首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
氯代有机溶剂共降解研究进展   总被引:7,自引:0,他引:7  
本文综述了有机氯溶剂的微生物共降解过程。多种多样的微生物能够通过共代谢途径降解有机氯溶剂。共降解是由微生物细胞内的关键酶进行的。影响共降解的主要因素包括关键酶的诱导,毒性抑制和自我恢复以及能量供应等。本文对共降解过程的机理和相关的数学模型进行了综合分析。在此基础上,提出了一个能够揭示共降解过程各种因素之间的内在逻辑关系的结构模型,对于从细胞和酶两个层次上认识共降解过程具有重要的指导意义。  相似文献   

2.
微生物共代谢是污水中难降解性有机物生物降解的重要方式 ,关键酶的诱导、生长基质与目标污染物之间的竞争抑制、目标污染物及其降解产物对微生物的毒性反应是影响共代谢反应的关键因素。选择合适的生长基质、优化反应条件可以提高微生物共代谢在实际污水处理及地下水污染修复中的应用效果  相似文献   

3.
微生物降解多环芳烃有机污染物分子遗传学研究进展   总被引:3,自引:0,他引:3  
多环芳烃是环境中广泛存在的一类难降解危险性致癌污染物 ,微生物酶在降解转化多环芳烃的过程及其归趋中起着重要作用。本文就微生物降解多环芳烃代谢途径的多样性和分子遗传学机制的研究进展进行了综述  相似文献   

4.
废水中难降解性有机污染物的共代谢降解   总被引:13,自引:0,他引:13  
微生物共代谢是污水中难降解性有机物生物降解的重要方式,关键酶的诱导,生长基质与目标污染物之间的竞争抑制,目标污染及其降解产物对微生物的毒性反应是影响共代谢反应的关键因素,选择合适的生长基质,优化反应条件可以提高微生物共代谢在实际污水处理有地下水污染修复中的应用效果。  相似文献   

5.
通过生物降解实验考察三氯乙烯(TCE)在苯酚驯化微生物中的共代谢降解性能,并进行动力学分析。结果表明,苯酚是TCE-苯酚共代谢过程必不可少的共代谢基质;TCE的共代谢降解与苯酚和TCE初始浓度有关。TCE在降解初期会出现一个短暂的迟滞期,TCE的大量降解要在苯酚被利用后才发生;高质量浓度TCE(>9mg/L)对共代谢降解有抑制作用。苯酚/TCE(质量比)在10~15以上时,苯酚菌对TCE的去除率较大。Haldane模型能够很好地拟合苯酚和TCE的比降解速率。动力学分析表明,微生物对苯酚的亲和力要大于TCE,苯酚对TCE共降解具有竞争性抑制作用,TCE对微生物存在毒性抑制作用;结果证实了生物降解实验的结论。  相似文献   

6.
微生物降解多环芳烃有机污染物分子遗传学研究进展   总被引:4,自引:0,他引:4  
多环芳烃是环境中广泛存在的一类难降解危险性致癌污染物,微生物酶在降解转化多环芳烃的过程及其归趋中起着重要作用。本文就微生物解多环芳烃代谢途径的多样性和分子遗传学机制的研究进展进行了综述。  相似文献   

7.
针对微生物修复地下水中四氯乙烯(tetrachloroethylene,PCE)周期长的问题,通过添加共代谢基质强化微生物修复技术以提高修复速率。以某污水处理厂的厌氧活性污泥为菌种来源,采用振荡培养法进行PCE高效降解菌群的驯化和筛选,对微生物降解PCE的温度、初始pH和PCE初始浓度3种影响因素进行了条件优化;使用甲醇、乙醇、葡萄糖、酵母浸膏以及乳酸钠作为共代谢基质,研究了不同共代谢基质条件下微生物群落对PCE的降解规律,并建立了反应动力学模型。结果表明:在种水平上,梭状芽孢杆菌Clostridium sp. FCB45是优势菌种;PCE初始浓度为1 mg·L-1,pH在中性,温度为30℃,共代谢基质为酵母浸膏时,微生物群落的降解效果最好,PCE降解率可高达96.75%,降解速率常数最高可达0.327 d-1;添加共代谢基质强化的微生物降解过程全部符合一级反应动力学模型。添加共代谢基质的微生物实验结果表明,添加共代谢基质可以有效缩短微生物修复周期,对污染地下水的原位生物修复具有一定的参考价值。  相似文献   

