNA) solution from contaminated soil washing was investigated. Initial data with a model effluent consisting of anthracene, phenanthrene, pyrene and benzo[a]pyrene that were individually dissolved in 1% aqueous DNA solution confirmed their positive degradation by Sphingomonas sp. at around 10(8)CFU mL(-1) initial cell loading. For anthracene and phenanthrene, complete removal was achieved within 1h treatment. Degradation of pyrene and benzo[a]pyrene took a relatively longer time of a few days and weeks, respectively. DNA-dissolved PAHs were also degraded relatively faster than PAH crystals in aqueous medium to suggest that the binding of the PAHs in the polymer does not pose serious constraint to bacterial uptake. The DNA was stable against the PAH-degrading bacteria. Parallel experiments with actual DNA solutions obtained during pyrene extraction from an artificially spiked soil also showed similar results. Close to 100% pyrene degradation was achieved after 1d treatment. With its chemical stability, the cell-treated DNA was re-used up to four cycles without a considerable decline in extraction performance.  相似文献   

2.
El Nemr A  Abd-Allah AM 《Chemosphere》2003,52(10):1711-1716
The residues of seven polycyclic aromatic hydrocarbons (PAHs) pollutants in microlayer and subsurface seawater samples collected from Alexandria coast, Egypt, were analyzed by gas chromatography–electron-impact mass spectrometry-selected ion monitoring mode (GC–MS-SIM). The pollutants studied were, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene and benzo[a]pyrene. Total PAH levels in microlayer ranged from 103 to 523 ng/l, while it ranged in subsurface samples from 13 to 120 ng/l. The Western Harbor location recorded the highest level of PAHs pollutant over all the other location for both subsurface and microlayer waters. The two major PAHs in microlayer water at the Western Harbor were fluorene and phenanthrene, making up 27% and 20% of the total PAHs, while the two major PAHs in subsurface water at the Eastern Harbor were phenanthrene and fluoranthene recording up 21% each of the total PAHs. The total PAH levels were generally in the nano-gram per liter for microlayer and subsurface seawater samples. The dominant PAHs in both subsurface and microlayer samples were fluoranthene, pyrene and benzo[a]pyrene. The microlayer enrichment factor at Alexandria’s Mediterranean coast was ranged from 29 for fluorene to 3 for phenanthrene and benzo[a]pyrene which showed PAHs concentration in the microlayer with an average of five times more than the total PAH in the subsurface samples.  相似文献   

3.
Surface soil (0-20 cm) samples from nine representative vegetable fields located in Guangzhou, Shenzhen, Zengcheng and Huadu within the Pearl River Delta, South China were collected and analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) using gas chromatography coupled to mass spectrometry (GC-MS). Total concentrations of 16 PAHs (Sigma(PAHs)) ranged from 160 to 3700 microg kg(-1). Large variations were observed also between concentrations of individual PAHs from different vegetable fields and within the site as well. Acenapthylene, benzo[b]fluoranthene, fluoranthene, benzo[a]pyrene and benzo[k]fluoranthene were consistently the most prevalent individual PAHs. The values of PAH isomer ratios [anthracene/(anthracene+phenanthrene) and fluoranthene/(fluoranthene+pyrene)] indicate that combustion processes are the major sources of PAHs. Concentrations of PAHs were poorly correlated with organic carbon concentrations of soils, suggesting different sources and also indicating that the PAH pollution of this area is recent. The same outcome is confirmed by the predominance of PAHs with fewer rings (相似文献   