8.
硝基芳香化合物是环境中难降解的有机污染物之一 ,对环境的污染日益严重 ,利用生物技术对这类有机物进行降解是行之有效的新途径。针对几种单环硝基芳香化合物好氧降解的微生物、降解途径以及降解过程中的主要酶、降解性质粒、基因定位等分子遗传学的研究进展进行了综述  相似文献   

9.
二噁英是一类广泛分布于环境中的持久性有机污染物,它们能够在食物链中逐级积累,并可引发多种细胞毒性,严重影响生态系统和人类健康。在众多二噁英降解方法中,生物降解法以环境友好和低成本等优点一直受到国内外学者的青睐,而二噁英降解酶是生物降解法中的关键物质。简要综述了近年来二噁英典型降解酶的降解机制、效果和编码基因等方面研究进展,并对二噁英降解酶未来的研究和应用方向进行了展望。  相似文献   

10.
随着拟除虫菊酯类农药使用量不断增加,产生的农药残留问题对生态环境和人类健康造成了危害.对降解拟除虫菊酯类农药的微生物种类、降解酶和降解机制及降解酶基因克隆和构建工程菌等方面进行综述,旨在为研究和开发微生物降解拟除虫菊酯类农药残留提供参考.  相似文献   

11.
The widespread use of industrial chemicals in our highly industrialized society has often caused contamination of large terrestrial and marine areas due to the deliberate and accidental release of organic pollutants into the soil and groundwater. In this review, environmental problems arising from the use of chlorinated solvents and BTEX compounds are described, and an overview about active management strategies for remediation with special emphasis on phytoremediation are presented to achieve a reduction of the total mass of chlorinated solvents and BTEX compounds in contaminated areas. Phytoremediation has been proposed as an efficient, low-cost remediation technique to restore areas contaminated with chlorinated solvents and BTEX compounds. The feasibility of phytoremediation as a remediation tool for these compounds is discussed with particular reference to the uptake and metabolism of these compounds, and a future perspective on the use of phytoremediation for the removal of chlorinated solvents and BTEX compounds is given.  相似文献   

12.
Microbial transformation and degradation of polychlorinated biphenyls   总被引:7,自引:0,他引:7  
This paper reviews the potential of microorganisms to transform polychlorinated biphenyls (PCBs). In anaerobic environments, higher chlorinated biphenyls can undergo reductive dehalogenation. Meta- and para-chlorines in PCB congeners are more susceptible to dechlorination than ortho-chlorines. Anaerobes catalyzing PCB dechlorination have not been isolated in pure culture but there is strong evidence from enrichment cultures that some Dehalococcoides spp. and other microorganisms within the Chloroflexi phylum can grow by linking the oxidation of H(2) to the reductive dechlorination of PCBs. Lower chlorinated biphenyls can be co-metabolized aerobically. Some aerobes can also grow by utilizing PCB congeners containing only one or two chlorines as sole carbon/energy source. An example is the growth of Burkholderia cepacia by transformation of 4-chlorobiphenyl to chlorobenzoates. The latter compounds are susceptible to aerobic mineralization. Higher chlorinated biphenyls therefore are potentially fully biodegradable in a sequence of reductive dechlorination followed by aerobic mineralization of the lower chlorinated products.  相似文献   

13.
O-anisate degrading microorganisms were isolated from soil samples and identified. 80, 24, 64 and 64% of the isolates showed cometabolism to the herbicides dicamba, 2, 3, 6-TBA, 2, 4-D and MCPA, respectively.  相似文献   

14.
Microbial degradation of chlorinated dioxins   总被引:2,自引:0,他引:2  
Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) were introduced into the biosphere on a large scale as by-products from the manufacture of chlorinated phenols and the incineration of wastes. Due to their high toxicity they have been the subject of great public and scientific scrutiny. The evidence in the literature suggests that PCDD/F compounds are subject to biodegradation in the environment as part of the natural chlorine cycle. Lower chlorinated dioxins can be degraded by aerobic bacteria from the genera of Sphingomonas, Pseudomonas and Burkholderia. Most studies have evaluated the cometabolism of monochlorinated dioxins with unsubstituted dioxin as the primary substrate. The degradation is usually initiated by unique angular dioxygenases that attack the ring adjacent to the ether oxygen. Chlorinated dioxins can also be attacked cometabolically under aerobic conditions by white-rot fungi that utilize extracellular lignin degrading peroxidases. Recently, bacteria that can grow on monochlorinated dibenzo-p-dioxins as a sole source of carbon and energy have also been characterized (Pseudomonas veronii). Higher chlorinated dioxins are known to be reductively dechlorinated in anaerobic sediments. Similar to PCB and chlorinated benzenes, halorespiring bacteria from the genus Dehalococcoides are implicated in the dechlorination reactions. Anaerobic sediments have been shown to convert tetrachloro- to octachlorodibenzo-p-dioxins to lower chlorinated dioxins including monochlorinated congeners. Taken as a whole, these findings indicate that biodegradation is likely to contribute to the natural attenuation processes affecting PCDD/F compounds.  相似文献   