4.
BACKGROUND AND OBJECTIVE: Indigenous soil microorganisms are used for the biodegradation of petroleum hydrocarbons in oily waste residues from the petroleum refining industry. The objective of this investigation was to determine the potential of indigenous strains of fungi in soil contaminated with petroleum hydrocarbons to biodegrade polycyclic aromatic hydrocarbons (PAH). MATERIALS AND METHODS: Twenty one fungal strains were isolated from a soil used for land-farming of oily waste residues from the petrochemical refining industry in Singapore and identified to genus level using laboratory culture and morphological techniques. Isolates were incubated in the presence of 30 mg/L of phenanthrene over a period of 28 days at 30 degrees C. The most effective strain was further evaluated to determine its ability to oxidise a wider range of PAH compounds of various molecular weight i.e acenaphthene, fluorene, fluoranthene, chrysene, benzo(a)pyrene and dibenz(ah)anthracene RESULTS AND DISCUSSION: After 28 days of incubation, 18 of the 21 fungal cultures were capable of oxidising over 50% of the phenanthrene present in culture medium, relative to abiotic controls. Fungal isolate, Penicillium sp. 06, was able to oxidise 89% of the phenanthrene present. This isolate could also oxidise more than 75% of the acenaphthene, fluorene and fluoranthene after 30 days of incubation. However, the oxidation of high molecular weight PAH i.e. chrysene, benzo(a)pyrene and dibenz(ah)anthracene by the Penicillium sp. 06 isolate was limited, where the extent of oxidation was inversely proportional to PAH molecular weight. CONCLUSIONS: Fungal isolate, Penicillium sp. 06, was effective at oxidising a range of PAH in petroleum contaminated soils, but higher molecular weight PAH were more recalcitrant. RECOMMENDATIONS AND OUTLOOK: There is potential for the re-application of this fungal strain to soil for bioremediation purposes.  相似文献   

5.
Gong Z  Alef K  Wilke BM  Li P 《Chemosphere》2005,58(3):291-298
This study reports on the feasibility of remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soils using sunflower oil, an environmentally-friendly solvent. Batch experiments were performed to test the influence of oil/soil ratio on the remediation of PAH contaminated soil, and to test the mass transfer behaviors of PAHs from soil to oil. An empirical model was employed to describe the kinetics of PAH dissolution and to predict equilibrium concentrations of PAHs in oil. PAH containing oil was regenerated using active carbon. Results show that dissolution of PAHs from a Manufactured Gas Plant (MGP) soil at oil/soil ratios of one or two were almost the same. Nearly all PAHs (81-100%) could be removed by sunflower oil dissolution. Mass transfer coefficients for low molecular PAHs namely fluoranthene, phenanthrene and anthracene were one or two orders of magnitude higher than those for high molecular PAHs with 4-6 rings. Ninety milliliters of PAH containing oil could be regenerated by 10 g active carbon in a batch reactor. Such a remediation procedure indicates that sunflower oil is a promising agent for the removal of PAHs from MGP soils. However, further research is required before the method can be used for in situ remediation of contaminated sites.  相似文献   

6.
Polyaromatic hydrocarbons (PAHs) are emitted from a variety of sources and can accumulate on and within surface soil layers. To investigate the level of potential risk posed by surface contaminated soils, vertical soil column experiments were conducted to assess the mobility, when leached with simulated rainwater, of six selected PAHs (naphthalene, phenanthrene, fluoranthene, pyrene, benzo(e)pyrene and benzo(ghi)perylene) with contrasting hydrophobic characteristics and molecular weights/sizes. The only PAH found in the leachate within the experimental period of 26 days was naphthalene. The lack of migration of the other applied PAHs was consistent with their low mobilities within the soil columns which generally paralleled their log K oc values. Thus, only 2.3 % of fluoranthene, 1.8 % of pyrene, 0.2 % of benzo(e)pyrene and 0.4 % of benzo(ghi)perylene were translocated below the surface layer. The PAH distributions in the soil columns followed decreasing power relationships with 90 % reductions in the starting levels being shown to occur within a maximum average depth of 0.94 cm compared to an average starting depth of 0.5 cm. A simple predictive model identifies the extensive time periods, in excess of 10 years, required to mobilise 50 % of the benzo(e)pyrene and benzo(ghi)perylene from the surface soil layer. Although this reduces to between 2 and 7 years for fluoranthene and pyrene, it is concluded that the possibility of surface-applied PAHs reaching and contaminating a groundwater aquifer is unlikely.  相似文献   

7.
The biodegradation of polycyclic aromatic hydrocarbons in microecosystems containing long-term contaminated soil was investigated. Soil was contaminated by different chemicals, including PAHs since World War II. Aging of the soil was expected to act as a principal factor limiting biodegradation. Half of the microecosystems contained ryegrass (Lolium perenne) and long-term selected natural soil microflora originally present in contaminated soil. The others contained contaminated soil with natural microflora only. Half of the microecosystems in each parallel experiment was fertilised with N-P-K fertiliser. Cultivation was carried out at 12 and 18 months in a greenhouse with a natural photoperiod and the ability to degrade 15 chosen PAH was investigated. For analysis, the soil from each pot was divided into three horizontal layers for mutual comparison among layers and each layer was further divided into four equal samples. Soil extracts were analysed using HPLC. After a one-year-cultivation period the content of the monitored PAHs declined to 50%. Mostly, there were no significant differences between the microecosystems. Best degraded were fluoranthene and pyrene, which were the major contaminants present in original soil. Also, other compounds were successfully degraded, even benzo[a]pyrene and benzo[ghi]perylene. Dibenz[a,h]anthracene and indeno[1,2,3-cd]pyrene were the only PAHs, examined that showed no significant degradation. Although some differences between the soil layers were detected, no conclusive trends could be found. However, significantly lower concentrations of PAHs were determined mostly in the bottom layer of the analysed profiles. In vegetated microecosystems the decline of PAHs concentrations was more remarkable after 18 months cultivation.  相似文献   

8.
《Environmental Forensics》2013,14(3):191-197
To determine whether polycyclic aromatic hydrocarbons (PAHs) in household soot were derived from the combustion of scrap wood or creosote that was impregnated in the wood (or some combination of both), the molecular composition and radiocarbon ( 14 C) content of the total carbon and several PAHs in the soot was investigated. The 5730-year half-life of 14 C makes it an ideal marker for identifying creosote-derived PAHs ( 14 C-free) versus those derived from the combustion of wood (contemporary 14 C). The 14 C abundance of phenanthrene, fluoranthene, pyrene, and retene was determined by accelerator mass spectrometry after solvent extraction and purification by preparative capillary gas chromatography. The molecular analysis (presence of retene and 1,7-dimethylphenanthrene) and bulk 14 C content (contemporary) of the soot indicated that wood combustion was a strong source of carbon to the soot. The 14 C of retene in two soot samples was also contemporary, indicating that it was derived from the combustion of the scrap wood. These results are consistent with previous work that has suggested that retene is an excellent marker of wood combustion. However, the 14 C content of phenanthrene, fluoranthene, and pyrene in one soot sample was much lower and revealed that these compounds had a mixed creosote and wood source. Using an isotopic mass balance approach, we estimate that 40 to 70% of phenanthrene, fluoranthene, and pyrene were derived from the combustion of the scrap wood. The results of this study show that molecular marker and bulk 14 C analysis can be potentially misleading in apportioning sources of every PAH, and that molecular-level 14 C analysis of PAHs can be a powerful tool for environmental forensics.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) were quantified in 30 soil profiles from the Yangtze River Delta Region, in east China. Relative concentrations of PAH compounds with different benzene rings and ratios of fluoranthene to fluoranthene plus pyrene and benz(a)anthracene to benz(a)anthracene plus chrysene were used to identify the possible sources of soil PAHs. Total concentrations of 15 PAHs in topsoils ranged from 8.6 to 3881 microg kg(-1) with an average of 397 microg kg(-1). Half of the soil samples were considered to be contaminated with PAHs (>200 microg kg(-1)) and two sampling sites were heavily polluted by PAHs with concentrations >1000 microg kg(-1). Phenanthrene was found in soils below a depth of 100 cm in half of the sampling sites, but the detectable ratio of benzo(a)pyrene decreased sharply from 100% in topsoil to 0 in the 4th horizon.  相似文献   