15.
对氯代有机物的污染进行治理是水污染控制的重要课题。本文总结了可用于水中氯代有机物处理的一些方法的近期研究成果,同时也讨论了生物法、光催化氧化法和双金属还原法的各自特点及应用前景  相似文献   

16.
The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The modeling system is designed in such a way that constraint-based models targeting different microorganisms or competing organism communities can be easily plugged into the system. Constraint-based modeling is very costly given the size of a genome-scale reaction network. To save computation time, a binary tree is traversed to examine the concentration and solution pool generated during the simulation in order to decide whether the constraint-based model should be called. We also show preliminary results from the integrated model including a comparison of the direct and indirect coupling approaches and evaluated the ability of the approach to simulate field experiment.  相似文献   

17.
In situ aerobic cometabolic transformations of ethylene, propylene, and cis-1,2-dichloroethylene (c-DCE), by microorganisms stimulated on propane, were examined in groundwater contaminated with c-DCE and trichloroethylene (TCE). In situ measurements were performed by conducting field push-pull tests, which consisted of injecting site groundwater amended with a bromide tracer and combinations of propane, dissolved oxygen (DO), nitrate, ethylene, propylene, c-DCE, and TCE into existing monitoring wells and sampling the same wells over time. Mass balance and transformation rate calculations were performed after adjusting for dilution losses using measured tracer concentrations. Initial rates of propane utilization were very low; rates increased substantially following sequential additions of propane and DO. Evidence that propane and DO additions had stimulated organisms expressing a propane monoxygenase enzyme system and that had the capability to transform chlorinated aliphatic hydrocarbons (CAHs) included: (1) the transformation of injected ethylene and propylene to the cometabolic byproducts ethylene oxide and propylene oxide, (2) the transformation of c-DCE, and (3) the inhibition of these transformations in the presence of coinjected acetylene, a known monoxygenase mechanism-based inactivator. These results suggest that a series of push-pull tests performed with nontoxic chemical probes can be useful for detecting and monitoring in situ aerobic cometabolism of CAHs.  相似文献   

18.
Over the next decade, use of chlorinated solvents, a widely employed class of chemicals, will decline significantly because of increasingly stringent environmental regulations. These solvents pose certain health and environmental problems and they have been heavily scrutinized. The alternatives to the solvents are being adopted without controls. In some cases, these substances will pose other health and environmental problems that are likely to be as serious; in other cases, the alternatives have not been examined for their health and environmental effects at all. This case study demonstrates that regulations on chlorinated solvents and their potential alternatives are inconsistent with one another and conflicting.  相似文献   

19.
The present review describes some aspects of organization of biodegradative pathways of Nocardioform microorganisms, first of all, with respect to their ability to degrade aromatic compounds, mostly methylbenzoate, chlorosubstituted phenols, and chlorinated biphenyls and the intermediates of their transformation: 4-chlorobenzoate and para-hydroxybenzoate. Various enzyme systems induced during degradation processes are defined. The ability of microorganisms to induce a few key enzymes under the influence of xenobiotics is described. This ability may increase the biodegradative potential of strains allowing them to survive in the changing environment or demonstrate to some extent the unspecific response of microorganisms to the effect of toxicants. Nocardioform microorganisms responsible for degradation of such persistent compounds as polychlorinated biphenyls, polyaromatic hydrocarbons, chlorinated benzoates and phenols and other xenobiotics are characterized. The possibility of using Nocardioform microorganisms in some aspects of biotechnology due to their ability to produce some compounds important for industry is also estimated.  相似文献   

20.
Over the next decade, use of chlorinated solvents, a widely employed class of chemicals, will decline significantly because of increasingly stringent environmental regulations. These solvents pose certain health and environmental problems and they have been heavily scrutinized. The alternatives to the solvents are being adopted without controls. In some cases, these substances will pose other health and environmental problems that are likely to be as serious; in other cases, the alternatives have not been examined for their health and environmental effects at all. This case study demonstrates that regulations on chlorinated solvents and their potential alternatives are inconsistent with one another and conflicting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号