10.
Butanol extraction to predict bioavailability of PAHs in soil   总被引:13,自引:0,他引:13  
Liste HH  Alexander M 《Chemosphere》2002,46(7):1011-1017
The feasibility of a mild-solvent extraction procedure to predict the bioavailability of individual polycyclic aromatic hydrocarbons (PAHs) in soil was assessed. The quantities that were degraded during the course of biodegradation of phenanthrene and pyrene in soil with or without plants correlated with the amounts extracted by n-butanol, with R2 values of 0.971 and 0.994, respectively. Six consecutive groups of earthworms removed ca. 70% of the pyrene remaining after extensive biodegradation, a value similar to the quantity extracted by n-butanol. The amount of chrysene aged in sterilized soil that was extracted by n-butanol was not statistically different from the quantities assimilated by earth-worms (Eisenia fetida) introduced into the soil. Such a mild extraction procedure may be useful as a means of predicting PAH bioavailability.  相似文献   

11.
Background, Aims and Scope Polycyclic Aromatic Hydrocarbons (PAHs) are known for their adverse and cumulative effects at low concentration. In particular, the PAHs accumulate in sewage sludge during wastewater treatment, and may thereafter contaminate agricultural soils by spreading sludge on land. Therefore, sludge treatment processes constitute the unique opportunity of PAH removal before their release in the environment. In this study, the ability of aerobic microorganisms to degrade light and heavy PAHs was investigated in continuous bioreactors treating trace-level PAH-contaminated sludge. Methods Several aerobic reactors were operated under continuous and perfectly mixed conditions to simulate actual aerobic sludge digesters. Three sterile control reactors were performed at 35°C, 45°C or 55°C to assess PAH abiotic losses under mesophilic and thermophilic conditions. Three biological reactors were also operated at 35°C, 45°C or 55°C. Furthermore, 250 mM methanol were added in an additional mesophilic reactor (35°C). All reactors were fed with long-term PAH-contaminated sewage sludge, and PAH removal was assessed by inlet/outlet mass balance. In this study, PAH compounds ranged from 2 to 5-unsubstituted aromatic rings, i.e. respectively from Fluorene to Indeno(123cd)pyrene. Results and Discussion Significant abiotic losses were observed for the lightest PAHs (fluorene, phenanthrene and anthracene), while biodegradation occurred for all PAHs. More than 80% of the lightest PAHs were removed. Biodegradation rates inversely correlated with the increasing molecular weight, and seemed limited by the low bioavailability of the heaviest PAHs (only 50% of removal). The enhancement of PAH bioavailability by increasing the process temperature or adding methanol was tested. A temperature increase from 35°C to 45°C and then to 55°C significantly enhanced the biodegradation of the heaviest PAHs from 50% to 80%. However, high abiotic losses were observed for all PAHs at 55°C, which was attributed to volatilization. Optimal conditions were found at 45°C considering the low abiotic losses and the high PAH biodegradation rates. Similar performances were achieved by addition of methanol in the sludge. It was concluded that increasing temperatures or addition of methanol favored PAH diffusion from solids to an aqueous compartment, and enhanced their bioavailability to PAH-degrading microorganisms. Conclusion In this study, the use of long-term acclimated aerobic ecosystems showed the high potential of aerobic microorganisms to degrade a wide range of PAHs at trace levels. However, PAH biodegradation was likely controlled by their low bioavailability. Two aerobic processes have been finally proposed to achieve efficient decontamination of sewage sludge, at 45°C or in the presence of methanol. The PAH concentrations in reactor outlet were lower than the French requirements, and allow the treated sludge to be spread on agricultural land. Recommendations and Outlook The two proposed aerobic processes used physical or chemical diffusing agents. The global ecological impact of using the latter agents for treating trace level contamination must be considered. Since methanol was completely removed during the process, no additional harm is expected after treatment. However, an increase of temperature to 45°C could drastically increase the energy demand in full-scale plants, and therefore the ecological impact of the process. Moreover, since bioavailability controls PAH biodegradation, efficiency of the processes could also be influenced by the hydraulic parameters, such as mixing and aeration rates. Further experimentations in a pilot scale are therefore recommended, as well as a final assessment of the global environmental benefit of using such aerobic processes in the bioremediation of trace level compounds. - Abbreviations (PAHs): Ant – anthracene; B(a)A – benzo(a)anthracene ; B(b)F – benzo(b)fluoranthene; B(k)F – benzo(k)fluoranthene; B(ghi)P – benzo(g,h,i)perylene; B(a)P – benzo(a)pyrene; Chrys – chrysene; DB – dibenzo(a,h)anthracene; Fluor – fluoranthene; Fluo - fluorene; Ind – indeno(1,2,3-c,d)pyrene; Phe - phenanthrene; Pyr – pyrene - * The basis of this peer-reviewed paper is a presentation at the 9th FECS Conference on 'Chemistry and Environment', 29 August to 1 September 2004, Bordeaux, France.  相似文献   

12.
Mackay D  Hickie B 《Chemosphere》2000,41(5):681-692
A mass balance model has been developed and calibrated to describe the sources, transport and fate of seven polycyclic aromatic hydrocarbons (PAHs; anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, fluoranthene, phenanthrene, and pyrene) in the water and sediments of, and atmosphere over Lac Saint Louis, Quebec. The model uses specified input rates from background advective flows and emissions from the Alcan aluminum smelting facility at Beauharnois to deduce atmospheric concentrations and rates of wet and dry deposition to the three segment lake. Concentrations in water and sediment as well as relevant mass fluxes and residence times are computed and compared satisfactorily with monitoring data for five of the seven PAHs. Underestimation of concentrations for anthracene and phenanthrene is attributed to unquantified additional sources. The sources of the PAH burden in the lake are apportioned, and the implications of these results are discussed including likely response times to changes in loadings. It is suggested that this mass balance approach is more widely applicable to situations in which water bodies are impacted by a variety of contaminant sources.  相似文献   

13.
The fate of 13C-labelled phenanthrene and fluoranthene in different soil systems during biodegradation was studied. The soil humic acid fraction was isolated followed by structural characterisation using 13C-cross polarisation magic angle spinning nuclear magnetic resonance spectroscopy (13C-CPMAS-NMR). It could be demonstrated that especially the ratio between the concentrations of polycyclic aromatic hydrocarbons (PAHs) and soil humus matrix limits the usefulness of this analytical tool. Based on these results a ratio of 13C-activity(PAH)/13C-activity(soil) approximately 1.5/1.0 in the test material was suggested. The chemical transformation of a PAH and its bound residue formation in a soil system detected by changes of chemical shifts in the 13C-NMR spectrum was proven for the first time. Structural information obtained by NMR spectra were verified by alkaline hydrolysis of PAH/humus-associations and following identification of cleavage products. Ester-bound phenanthrene metabolites such as 1-hydroxy-2-naphthoic acid, ortho-phthalic acid and 3,4-dihydroxybenzoic acid were detected. Additional structural assignments indicated the presence of ether-bound phenanthrene derivatives as well. Using isotopic labelling techniques a quantitative evaluation of bound residue distribution was undertaken. Fifty to seventy percent of phenanthrene metabolites which could be related to the added 13C(1)-phenanthrene were ester bound via their carboxyl groups.  相似文献   

14.
Combined UV-biological degradation of PAHs   总被引:6,自引:0,他引:6  
The UV-photolysis of PAHs was tested in silicone oil and tetradecane. In most cases, the degradation of a pollutant provided within a mixture was lower than when provided alone due to competitive effects. With the exception of anthracene, the larger pollutants (4- and 5-rings) were always degraded first, proving that UV-treatment preferentially acts on large PAHs and thereby provides a good complement to microbial degradation. UV-photolysis was also found to be suitable for treatment of soil extract from contaminated soils. The feasibility of UV-biological treatment was demonstrated for the removal of a mixture of phenanthrene and pyrene in silicone oil. UV-irradiation of the silicone oil led to 83% pyrene removal but no phenanthrene photodegradation. Subsequent treatment of the oil in a two-phases partitioning bioreactor (TPPB) system inoculated with Pseudomonas sp. was followed by complete phenanthrene biodegradation but no further pyrene removal. Totally, the combined process allowed 92% removal of the PAH mixture. Further work should focus on characterizing the photoproducts formed and studying the influence of the solvent on the photodegradation process.  相似文献   

15.
Estimates of standing biomass and fluxes of biomass in a mixed-deciduous woodland were derived, and used with results for concentrations of seven polycyclic aromatic hydrocarbons (PAHs) in different compartments of the woodland system to quantitatively assess some of the key fluxes and burdens of PAHs in this complex system. We quantified PAH burdens in air, in leaves of three deciduous tree species, in leaf litter and in soil, and uptake of PAHs by the tree leaves; PAH fluxes in litterfall, and deposition to the litter layer on the woodland floor during winter were calculated from these data. Air burdens exhibited marked seasonal variations for all compounds, with lowest values in summer when combustion-related emissions were low. Leaves did not accumulate large burdens of PAHs while on the trees and consequently, litterfall-associated fluxes of PAHs were small, representing only a fraction of the burdens in the litter layer to which they were deposited. Higher PAH burdens in air in winter, combined with the organic-matter-rich nature of the litter layer, are thought to be responsible for fluxes of PAHs to the litter layer in winter being 20-170 times the peak litterfall fluxes. The soil compartment was calculated to contain 25 years' worth of deposition of benzo[ghi]perylene, the most recalcitrant PAH in this study. Storage quotients for fluoranthene, pyrene, benzo[k]fluoranthene and benzo[a]pyrene burdens in soil represented 7-10 years' worth of deposition, while fluorene and phenanthrene storage in soil approached unity with inputs (1 and 3 years' worth of deposition, respectively). The relative importance of storage and loss processes was therefore closely related to the physico-chemical properties of the PAH, and is discussed in relation to the cycling of carbon in the woodland.  相似文献   

16.
The uptake of selected polycyclic aromatic hydrocarbons (PAHs) by rice (Oryza sativa) seedlings from spiked aged soils was investigated. When applied to soils aged for 4 months, naphthalene, phenanthrene, and pyrene exhibited volatilization loss of 98, 95, and 30%, respectively, with the remaining fraction being fixed by soil organic matter and/or degraded by soil microbes. In general, concentrations of the three PAHs in rice roots were greater than those in the shoots. The concentrations of root associated PHN and PYR increased proportionally with both soil solution and rhizosphere concentrations. PAH concentrations in shoots were largely independent of those in soil solution, rice roots, or rhizosphere soil. The relative contributions of plant uptake and plant-promoted rhizosphere microbial biodegradation to the total mass balance were 0.24 and 14%, respectively, based on PYR concentrations in rhizosphere and non-rhizosphere soils, the biomass of rice roots, and the dry soil weight.  相似文献   

17.
The bioaccumulation of two isomeric non-alternant non-priority polycyclic aromatic hydrocarbons (PAHs), namely cyclopenta[cd]pyrene and benzo[ghi]fluoranthene, was investigated in caged mussels (Mytilus galloprovincialis) exposed for 30 days in three sites of a coastal lagoon (Pialassa Baiona, Ravenna, Italy) contaminated by pyrogenic PAHs. The concentration of cyclopenta[cd]pyrene and benzo[ghi]fluoranthene increased from undetectable levels in reference mussels withdrawn from the Adriatic sea to 10-30 ng g(-1) dry weight in transplanted mussels. Other contaminants bioaccumulated by caged mussels included pyrene, fluoranthene and mercury. Whilst the isomer concentration ratio pyrene/fluoranthene in biota was comparable to that observed in sediments, the cyclopenta[cd]pyrene/benzo[ghi]fluoranthene ratio was much lower in mussels than in sediments. The lower sediment biota accumulation factor of cyclopenta[cd]pyrene with respect to that of benzo[ghi]fluoranthene was tentatively attributed to the greater biological activity of the former compound, which contains a reactive olefinic bond in the cyclopenta fused ring moiety. Given the higher mutagenic activity of cyclopenta[cd]pyrene with respect to other priority PAHs, its bioaccumulation from contaminated sediments may rise considerably the overall toxicity of PAH residues in exposed biota.  相似文献   

18.
Hydrocarbon deposition and soil microflora as affected by highway traffic.   总被引:3,自引:0,他引:3  
The proximity of a busy highway (90,000 vehicles/day) increased the amount of polycyclic aromatic hydrocarbons (PAHs) in soil at the depth of 5-15 cm from 106 ng/g as a grassland background to 3095 ng/g dry soil at the highway verge (a sum of 10 PAH species). The PAH concentration was related to the distance from the source and exhibited a biphasic character, which is interpreted in terms of bimodal distribution of the exhaust microparticles with different rates of deposition. Similarly, the tendency of benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno(1,2,3-cd)pyrene to decrease their proportion with distance from the highway, in contrast to phenanthrene, fluoranthene, pyrene, benzo(a)pyrene, and benzo(g,h,i)perylene, was attributed to their prevalent localisation on the heavier particle fraction. The abundance of bacteria (8.33 x background) and fungi (3.17 x background) close to the highway is thought to be a consequence of hydrocarbon deposition from the traffic that serves as a significant energetic input into the soil. The elevated concentrations of hydrocarbon substrates, as indicated by PAHs, increased both the absolute and relative numbers of the microbial degraders of diesel fuel, biphenyl, naphthalene, and pyrene. Their maximum numbers at 0.5-1.5 m from the pavement reached 1.3 x 10(4), 1.2 x 10(5), 1.1 x 10(4), and 6.6 x 10(3) colony-forming units (CFU) or infection units per gramme dry soil, respectively. On the other hand, the number of anthracene degraders (1.1 x 10(3) CFU per g dry soil) remained close to the detection limit of the enumeration technique used (0.1-0.2 x 10(3) per g dry soil), consistently with the absence of anthracene and higher linear PAHs in the investigated soil samples. The amounts of persisting PAHs justify artificial inoculation with effective degrader strains in the vicinity of motorways.  相似文献   

19.
Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 degrees C, 40 degrees C and 60 degrees C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energy of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 degrees C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 degrees C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) are one of the main classes of contaminants in the terrestrial environment. Concentrations of biphenyl, fluorene, phenanthrene and pyrene were added to soil samples in order to investigate the anaerobic degradation potential of PAHs under denitrifying conditions. A mixed population of microorganisms obtained from a paddy soil was incubated for 20 days in anaerobic conditions in the presence of soil alone or with nitrate, adding, as electron donors, PAHs and, in some samples, glucose or acetate. At regular time intervals oxidation-reduction potential, PAHs concentration, microbial ATP and nitrate concentration into the solution were measured. Degradation trends for each hydrocarbon are similar under all conditions, indicating that the molecular conformation prevails over other parameters in controlling the degradation. Poor degradation results were obtained when PAHs were the only organic matter available for the inoculum, thus confirming the recalcitrance to degradation of these compounds. Biodegradation was influenced by the addition of other carbon sources. As better degradation results were generally obtained when acetate or glucose were added, the hypothesis of a co-metabolic enhancement of PAH biodegradation seems likely. Thus, anaerobic biodegradation of PAHs studied, biphenyl, fluorene, phenanthrene and pyrene, seems to be possible both through fermentative and respiratory metabolism, provided that low molecular weight co-metabolites and suitable electron acceptors (nitrate) are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号